“双碳”战略下我国煤矸石的综合利用技术研究进展

何占伟, 何帅, 王贵帅, 李世豪, 陈广玉, 高忙忙, 李会标. “双碳”战略下我国煤矸石的综合利用技术研究进展[J]. 矿产保护与利用, 2024, 44(6): 1-14. doi: 10.13779/j.cnki.issn1001-0076.2024.06.001
引用本文: 何占伟, 何帅, 王贵帅, 李世豪, 陈广玉, 高忙忙, 李会标. “双碳”战略下我国煤矸石的综合利用技术研究进展[J]. 矿产保护与利用, 2024, 44(6): 1-14. doi: 10.13779/j.cnki.issn1001-0076.2024.06.001
HE Zhanwei, HE Shuai, WANG Guishuai, LI Shihao, CHEN Guangyu, GAO Mangmang, LI Huibiao. Research and Progress of Comprehensive Utilization Technologies of China's Coal Gangue in the Context of Carbon Peaking and Carbon Neutrality[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 1-14. doi: 10.13779/j.cnki.issn1001-0076.2024.06.001
Citation: HE Zhanwei, HE Shuai, WANG Guishuai, LI Shihao, CHEN Guangyu, GAO Mangmang, LI Huibiao. Research and Progress of Comprehensive Utilization Technologies of China's Coal Gangue in the Context of Carbon Peaking and Carbon Neutrality[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 1-14. doi: 10.13779/j.cnki.issn1001-0076.2024.06.001

“双碳”战略下我国煤矸石的综合利用技术研究进展

  • 基金项目: 国家自然科学基金项目(52404420);甘肃省青年科技基金项目(23JRRA817)
详细信息
    作者简介: 何占伟(1989—),男,甘肃张掖人,副教授,硕士生导师,主要从事固废资源化利用,E-mail:hezhanwei@nxu.edu.cn
  • 中图分类号: TD849+.5

Research and Progress of Comprehensive Utilization Technologies of China's Coal Gangue in the Context of Carbon Peaking and Carbon Neutrality

  • 在“双碳”战略背景下,我国持续推进产业和能源结构的升级,倡导绿色、环保和低碳发展。我国煤矸石的大量堆积,导致了严重的资源浪费,还可能引发一系列的环境问题。煤矸石的有效处理与资源化利用成为煤炭行业亟待解决的任务。系统综述了煤矸石在金属提取、材料制备、燃烧利用和生态修复等领域的研究进展。煤矸石可提取铝、铁及“三稀”等金属元素,但在提取过程中易产生大量的废酸和废渣,引起潜在的环境污染风险;煤矸石不仅可以制备混凝土和水泥等传统建筑材料,还能制备多孔陶瓷、沸石等高附加值新型材料;共燃技术的应用有助于提高煤矸石的热能利用效率,降低温室气体排放;作为土壤改良剂,煤矸石在生态修复中展现出良好前景,但需注意重金属离子可能引发的二次污染风险。基于当前煤矸石处理中的问题与挑战,探讨了煤矸石利用未来高质量发展的路径,建议通过多种利用方式相结合,推动煤矸石高效资源化利用,实现经济、环境与社会效益的协调发展。

  • 加载中
  • 图 1  我国2016—2023年煤炭产量、煤矸石产生量及综合利用率

    Figure 1. 

    图 2  与煤矸石相关的期刊论文发表情况

    Figure 2. 

    表 1  我国不同地区煤矸石的化学成分

    Table 1.  Chemical composition of coal gangue in different regions of China /%

    地区 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 烧失量 参考文献
    山西 46.1 30.9 3.1 1.2 0.5 −− 1.3 1.1 15.3 [14]
    陕西 55.24 11.17 17.36 1.69 1.52 0.48 0.67 −− −− [15]
    内蒙古 46.35 37.62 0.53 0.33 0.09 0.03 0.08 0.98 −− [16]
    新疆 70.25 4.68 1.01 1.22 1.10 −− −− 2.86 18.2 [17]
    宁夏 60.63 23.49 5.29 0.51 2.57 2.27 2.66 −− 9.72 [18]
    贵州 44.02 31.98 0.75 0.32 0.62 1.90 3.55 5.20 −− [19]
    下载: 导出CSV

    表 2  不同地区煤矸石粗骨料与天然粗骨料的基本性能

    Table 2.  Basic properties of coal gangue coarse aggregate and natural coarse aggregate in different regions

    粗骨料 颗粒尺寸/mm 堆积密度/(kg·m−3) 表观密度/(kg·m−3) 压碎指标/% 针片状颗粒含量/%
    天然粗骨料 5.0~31.5 1490 2700 10 3
    榆神矿区−N矿 5.0~31.5 1200 2250 18 3
    榆神矿区−S矿 5.0~31.5 1060 2020 20 4
    榆神矿区−Y矿 5.0~31.5 1360 2560 12 4
    阜新清河门矿 5.0~31.5 1075 2497 −− −−
    下载: 导出CSV

    表 3  不同方法制备的煤矸石基多孔陶瓷性能

    Table 3.  Properties of coal gangue based porous ceramics prepared by different methods

    合成方法 产物 烧结温度
    /℃
    孔隙率
    /%
    抗压强度
    /MPa
    泡沫注凝法 莫来石 1400~1500 76.8~78.5 2.5~5.2
    增孔法 莫来石 1300~1350 57.5~51.4 55.6~69.9
    有机海绵浸渍法 堇青石 1200 78.78 3.33
    简单喷雾法 高岭石/莫来石 800~1000 −− −−
    下载: 导出CSV
  • [1]

    黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695−5708.

