Research on the Influence Factors of Water−bearing Tunnel Stability Based on Fluid−solid Coupling Theory
-
摘要:
针对含水巷道中地下水渗流对巷道围岩稳定性的影响,以云南某金属矿一巷道作为工程背景,基于流固耦合理论,应用正交实验与FLAC3D数值模拟相结合的方法,综合分析了含水巷道围岩稳定性影响因素(埋深、围岩强度和水压)的敏感性以及不同因素条件下巷道围岩的稳定性。研究结果表明:流固耦合作用下巷道顶板和两帮变形影响因素的敏感性顺序由大到小依次为埋深、水压、围岩强度。影响巷道顶板及两帮变形最小的组合为水压0 MPa、围岩强度80 MPa、埋深200 m;最大的组合为水压0.3 MPa、围岩强度20 MPa、埋深500 m。巷道两帮会受到孔隙水压力集中和压应力集中的共同影响,在巷道进行选择支护及加固方式时,可作为一定参考依据。
Abstract:This study investigates the influence of groundwater seepage on the stability of the peripheral rock of a water−bearing roadway. The sensitivity of the key factors (burial depth, peripheral rock strength, and water pressure) influencing the stability of the peripheral rock of the water−bearing roadway, as well as the stability of the peripheral rock under different factor conditions, were comprehensively analyzed based on the theory of fluid−solid coupling and the method of combining orthogonal experiments and numerical simulation with FLAC3D, taking a roadway in a metal mine in Yunnan Province as the background. The results showed that the sensitivity of the deformation factors of the roadway roof and two sidewalls under the effect of fluid−solid coupling was in descending order of burial depth, water pressure, and strength of surrounding rock. The smallest combination affecting the deformation of the roof and two sidewalls was water pressure of 0 MPa, perimeter rock strength of 80 MPa, depth of 200 m the largest combination was water pressure of 0.3 MPa, perimeter rock strength of 20 MPa, depth of 500 m. The two sidewalls of the roadway were affected by pore water pressure and compressive stress concentration, which could be used as a reference for selecting support and reinforcement methods in the roadway.
-
-
表 1 各主要影响因素的水平值
Table 1. Horizontal values of the main influencing factors
因素 水平 1 2 3 4 水压/MPa 0 0.1 0.2 0.3 围岩强度/MPa 20 40 60 80 埋深/m 200 300 400 500 表 2 岩石力学参数
Table 2. Rock mechanical parameters
密度 /(g·cm−3)
弹性模量/GPa 泊松比 黏聚力C/kPa 内摩擦角/(°) 渗透系数/(m2·Pa−1·s−1) 孔隙率 2.60 7.51 0.19 268 33.05 3×10−8 0.5 表 3 正交实验方案与结果
Table 3. Orthogonal experimental programme and results
编号 水压/MPa 围岩强度/MPa 埋深/m 巷道变形/mm 两帮 顶板 1 0 20 200 10.9 15.4 2 0 40 300 15.8 22.4 3 0 60 400 20.9 29.5 4 0 80 500 25.2 36.4 5 0.1 20 300 27.9 38.5 6 0.1 40 200 18.6 25.2 7 0.1 60 500 47.4 67.5 8 0.1 80 400 37.4 52.5 9 0.2 20 400 38.2 53.2 10 0.2 40 500 48.2 68.3 11 0.2 60 200 19.1 26.4 12 0.2 80 300 28.1 39.1 13 0.3 20 500 49.5 69.6 14 0.3 40 400 38.7 54.4 15 0.3 60 300 29.3 40.2 16 0.3 80 200 20.3 27.6 表 4 顶板位移极差分析
Table 4. Extreme analysis of roof displacement
项目 顶板位移/mm 水压 围岩强度 埋深 K1 25.92 44.18 23.65 K2 45.92 42.58 35.05 K3 46.75 40.90 47.40 K4 47.95 38.90 60.45 极差R 22.03 5.28 36.80 表 5 顶板位移方差分析
Table 5. ANOVA for roof displacement
因素 偏差平方和 自由度 F 显著性 水压 1325.00 3 21.27 * 围岩强度 61.42 3 0.99 − 埋深 3016.50 3 48.42 * 误差项 124.57 6 注:*表示显著,−表示不显著。 表 6 两帮位移极差分析
Table 6. Polar analysis of the displacement of the sidewalls
项目 两帮位移/mm 水压 围岩强度 埋深 K1 18.20 31.62 17.22 K2 32.83 30.32 25.27 K3 33.40 29.18 33.80 K4 34.45 27.75 42.57 极差R 16.25 3.88 25.35 表 7 两帮位移方差分析
Table 7. ANOVA for sidewalls displacements
因素 偏差平方和 自由度 F 显著性 水压 713.06 3 24.81 * 围岩强度 32.69 3 1.13 − 埋深 1431.12 3 49.81 * 误差项 57.46 6 注:*表示显著,−表示不显著。 -
[1] 李桂臣, 杨森, 孙元田, 等. 复杂条件下巷道围岩控制技术研究进展[J]. 煤炭科学技术, 2022, 50(6): 29−45.
