含水率对普朗铜矿自然崩落法覆盖层散体抗剪强度影响研究

文义明, 牛向东, 文瑶, 程涌, 聂琪, 卢萍. 含水率对普朗铜矿自然崩落法覆盖层散体抗剪强度影响研究[J]. 矿产保护与利用, 2024, 44(4): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2024.04.011
引用本文: 文义明, 牛向东, 文瑶, 程涌, 聂琪, 卢萍. 含水率对普朗铜矿自然崩落法覆盖层散体抗剪强度影响研究[J]. 矿产保护与利用, 2024, 44(4): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2024.04.011
WEN Yiming, NIU Xiangdong, WEN Yao, CHENG Yong, NIE Qi, LU Ping. Study on the Effect of Moisture Content on the Shear Strength of the Overburden Covered by the Block Caving Method at Pulang Copper Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2024.04.011
Citation: WEN Yiming, NIU Xiangdong, WEN Yao, CHENG Yong, NIE Qi, LU Ping. Study on the Effect of Moisture Content on the Shear Strength of the Overburden Covered by the Block Caving Method at Pulang Copper Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2024.04.011

含水率对普朗铜矿自然崩落法覆盖层散体抗剪强度影响研究

  • 基金项目: 云南省科技厅科技计划项目(202401AT070047);云南省教育厅基金(2022J1304);昆明冶金高等专科学校科研基金(2022xjy23)
详细信息
    作者简介: 文义明(1986年—),副教授,主要从事矿山岩石力学及采矿方法理论研究,E-mail:290605575@qq.com
    通讯作者: 牛向东(1986—),博士,主要从事矿山岩石力学及采矿方法理论研究,E-mail:1194846856@qq.com
  • 中图分类号: TD853.36

Study on the Effect of Moisture Content on the Shear Strength of the Overburden Covered by the Block Caving Method at Pulang Copper Mine

More Information
  • 覆盖层的物料特性是自然崩落法能否顺利进行的重要因素,普朗铜矿自然崩落法的覆盖层为高原冰碛物散体,其抗剪强度参数与含水率密切相关。以高海拔环境下的冰碛物为研究对象,采用散体直剪实验方法,获得不同含水率条件下的高原冰碛物散体抗剪强度参数,探索含水率对高原冰碛物散体抗剪强度参数的规律关系。研究结果表明:高原冰碛物散体物质的黏聚力和内摩擦角均随着含水率的增加而减小,黏聚力与含水率之间呈现较强的对数关系,而内摩擦角与含水率之间呈现较强的指数关系;根据冰碛物散体抗剪强度参数随含水率的变化程度,黏聚力对含水率的变化较为敏感,而内摩擦角对含水率的变化敏感性较低,说明黏聚力对含水率的敏感性要强于内摩擦角,含水率对高原冰碛物散体抗剪强度的影响主要是通过黏聚力变化来体现的。研究成果可为自然崩落法高原冰碛物覆盖层研究提供一定的理论依据。

  • 加载中
  • 图 1  高原冰碛物散体物质现场图

    Figure 1. 

    图 2  应变控制式直剪仪

    Figure 2. 

    图 3  室内直接剪切实验原理(a—剪切实验原理;b—剪应力τ−剪切位移s曲线;c—剪应力τ−垂直应力σ曲线)

    Figure 3. 

    图 4  DHJ30型室内大型直接剪切实验过程

    Figure 4. 

    图 5  ZJ1天然散体物料剪切实验结果(含水率10%)

    Figure 5. 

    图 6  ZJ2散体物料剪切实验结果(含水率13%)

    Figure 6. 

    图 7  ZJ3散体物料饱和剪切实验结果(含水率16%)

    Figure 7. 

    图 8  抗剪强度曲线

    Figure 8. 

    图 9  剪应力−剪切位移曲线

    Figure 9. 

    图 10  高原冰碛物散体直剪实验抗剪强度曲线

    Figure 10. 

    图 11  高原冰碛物散体黏聚力与含水率间的变化规律

    Figure 11. 

    图 12  高原冰碛物散体内摩擦角与含水率间的变化规律

    Figure 12. 