    HUANG S, WANG J Y, GUO P, et al. Short−term strategy and long−term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695−5708.

    [2]

    XU G Y, ZANG L M, SCHWARZ P, et al. Achieving China's carbon neutrality goal by economic growth rate adjustment and low−carbon energy structure[J]. Energy Policy, 2023, 183: 113717.

    [3]

    REN H B, WU Q, HE W G, et al. Research on regional low−carbon development path based on LEAP model: Taking the Lin−gang special area as an example[J]. Energy Reports, 2022, 8: 327−335.

    [4]

    李雅迪. 我国煤矸石综合利用现状与展望[J]. 煤炭经济研究, 2024, 44(4): 127−133.

    LI Y D. Current situation and prospects of coal gangue's comprehensive utilization[J]. Coal Economic Research, 2024, 44(4): 127−133.

    [5]

    ZHENG Q W, ZHOU Y, LIU X, et al. Environmental hazards and comprehensive utilization of solid waste coal gangue[J]. Progress in Natural Science−Materials International, 2024, 34(2): 223−239. doi: 10.1016/j.pnsc.2024.02.012

    [6]

    XIE S R, PAN H, LEI W G, et al. Technology and engineering test of filling goaf with coal gangue slurry[J]. Scientific Reports, 2023, 13: 20536. doi: 10.1038/s41598-023-47621-8

    [7]

    李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.

    LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165−178.

    [8]

    潘硕, 胡雨晴, 王海燕, 等. 煤矸石综合利用技术现状与标准体系研究[J]. 中国矿业, 2024, 33(7): 89−98. doi: 10.12075/j.issn.1004-4051.20240270

    PAN S, HU Y Q, WANG H Y, et al. Research on comprehensive utilization technology and standard system of coal gangue[J]. China Mining Magazine, 2024, 33(7): 89−98. doi: 10.12075/j.issn.1004-4051.20240270

    [9]

    吴长亮. 煤矸石协同多源固废多级利用制备功能性透水混凝土的试验研究[D]. 济南: 山东大学, 2023.

    WU C L. Experimental study on preparation of functional pervious concrete via multi−stage utilization of coal gangue together with multi−source solid wastes[D]. Ji’nan: Shandong University, 2023.

    [10]

    邓友生, 董晨辉, 吴阿龙, 等. 我国煤矸石山综合治理现状及零碳治理探索[J]. 煤矿安全, 2024, 55(10): 120−128. doi: 10.3390/ma15134495

    DENG Y S, DONG C H, WU A L, et al. Comprehensive treatment status and zero carbon treatment exploration of coal gangue hill in China[J]. Safety in Coal Mines, 2024, 55(10): 120−128. doi: 10.3390/ma15134495

    [11]

    JIAO Y W, QIAO J Q, JIA R J, et al. The influence of carbon imperfections on the physicochemical characteristics of coal gangue aggregates[J]. Construction and Building Materials, 2023, 409: 133965. doi: 10.1016/j.conbuildmat.2023.133965

    [12]

    崔昕茹, 霍雪萍, 周炳杰, 等. 我国煤矸石空间分布特征与分级分质利用路径[J/OL]. 环境科学, 1−14[2024−10−28]. https://doi.org/10.13227/j.hjkx.202401269.

    CUI X R, HUO X P, ZHOU B J, et al. Spatial distribution characteristics and graded utilization path of coal gangue in China[J/OL]. Environmental Science, 1−14[2024−10−28]. https://doi.org/10.13227/j.hjkx.202401269.

    [13]

    贾建慧, 马宁, 董阳, 等. 煤矸石综合利用研究进展[J]. 洁净煤技术, 2024, 30(S1): 36−45.

    JIA J H, MA N, DONG Y, et al. Review on the comprehensive utilization of coal gangue[J]. Clean Coal Technology, 2024, 30(S1): 36−45.

    [14]

    赵龙毅, 翟慧兵, 张建伟, 等. 山西煤矸石中铝元素矿物赋存形态及酸浸溶出规律[J/OL]. 煤炭科学技术, 1−11[2024−10−28]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240513.0843.004.html.