LI G C, YANG S, SUN Y T, et al. Research progress on control technology of tunnel surrounding rock under complex conditions[J]. Coal Science and Technology, 2022, 50(6): 29−45.
[2] 赵增辉, 杨鹏, 张明忠, 等. 水环境和非均匀地压联合作用下弱胶结软岩巷道围岩稳定性解析[J]. 采矿与安全工程学报, 2022, 39(1): 126−135.
ZHAO Z H, YANG P, ZHANG M Z, et al. Analysis of the stability of weak cemented soft rock roadway surrounding rock under the combined action of water environment and non−uniform ground pressure[J]. Journal of Mining and Safety Engineering, 2022, 39(1): 126−135.
[3] 赵术江, 李东发, 袁越. 含水软岩特大断面巷道交岔点稳定性研究[J]. 煤炭科学技术, 2013, 41(8): 30−34.
ZHAO S J, LI D F, YUAN Y. Research on the stability of intersection points in extra large section tunnels in water bearing soft rock[J]. Coal Science and Technology, 2013, 41(8): 30−34.
[4] 张春阳, 曹平, 靳瑾, 等. 金川矿区深部巷道围岩流固耦合稳定性数值模拟[J]. 科技导报, 2013, 31(33): 31−36.
ZHANG C Y, CAO P, JIN J, et al. Numerical simulation of fluid structure coupling stability of deep roadway surrounding rock in Jinchuan mining area[J]. Science and Technology Journal, 2013, 31(33): 31−36.
[5] 王飞, 朱洪利, 张建贞. 基于流固耦合理论的富水巷道稳定性数值模拟[J]. 煤矿安全, 2016, 47(4): 219−221+225.
WANG F, ZHU H L, ZHANG J Z. Numerical simulation of stability of water rich tunnels based on fluid structure coupling theory[J]. Coal Mine Safety, 2016, 47(4): 219−221+225.
[6] 姚强岭, 李学华, 陈庆峰. 含水砂岩顶板巷道失稳破坏特征及分类研究[J]. 中国矿业大学学报, 2013, 42(1): 50−56.
YAO Q L, LI X H, CHEN Q F. Characteristics and classification of instability and failure of water bearing sandstone roof tunnels[J]. Journal of China University of Mining and Technology, 2013, 42(1): 50−56.
[7] 尹胜, 周宗红, 张晶, 等. 地下掘进巷道富水破碎围岩锚杆支护参数优化[J]. 有色金属工程, 2024, 14(2): 119−127.
YIN S, ZHOU Z H, ZHANG J, et al. Optimization of anchor rod support parameters for water rich and fractured surrounding rock in underground excavation tunnels[J]. Nonferrous Metals Engineering, 2024, 14(2): 119−127.
[8] 陈康, 杨张杰, 王福海, 等. 富水弱胶结顶板巷道支护优化设计研究[J]. 煤炭工程, 2022, 54(11): 79−83.
CHEN K, YANG Z J, WANG F H, et al. Optimization design of support for weak cemented roof roadway with rich water[J]. Coal Engineering, 2022, 54(11): 79−83.
[9] 王正胜, 李建忠, 林健, 等. 深部高应力富水黏土软岩大巷底鼓机理及控制技术[J]. 煤炭科学技术, 2021, 49(7): 71−78.