    表 1  矿区冰碛物样品的矿物成分

    Table 1.  Mineral composition of moraine samples from the mine

    矿物名称石英绿泥石钾长石斜长石云母闪石
    含量/%44.220.814.212.55.33.0
    下载: 导出CSV

    表 2  矿区冰碛物样品的级配粒径组成

    Table 2.  Gradation size composition of moraine samples from the mining area

    粒径/mm >23 23~20 20~10 10~5 5~2.5 2.5~1.25 1.25~0.63 <0.63
    含量/% 12.8 1.5 8.3 8.9 11.8 13.3 12.2 31.2
    下载: 导出CSV

    表 3  高原冰碛物散体实验方案

    Table 3.  Plateau moraine bulk test programme

    物料类型物料编号含水率实验条件垂直荷载/kPa
    天然混合料ZJ110%天然剪切200、400、
    600、800
    半饱和混合料ZJ213%13%含水率
    饱和混合料ZJ316%饱和剪切
    下载: 导出CSV

    表 4  高原冰碛物散体物料抗剪强度指标参数

    Table 4.  The shear strength index parameter of Plateau Moraine bulk material

    物料编号编号正应力/kPa剪切应力/kPa实际含水率/%
    ZJ11#2001029.65
    2#40018610.11
    3#6002689.07
    4#80033810.32
    ZJ21#2007913.67
    2#40016412.39
    3#60022313.58
    4#80028212.93
    ZJ31#2006716.89
    2#40012215.98
    3#60016616.57
    4#80023216.32
    下载: 导出CSV

    表 5  高原冰碛物散体物料抗剪强度参数值

    Table 5.  Parameter values of shear strength of bulk materials from plateau moraines

    散体类型平均含水率/%抗剪强度参数
    黏聚力c/kPa内摩擦角φ/(°)
    天然散体物料102621.5
    半饱和散体物料132018.4
    饱和散体物料161215.0
    下载: 导出CSV
  • [1]

    NIU X D, HOU K P,BAO G T, et al. Study on formation mechanism of mud−inclusion−type underground debris flows using natural caving method[J]. Scientific Reports, 2024, 14(1): 4324−4324.

    [2]

    NIU X D, ZHE Y L, SUN H F, et al. Study on the effect of ore−drawing shear factor on underground debris flow in the Block Caving Method[J]. Water, 2023, 15(20).

    [3]

    QIN X S, YANG X C, LIANG Z H, et al. Study on the effect of the undercut area on the movement law of overburden rock layers in the Block Caving Method[J]. Applied Sciences, 2024, 14(11). DOI: 10.3390/APP14114704.

    [4]

    张延广, 方小敏, 毛子强, 等. 青藏高原古里雅冰帽冰碛和冰水沉积物粒度特征及其意义[J]. 冰川冻土, 2021, 43(3): 701−713.

    ZHANG Y G, FANG X M, MAO Z Q, et al. Grain−size characteristics of tills and glaciofluvial deposits in the Guliya ice cap, Tibetan Plateau and its implication[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 701−713.

    [5]

    史书婷, 王金艺, 郭芪恒, 等. 天津蓟县晚元古代冰碛岩的发现[J]. 沉积学报, 2019, 3(6): 1181−1192.

    SHI S T, WANG J Y, GUO Q H, et al. Discovery of tillite in the late proterozoic at Jixian County of Tianjin, North China[J]. Acta Sedimentologica Sinica, 2019, 3(6): 1181−1192.

    [6]

    TOMI P L. LIISA N. Quantifying climate changes of the Common Era for Finland[J]. Climate Dynamics, 2017, 49(7): 2557−2567. DOI: 10.1007/s00382−016−3468−x.

    [7]

    WANG P, Y Z Y, WANG Z Y. Micromechanical investigation of particle−size effect of granular materials in Biaxial Test with the role of particle breakage[J]. Journal of Engineering Mechanics, 2022, 148(1). DOI: 10.1061/(ASCE)EM.1943−7889.0002039.

    [8]

    Azéma Emilien, Cantor David, Preechawuttipong Itthichai. Independence of shear strength with particle size dispersity still valid in polyhedral particle assemblies[J]. EPJ Web of Conferences, 2021, 249. DOI: 10.1051/EPJCONF/202124906009.

    [9]

    Sergey Shabaev, Nikita Martel, Artemy Shtark, et al. Improving the method for determining the granular media strength performance by oblique shear test[J]. E3S Web of Conferences, 2020, 174. DOI: 10.1051/e3sconf/202017401064.

    [10]

    WANG X Y, QIN X X, TAN J H, et al. Effect of the moisture content and dry density on the shear strength parameters of collapsing wall in hilly granite areas of South China[J]. International Soil and Water Conservation Research, 2024, 12(3): 697−713. DOI: 10.1016/J.ISWCR.2023.09.006.

    [11]

    黄达, 郑毅, 罗世林, 等. 含水率对土石混合体−岩石界面剪切力学特性影响规律的研究[J/OL]. 工程地质学报, 1−9[2024−08−20]. https://doi.org/10.13544/j.cnki.jeg.2022−0593.