    ZHAO L Y, ZHAI H B, ZHANG J W, et al. Mineral occurrence and acid leaching characteristic of aluminum for coal gangue in Shanxi[J/OL]. Coal Science and Technology, 1−11[2024−10−28]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240513.0843.004.html.

    [15]

    胡恬, 张琨. 陕西澄合矿区煤矸石绿化基质研究[J]. 西安科技大学学报, 2022, 42(4): 709−715.

    HU T, ZHANG K. Research on greening substrates of coal gangue in Chenghe mining area of Shaanxi province[J]. Journal of Xi'an University of Science and Technology, 2022, 42(4): 709−715.

    [16]

    曾鹏, 谢海云, 晋艳玲, 等. 我国煤矸石的特性及其提取氧化铝研究进展[J]. 矿产保护与利用, 2022, 42(6): 21−29.

    ZENG P, XIE H Y, JIN Y L, et al. A review on characteristics and alumina extraction of coal gangue in China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 21−29.

    [17]

    祁星鑫, 王晓军, 黎艳, 等. 新疆主要煤区煤矸石的特征研究及其利用建议[J]. 煤炭学报, 2010, 35(7): 1197−1201.

    QI X X, WANG X J, LI Y, et al. Study on properties of the coal gangues from Xinjiang main coal mine regions and their utilization suggestions[J]. Journal of China Coal Society, 2010, 35(7): 1197−1201.

    [18]

    柴德亮, 白建光, 海连富, 等. 宁东地区煤矸石特征研究[J]. 科技创新与应用, 2023, 13(21): 105−107+112.

    CHAI D L, BAI J G, HAI L F, et al. Study on characteristics of coal gangue in Ningdong area[J]. Technology Innovation and Application, 2023, 13(21): 105−107+112.

    [19]

    晏祥政, 李先海, 王贤晨, 等. 煤矸石粉掺和料对水泥胶砂试块性能影响研究[J]. 非金属矿, 2023, 46(3): 1−5. doi: 10.3969/j.issn.1000-8098.2023.03.001

    YAN X Z, LI X H, WANG X C, et al. Study on the effect of coal gangue powder admixture on properties of cement mortar test block[J]. Non−Metallic Mines, 2023, 46(3): 1−5. doi: 10.3969/j.issn.1000-8098.2023.03.001

    [20]

    ZHANG Y L, LING T C. Reactivity activation of waste coal gangue and its impact on the properties of cement−based materials − A review[J]. Construction and Building Materials, 2020, 234: 117424. doi: 10.1016/j.conbuildmat.2019.117424

    [21]

    张磊, 陈航超, 潘金禾, 等. 煤系锂和稀土的赋存特征与富集提取研究进展[J]. 矿产保护与利用, 2023, 43(6): 1−13.

    ZHANG L, CHEN H C, PAN J H, et al. Research progress on occurrence characteristics, enrichment and extraction of coal−based lithium and rare earth[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 1−13.

    [22]

    康超, 乔金鹏, 杨胜超, 等. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783−2799.

    KANG C, QIAO J P, YANG S C, et al. Research progress on activation extraction of valuable metals in coal gangue[J]. CIESC Journal, 2023, 74(7): 2783−2799.

    [23]

    赵利军. 非铝土矿氧化铝提取与中国的粉煤灰资源[J]. 神华科技, 2017, 15(4): 88−92. doi: 10.3969/j.issn.1674-8492.2017.04.027

    ZHAO L J. Non−bauxite alumina extraction and fly ash resources in China[J]. Energy Science and Technology, 2017, 15(4): 88−92. doi: 10.3969/j.issn.1674-8492.2017.04.027

    [24]

    CHEN J L, LU X W. Synthesis and characterization of zeolites NaA and NaX from coal gangue[J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 489−495. doi: 10.1007/s10163-017-0605-5

    [25]

    XIAO J, LI F C, ZHONG Q F, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118−124. doi: 10.1016/j.hydromet.2015.04.018

    [26]

    ZHAO J C, YU T, ZHANG H, et al. Study on extraction valuable metal elements by co−roasting coal gangue with coal gasification coarse slag[J]. Molecules, 2024, 29(1): 130.

    [27]

    SANGITA S, NAY N, PANDA C R. Extraction of aluminium as aluminium sulphate from thermal power plant fly ashes[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(9): 2082−2089. doi: 10.1016/S1003-6326(17)60231-0

    [28]

    ZHANG Y H, ZHAO X S, SHANG B Y, et al. Study on mechanism and kinetics of iron removal by chlorination roasting of coal gangue[J]. Metallurgical Research and Technology, 2024, 121(2): 216. doi: 10.1051/metal/2024013

    [29]

    GUO Y X, LV H B, YANG X, et al. AlCl3·6H2O recovery from the acid leaching liquor of coal gangue by using concentrated hydrochloric inpouring[J]. Separation and Purification Technology, 2015, 151: 177−183. doi: 10.1016/j.seppur.2015.07.043

    [30]

    LIU X M, ZHANG N, SUN H H, et al. Effect of multiplex thermal activation on microstructure of red mud−coal gangue[J]. Rare Materials and Engineering, 2013, 42: 538−542.