WANG Z S, LI J Z, LIN J, et al. The mechanism and control technology of bottom bulging in deep high stress and water rich clay soft rock roadway[J]. Coal Science and Technology, 2021, 49(7): 71−78.
[10] 郝明, 潘夏辉, 张勃阳. 淋水条件下弱胶结软岩巷道变形破坏特征与支护技术[J]. 煤矿安全, 2021, 52(12): 219−228.
HAO M, PAN X H, ZHANG B Y. Deformation and failure characteristics and support technology of weakly cemented soft rock tunnels under water pouring conditions[J]. Coal Mine Safety, 2021, 52(12): 219−228.
[11] 殷齐浩, 李春廷, 李廷春, 等. 富水软岩巷道稳定性控制技术研究[J]. 矿业安全与环保, 2020, 47(1): 12−16.
YIN Q H, LI C T, LI T C, et al. Research on stability control technology for rich water soft rock tunnels[J]. Mining Safety and Environmental Protection, 2020, 47(1): 12−16.
[12] 沙成满, 王星, 杨慧敏. 基于流固耦合的充水采空区渗流模型[J]. 东北大学学报(自然科学版), 2023, 44(4): 551−557.
SHA C M, WANG X, YANG H M. Seepage model of water filled goaf based on fluid structure coupling[J]. Journal of Northeastern University (Natural Science Edition), 2023, 44(4): 551−557.
[13] 刘文博, 张树光, 林晓楠, 等. 基于加速蠕变改进的巷道围岩蠕变模型[J]. 中国安全科学学报, 2019, 29(5): 124−130.
LIU W B, ZHANG S G, LIN X N, et al. A creep model of tunnel surrounding rock based on accelerated creep improvement[J]. Chinese Journal of Safety Sciences, 2019, 29(5): 124−130.
[14] 刘少伟, 王伟, 王强, 等. 缓倾斜煤层沿含水采空区掘巷煤柱稳定性研究[J]. 煤炭科学技术, 2020, 48(6): 78−87.
LIU S W, WANG W, WANG Q, et al. Study on the stability of coal pillars during excavation along water bearing goaf in gently inclined coal seams[J]. Coal Science and Technology, 2020, 48(6): 78−87
[15] 李竹, 樊建宇, 冯国瑞, 等. 隔水煤柱采动渗流耦合失效特征及其合理宽度[J]. 煤炭学报, 2023, 48(11): 4011−4023.
LI Z, FAN J Y, FENG G R, et al. Failure characteristics and reasonable width of coupled seepage during water blocking coal pillar mining[J]. Journal of Coal Science, 2023, 48(11): 4011−4023.
[16] 樊戬. 基于流固耦合极限分析的富水隧道稳定性研究[D]. 重庆: 重庆交通大学, 2023.
FAN J. Stability study of rich water tunnel based on fluid structure coupling limit analysis[D]. Chongqing: Chongqing Jiaotong University, 2023.
[17] 付玉凯, 鞠文君. 影响软岩巷道变形因素的正交数值模拟试验研究[J]. 采矿与安全工程学报, 2013, 30(6): 812−816+827.
FU Y K, JU W J. Orthogonal numerical simulation experimental study on factors affecting deformation of soft rock tunnels[J]. Journal of Mining and Safety Engineering, 2013, 30(6): 812−816+827.
[18] 王运敏. 现代采矿手册[M]. 北京: 冶金工业出版社, 2011.
WANG Y M. Modern mining handbook[M]. Beijing: Metallurgical Industry Press, 2011
[19] 陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2005.
CHEN K. Experimental design and analysis[M]. Beijing: Tsinghua University Press, 2005.
[20] 孙艺丹, 杨逾, 孙博一, 等. 动力扰动下巷道围岩变形影响因素敏感性分析[J]. 煤炭科学技术, 2020, 48(5): 57−62.
SUN Y D, YANG Y, SUN B Y, et al. Sensitivity analysis of influencing factors on deformation of roadway surrounding rock under dynamic disturbance[J]. Coal Science and Technology, 2020, 48(5): 57−62.
-