    HUANG D, ZHENG Y, LUO S L, et al. Study on the effect of water content on shear mechanical properties of soil−rock mixture interface [J/OL]. Journal of Engineering Geology, 1−9[2024−08−20]. https://doi.org/10.13544/j.cnki.jeg.2022−0593.

    [12]

    李苗, 李文照, 毛昱, 等. 初始含水量和水泥掺入比对水泥土抗剪强度的影响研究[J]. 科学技术创新, 2024(14): 171−174. doi: 10.3969/j.issn.1673-1328.2024.14.043

    LI M, LI W Z, MAO Y, et al. Study on the influence of initial water content and cement mixing ratio on the shear strength of cement−soil[J]. Scientific and Technological Innovation, 2024(14): 171−174. doi: 10.3969/j.issn.1673-1328.2024.14.043

    [13]

    郭丰涛. 不同干密度和不同含水率条件下三门峡黄土残余剪试验研究[J]. 河南科技, 2024, 51(11): 97−105.

    GUO F T. Residual shear test of loess in sanmenxia with different dry density and water content[J]. Henan Science and Technology, 2024, 51(11): 97−105.

    [14]

    陶首仲, 周花玉, 张卓超, 等. 含水率对根−土石复合体抗剪强度影响的试验研究−以垂丝海棠为例[J]. 四川农业大学学报, 2024, 42(3): 613−619.

    TAO S Z, ZHOU H Yu, ZHANG Z C, et al. Experimental study on the influence of water content on the shear strength of Root−Soil−Rock composite−A case study of malus halliana[J]. Journal of Sichuan Agricultural University, 2024, 42(3): 613−619.

    [15]

    WANG Y Q, CHEN Y Q, HE Y S, et al. Experimental study of loess mechanical properties with different water content[J]. KSCE Journal of Civil Engineering, 2024, 28(6): 2210−2220. DOI: 10.1007/S12205−024−1381−0.

    [16]

    Daniel Batista Santos, Patrícia Figuereido de Sousa, André Luís Brasil Cavalcante. Analytical modeling of unsaturated soil shear strength during water infiltration for different initial void ratios[J]. Sustainability, 2024, 16(4). DOI: 10.3390/SU16041394.

    [17]

    李骅锦, 冯文凯, 许强, 等. 四川理县小歧村冰碛物角砾土抗剪强度特性研究[J]. 人民长江, 2015, 46(12): 37−41.

    LI H J, FENG W K, XU Q, et al. Study on shear strength properties of moraine breccia soil at Xiaoqi Village of Lixian County[J]. Yangtze River, 2015, 46(12): 37−41.

    [18]

    Hailemariam Henok, Wuttke Frank. A laboratory study on the shear strength behavior of two till deposits from northern germany[J]. Energies, 2021, 14(6). DOI: 10.3390/EN14061692.

    [19]

    LIU Y F, USHEV E R., JARDINE R J., Anisotropic stiffness and shear strength characteristics of a stiff glacial till[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12). DOI: 10.1061/(ASCE)GT.1943−5606.0002387.

    [20]

    CANTOR D, OVALLE C. Sample size effects on the critical state shear strength of granular materials with varied gradation and the role of column−like local structures[J]. Géotechnique, 2023: 1−12. DOI: 10.1680/JGEOT.23.00032.

    [21]

    NIU W Q, ZHENG H, YUAN C J, et al. Shear characteristics of granular materials with different friction coefficients based on ring shear test[J]. Granular Matter, 2024, 26(2). DOI: 10.1007/S10035−024−01398−3.

    [22]

    张应平, 牛向东, 刘关锋, 等. 普朗铜矿地表冰碛物径流分选试验研究[J]. 现代矿业, 2023, 39(4): 167−170. doi: 10.3969/j.issn.1674-6082.2023.04.043

    ZHANG Y P, NIU X D, LIU G F, et al. Experimental study on surface moraine runoff separation in Pulang Copper Mine[J]. Modern Mining, 2023, 39(4): 167−170. doi: 10.3969/j.issn.1674-6082.2023.04.043

    [23]

    刘关锋, 牛向东, 张应平, 等. 雨强和坡度对地表冰碛物径流分选特性研究[J]. 有色金属(矿山部分), 2023, 75(1): 68−72.

    LIU G F, NIU X D, ZHANG Y, et al. Study on the sorting characteristics of surface moraine runoff by rain intensity and slope[J]. Nonferrous Metals(Mining Section), 2023, 75(1): 68−72.

  • 加载中

(12)

(5)

计量
  • 文章访问数:  178
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2024-08-09
刊出日期:  2024-08-15

目录