    [31]

    HU Y S, HAN X Y, SUN Z Z, et al. Study on the reactivity activation of coal gangue for efficient utilization[J]. Materials, 2023, 16(18): 6321. doi: 10.3390/ma16186321

    [32]

    LI L X, ZHANG Y M, ZHANG Y F, et al. The thermal activation process of coal gangue selected from Zhungeer in China[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1559−1566. doi: 10.1007/s10973-016-5711-4

    [33]

    LI X N, WANG H Y, ZHOU Q S, et al. Efficient separation of silica and alumina in simulated CFB slag by reduction roasting−alkaline leaching process[J]. Waste Management, 2019, 87: 798−804. doi: 10.1016/j.wasman.2019.03.020

    [34]

    CAO Z, CAO Y D, DONG H J, et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing, 2016, 146: 23−28. doi: 10.1016/j.minpro.2015.11.008

    [35]

    GUO Y X, YAN K Z, CUI L, et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51−57. doi: 10.1016/j.minpro.2014.07.001

    [36]

    武丹宇, 庄故章, 刘梅, 等. 碳酸钠焙烧活化—硫酸浸出提取煤矸石中氧化铝的研究[J]. 矿产保护与利用, 2023, 43(6): 27−32.

    WU D Y, ZHUANG G Z, LIU M, et al. Study on Al2O3leaching by H2SO4 after Na2CO3 roasting activation of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 27−32.

    [37]

    YUAN S, HUANG C, BAI Z, et al. A novel utilization of high−Fe bauxite through co−roasting with coal gangue to separate iron and aluminum minerals[J]. Journal of Central South University, 2023, 30(7): 2166−2178. doi: 10.1007/s11771-023-5374-9

    [38]

    王健璋, 王明华, 宫振宇, 等. 预加热−碳热还原−磁选法提取煤矸石中的铁[J]. 材料研究与应用, 2024, 18(4): 668−673.

    WANG J Z, WANG M H, GONG Z Y, et al. Extraction of iron from coal gangue by preheating, carbon thermal reduction and magnetic separation[J]. Materials Research and Application, 2024, 18(4): 668−673.

    [39]

    张又中, 车敏, 刘义青, 等. 热活化―酸浸法提取煤矸石中铝和铁的实验研究[J/OL]. 能源环境保护, 1−10[2024−11−28]. https://doi.org/10.20078/j.eep.20240201.

    ZHANG Y Z, CHE M, LIU Y Q, et al. Response surface optimization for extracting aluminium and iron from coal gangue[J/OL]. Energy Environmental Protection, 1−10[2024−11−28]. https://doi.org/10.20078/j.eep.20240201.

    [40]

    李浩林, 曾德恢, 郑光亚, 等. 低温中和−加压酸浸提取煤矸石中铝铁[J]. 化工进展, 2021, 40(7): 4011−4020.

    LI H L, ZENG D H, ZHENG G Y, et al. Extraction of aluminum and iron from coal gangue by low temperature neutralization−pressure acid leaching[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4011−4020.

    [41]

    ZHANG P P, HAN Z, JIA J M, et al. Occurrence and distribution of gallium, scandium, and rare earth elements in coal gangue collected from Junggar Basin, China[J]. International Journal of Coal Preparation and Utilization, 2019, 39(7): 389−402. doi: 10.1080/19392699.2017.1334645

    [42]

    RUDNIK E. Coal and coal by−products as unconventional lithium sources: A review of occurrence modes and hydrometallurgical strategies for metal recovery[J]. Minerals, 2024, 14(8): 849. doi: 10.3390/min14080849

    [43]

    张磊. 煤系锂、镓和稀土的洗选分布规律及焙烧浸出研究[D]. 徐州: 中国矿业大学, 2023.

    ZHANG L. Study on washing distribution laws and roasting leaching of coal−based lithium, gallium and rare earth elements[D]. Xuzhou: China University of Mining and Technology, 2023.

    [44]

    FANG D, XIA Y C, LI Y G, et al. Separation and recovery of valuable carbon components and Li/Ga metals in coal gangue by using a flotation flowsheet[J]. ACS Omega, 2024, 9(12): 14336−14342. doi: 10.1021/acsomega.3c10335

    [45]

    CHEN H C, ZHANG L, PAN J H, et. Study on modes of occurrence and enhanced leaching of critical metals (lithium, niobium, and rare earth elements) in coal gangue[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108818. doi: 10.1016/j.jece.2022.108818

    [46]

    成俊伟. 煤矸石铝锂溶出和提取研究[D]. 太原: 太原理工大学, 2019.

    CHENG J W. Study on dissolution and extraction of aluminum and lithium from coal gangue[D]. Taiyuan: Taiyuan University of Technology, 2019.

    [47]

    邵爽. 煤矸石热活化与硝酸浸出铝镓锂的基础研究[D]. 北京: 北京科技大学, 2023.

    SHAO S. Basic research on thermal activation and HNO3 leaching of coal gangue to extract Al/Ga/Li[D]. Beijing: University of Science and Technology Beijing, 2023.

    [48]

    孙逢帅, 代世琦, 王磊, 等. 基于煤矸石中锂、镓元素赋存状态的高梯度磁选预富集试验[J]. 洁净煤技术, 2024, 30(1): 154−162.

    SUN F S, DAI S Q, WANG L, et al. Pre−enrichment experiment of high gradient magnetic separation based on lithium and gallium elements in coal gangue[J]. Clean Coal Technology, 2024, 30(1): 154−162.

    [49]

    WANG X L, WU J M, MA Q S, et al. Iron conversion and ammonium salt calcination whitening process and mechanism of pre−calcined coal gangue[J]. Chemical Engineering Science, 2024, 287: 119802. doi: 10.1016/j.ces.2024.119802

    [50]

    QIN Q Z, GENG H H, DENG J S, et al. Al and other critical metals co−extraction from coal gangue through delamination pretreatment and recycling strategies[J]. Chemical Engineering Journal, 2023, 477: 147036. doi: 10.1016/j.cej.2023.147036

    [51]

    CHEN H C, ZHANG L, PAN J H, et al. Study on modes of occurrence and selective leaching of lithium in coal gangue via grinding−thermal activation[J]. Chemical Engineering Journal, 2024, 482: 148941. doi: 10.1016/j.cej.2024.148941

    [52]

    QIN Q Z, DENG J S, GENG H H, et al. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue[J]. Journal of Cleaner Production, 2022, 340: 130765. doi: 10.1016/j.jclepro.2022.130765

    [53]

    ZHANG W G, ZHOU H, HU Y Y, et al. Influence of curing temperature on the performance of calcined coal gangue−limestone blended cements[J]. 2024, 17(8): 1721.

    [54]

    WU H, CHEN C W, SONG W M, et al. High−capacity utilization of coal gangue as supplementary cementitious material, geopolymer, and aggregate: A review[J]. Construction and Building Materials, 2024, 435: 136857. doi: 10.1016/j.conbuildmat.2024.136857

    [55]

    马也, 张博杰, 杨秋宁. 不同煤矸石粗骨料替代率下混凝土的低温力学性能研究[J]. 宁夏大学学报(自然科学版), 2023, 44(1): 25−30.

    MA Y, ZHANG B J, YANG Q N. Study on the low−temperature mechanical properties of concrete under different coarse aggregate replacement ratios of coal gangue[J]. Journal of Ningxia University(Natural Science Edition), 2023, 44(1): 25−30.

    [56]

    HAO Y, GUO X N, YAO X H, et al. Using Chinese coal gangue as an ecological aggregate and its modification: A review[J]. Materials, 2022, 15(13): 4495.

    [57]

    刘瀚卿, 白国良, 朱可凡, 等. 煤矸石混凝土抗折强度试验研究[J]. 建筑材料学报, 2023, 26(4): 346−352+377. doi: 10.3969/j.issn.1007-9629.2023.04.002

    LIU H Q, BAI G L, ZHU K F, et al. Experimental study on flexural strength of coal gangue concrete[J]. Journal of Building Materials, 2023, 26(4): 346−352+377. doi: 10.3969/j.issn.1007-9629.2023.04.002

    [58]

    YU L L, XIA J W, XIA Z, et al. Study on the mechanical behavior and micro−mechanism of concrete with coal gangue fine and coarse aggregate[J]. Construction and Building Materials, 2022, 338: 127626. doi: 10.1016/j.conbuildmat.2022.127626

    [59]

    ZHOU M, DOU Y W, ZHANG Y Z, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials, 2019, 220: 386−395. doi: 10.1016/j.conbuildmat.2019.05.176

    [60]

    李少伟, 周梅, 张莉敏. 自燃煤矸石粗骨料特性及其对混凝土性能的影响[J]. 建筑材料学报, 2020, 23(2): 334−340+380.

    LI S W, ZHOU M, ZHANG L M. Properties of spontaneous combustion coal gangue coarse aggregate and its influence on concrete[J]. Journal of Building Materials, 2020, 23(2): 334−340+380.

    [61]

    GAO S, ZHANG S M, GUO L H. Application of coal gangue as a coarse aggregate in green concrete production: A review[J]. Materials, 2021, 14(22): 6803. doi: 10.3390/ma14226803

    [62]

    宋强, 杨玉鑫, 许世鹏, 等. 煤矸石混凝土性能及提升研究进展[J/OL]. 煤炭科学技术, 1−19[2024−10−29]. http://kns.cnki.net/kcms/detail/11.2402.TD.20241008.1748.005.html.

    SONG Q, YANG Y X, XU S P, et al. Research progress in the performance and enhancement of coal gangue concrete[J/OL]. Coal Science and Technology, 1−19[2024−10−29]. http://kns.cnki.net/kcms/detail/11.2402.TD.20241008.1748.005.html.

    [63]

    阎杰, 单豆豆, 王啸天, 等. 活化煤矸石粉对煤矸石粗骨料混凝土性能的影响[J]. 兰州理工大学学报, 2024, 50(1): 139−145.

    YAN J, SHAN D D, WANG X T, et al. Influence of activated coal gangue powder on performance of coal gangue coarse aggregate concrete[J]. Journal of Lanzhou University of Technology, 2024, 50(1): 139−145.

    [64]

    YANG Q B, LV M X, LUO Y B. Effects of surface−activated coal gangue aggregates on properties of cement−based materials[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2013, 28(6): 1118−1121. doi: 10.1007/s11595-013-0830-2

    [65]

    DONG Z C, XIA J W, FAN C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction and Building Materials, 2015, 100: 63−69. doi: 10.1016/j.conbuildmat.2015.09.050

    [66]

    曹梦媛. 改性煤矸石骨料混凝土抗冻性能研究[D]. 西安: 西安建筑科技大学, 2023.

    CAO M Y. Research on frost resistance of modified coal gangue aggregate concrete[D]. Xi'an: Xi'an University of Architecture and Technology, 2023.

    [67]

    刘灏, 李青, 黄秉章, 等. 煤矸石烧结页岩砖材的耐久性研究[J]. 材料导报, 2019, 33(S2): 229−232.

    LIU H, LI Q, HUANG B Z, et al. Study on durability of sintered shale brick from coal gangue[J]. Materials Reports, 2019, 33(S2): 229−232.

    [68]

    XU H L, SONG W J, CAO W B, et al. Utilization of coal gangue for the production of brick[J]. Journal of Material Cycles and Waste Management, 2017, 19: 1270−1278. doi: 10.1007/s10163-016-0521-0

    [69]

    郝贠洪, 王韫辉, 李京, 等. 利用煤矸石、铁尾矿制备固废烧结砖[J/OL]. 矿产综合利用, 1−10[2024−11−02]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231113.1037.006.html.

    HAO Y H, WANG Y H, LI J, et al. Preparation of solid waste sintered brick from coal gangue and iron tailings[J/OL]. Multipurpose Utilization of Mineral Resources, 1−10[2024−11−02]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231113.1037.006.html.

    [70]

    丁海萍, 侯泽健, 张怀宇. 以褐煤粉煤灰和煤矸石为原料制备透水砖的工艺研究[J]. 新型建筑材料, 2019, 46(6): 72−75.

    DING H P, HOU Z J, ZHANG H Y. Study on preparation of permeable brick from lignite fly ash and coal gangue[J]. New Building Materials, 2019, 46(6): 72−75.

    [71]

    金彪, 赵亮, 汪潇, 等. 利用煤矸石、页岩、污泥制备烧结砖的研究[J]. 非金属矿, 2021, 44(5): 39−41.

    JIN B, ZHAO L, WANG X, et al. Preparation of sintered brick with sludge, shale and gangue[J]. Non−Metallic Mines, 2021, 44(5): 39−41.

    [72]

    WANG L, MI S Y, ZHANG J F, et al. Synergistic performance of microwave−activated coal gangue with limestone in low−carbon cement[J]. Journal of Building Engineering, 2024, 96: 110622. doi: 10.1016/j.jobe.2024.110622

    [73]

    FENG S X, WANG P M, LIU X P. Effect of gangue on hydration process of Portland cement[J]. Journal of the Chinese Ceramic Society, 2010, 38(9): 1682−1687.

    [74]

    NIU X J, LI Q B, HU Y, et al. Properties of cement−based materials incorporating nano−clay and calcined nano−clay: A review[J]. Construction and Building Materials, 2021, 284: 122820. doi: 10.1016/j.conbuildmat.2021.122820

    [75]

    GONG C C, LI D X, WANG X J, et al. Activity and structure of calcined coal gangue[J]. 2007, 22(4): 749−753.

    [76]

    ZHAO Y P, ZHANG Z Z, JI Y S, et al. Experimental research on improving activity of calcinated coal gangue via increasing calcium content[J]. Materials, 2023, 16(7): 2705. doi: 10.3390/ma16072705

    [77]

    顾炳伟, 王培铭. 不同产地煤矸石特征及其火山灰活性研究[J]. 煤炭科学技术, 2009, 37(12): 113−116+74.

    GU B W, WANG P M. Study on different coal rejects features and volcanic ash activity from different areas[J]. Coal Science and Technology, 2009, 37(12): 113−116+74.

    [78]

    刘宇轩. 偏高岭土基煅烧煤矸石复合水泥的性能及水化研究[D]. 长沙: 湖南大学, 2022.

    LIU Y X. The performance and hydration of cement composites with thermally activated kaolinitic coal gangue[D]. Changsha: Hu’nan University, 2022.

    [79]

    陈杰. 新型煤矸石基低碳LC3胶凝材料的制备与水化机理研究[D]. 武汉: 武汉理工大学, 2019.

    CHEN J. Research on preparation and hydration mechanism of new pattern coal gangue based LC3 cementitious material[D]. Wuhan: Wuhan University of Technology, 2019.

    [80]

    ZHAO X, ZHANG Z X, LI W X, et al. Basic principle, progress, and prospects of coal gangue ceramic proppants[J]. International Journal of Applied Ceramic Technology, 2023, 20(5): 2681−2699. doi: 10.1111/ijac.14411

    [81]

    WANG X D, XU H Y, ZHANG F J, et al. Preparation of porous cordierite ceramic with acid−leached coal gangue[J]. Journal of The Korean Ceramic Society, 2020, 57(4): 447−453. doi: 10.1007/s43207-020-00032-1

    [82]

    LI X Y, SHAO J H, ZHENG J Q, et al. Fabrication and application of porous materials made from coal gangue: A review[J]. International Journal of Applied Ceramic Technology, 2023, 20(4): 2099−2124. doi: 10.1111/ijac.14359

    [83]

    YAN S, PAN Y M, WANG L, et al. Synthesis of low−cost porous ceramic microspheres from waste gangue for dye adsorption[J]. Journal of Advanced Ceramics, 2018, 7(1): 30−40. doi: 10.1007/s40145-017-0253-1

    [84]

    ZHOU H, ZHANG M S, SUN S F, et al. Synthesis of coal gangue−based mesoporous X zeolite with soft template and its adsorption methylene blue[J]. Science of Advanced Materials, 2021, 13(11): 2157−2166. doi: 10.1166/sam.2021.4114

    [85]

    吴国天, 徐海燕, 刘丽, 等. 煤矸石中杂质含量对堇青石多孔陶瓷烧结与性能的影响[J]. 硅酸盐通报, 2015, 34(3): 670−676.

    WU G T, XU H Y, LIU L, et al. Effect of impurities in coal gangue on the sintering and properties of cordierite porous ceramic[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(3): 670−676.

    [86]

    DENG S W, YU J, HUANGFU Z X, et al. Iron-enhanced X-type zeolite made by coal gangue for Pb/Cd-contaminated soil remediation[J]. Journal of Soils and Sediments, 2024, 24(5): 2078−2087.

    DENG S W, YU J, HUANGFU Z X, et al. Iron-enhanced X-type zeolite made by coal gangue for Pb/Cd-contaminated soil remediation[J]. Journal of Soils and Sediments, 2024, 24(5): 2078−2087.

    [87]

    高平强, 魏建雄, 陈嘉, 等. TiO2/改性煤矸石复合光催化材料的制备及其去除水体中苯酚[J]. 矿产综合利用, 2021(6): 73−80. doi: 10.3969/j.issn.1000-6532.2021.06.013

    GAO P Q, WEI J X, CHEN J, et al. Preparation of TiO2/coal gangue composite photocatalyst and its application in phenol removal from water[J]. Multipurpose Utilization of Mineral Resources, 2021(6): 73−80. doi: 10.3969/j.issn.1000-6532.2021.06.013

    [88]

    唐双, 张雪乔, 蒋莉萍, 等. 煤矸石/BiVO4复合光催化剂的制备及其对黄药废水的降解[J]. 复合材料学报, 2023, 40(12): 6703−6717.

    TANG S, ZHANG X Q, JIANG L P, et al. Preparation of coal gangue/BiVO4 composite photocatalyst and its degradation of xanthate wastewater[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6703−6717.

    [89]

    HUANG Z, DENG L, CHE D F, et al. Development and technical progress in large−scale circulating fluidized bed boiler in China[J]. Frontiers in Energy, 2020, 14(4): 699−714. doi: 10.1007/s11708-020-0666-3

    [90]

    ZHAO L Z, DU Y F, ZENG Y S, et al. Sulfur conversion of mixed coal and gangue during combustion in a CFB boiler[J]. Energies, 2020, 13(3): 553. doi: 10.3390/en13030553

    [91]

    PENG H, WANG B F, LI W X, et al. Combustion characteristics and NO emissions during co−combustion of coal gangue and coal slime in O2/CO2 atmospheres[J]. Journal of Thermal Science, 2023, 32(1): 457−467. doi: 10.1007/s11630-022-1742-2

    [92]

    LI Y Q, REN X F, ZHANG Y B, et al. Study on the thermal reaction characteristics and kinetics of coal and coal gangue coexisting spontaneous combustion[J]. Energy, 2024, 288: 129781. doi: 10.1016/j.energy.2023.129781

    [93]

    XU Y H, WU H J, DONG Z F, et al. Life cycle energy use efficiency and greenhouse gas emissions of circulating fluidized bed coal−fired plant with coal gangue and coal co−combustion[J]. Environment, Development and Sustainability, 2023, 26(8): 20049−20071. doi: 10.1007/s10668-023-03454-z

    [94]

    周宇, 彭文国, 马清旺, 等. 煤矸石颗粒掺混刺梨果渣共燃烧特性[J]. 洁净煤技术, 2024, 30(S1): 334−341.

    ZHOU Y, PENG W G, MA Q W, et al. Study on the co−combustion characteristics of coal gangue particles with Rosa roxburghii Tratt pomace[J]. Clean Coal Technology, 2024, 30(S1): 334−341.

    [95]

    ZHANG Y Y, ZHAO J T, MA Z B, et al. Effect of oxygen concentration on oxy−fuel combustion characteristic and interactions of coal gangue and pine sawdust[J]. Waste Management, 2019, 87: 288−294. doi: 10.1016/j.wasman.2019.01.040

    [96]

    李昊, 刘海玉, 乔晓磊, 等. 生物质与煤矸石(煤系高岭土)共燃行为及固定碱金属特性研究[J]. 动力工程学报, 2024, 44(5): 703−709.

    LI H, LIU H Y, QIAO X L, et al. Study on co−combustion behaviour of biomass with gangue (coal kaolin) and retention characteristics of alkali metals[J]. Journal of Chinese Society of Power Engineering, 2024, 44(5): 703−709.

    [97]

    GUO Y M, ZHANG J X, LI M, et al. Preventing water inrush hazards in coal mines by coal gangue backfilling in gobs: Influences of the particle size and stress on seepage characteristics[J]. Environmental Science and Pollution Research, 2023, 30: 104374−104387. doi: 10.1007/s11356-023-29775-0

    [98]

    WANG C X, SHEN B T, CHEN J T, et al. Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation[J]. Geomechanics and Engineering, 2020, 20(6): 485−495.

    [99]

    刘帆俞, 宋慧平, 吴海滨, 等. 煤矸石土壤化利用与土壤改良剂研究进展[J]. 矿产保护与利用, 2023, 43(6): 14−26.

    LIU F Y, SONG H P, WU H B, et al. Research progress on the utilization of coal gangue for soil remediation and as soil amendment agents[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 14−26.

    [100]

    朱磊, 古文哲, 袁超峰, 等. 煤矸石浆体充填技术应用与展望[J]. 煤炭科学技术, 2024, 52(4): 93−104. doi: 10.12438/cst.2023-1919

    ZHU L, GU W Z, YUAN C F, et al. Application and prospect of coal gangue slurry filling technology[J]. Coal Science and Technology, 2024, 52(4): 93−104. doi: 10.12438/cst.2023-1919

    [101]

    LI L, HUANG Q X, ZUO X, et al. Study on the slurry diffusion law of fluidized filling gangue in the caving goaf of thick coal seam fully mechanized caving mining[J]. Energies, 2022, 15(21): 8164. doi: 10.3390/en15218164

    [102]

    刘亮平, 张凯, 杨彦生, 等. 神东矿区煤矸石无害化填埋注浆技术及应用[J]. 洁净煤技术, 2024, 30(S1): 547−552.

    LIU L P, ZHANG K, YANG Y S, et al. Coal gangue harmless landfill grouting technology and application in Shendong mining area[J]. Clean Coal Technology, 2024, 30(S1): 547−552.

    [103]

    LIU X H, ZHANG J, LI Q, et al. Preparation of technosol based on coal gangue and its impact on plant growth in coal mining area[J]. Journal of Cleaner Production, 2024, 467: 142998. doi: 10.1016/j.jclepro.2024.142998

    [104]

    邢成江, 邢丽萍. 煤矸石覆盖农田好处多[J]. 山西农业, 1994(9): 30.

    XING C J, XING L P. Covering farmland with coal gangue has many advantages[J]. Shanxi Agriculture, 1994(9): 30.

    [105]

    王忠波, 张金博, 王斌, 等. 煤矸石填充对沟道导排水性能和土壤肥力及重金属污染的影响[J]. 农业工程学报, 2019, 35(24): 289−297.

    WANG Z B, ZHANG J B, WANG B, et al. Effects of coal gangue filling on drainage performance, soil fertility and heavy metal pollution in erosion gully[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 289−297.

    [106]

    段永红, 赵景逵. 煤矸石山覆盖种植对植物根系的影响[J]. 煤矿环境保护, 1999(1): 41−43.

    DUAN Y H, ZHAO J K. The influence of the covered planting on plant roots and reclamation measures on coal gob mountains[J]. Energy Environmental Protection, 1999(1): 41−43.

    [107]

    马柳. 以煤矸石为基质的生菜种植土壤改良配比研究[D]. 沈阳: 辽宁大学, 2021.

    MA L. Study on the ratio of soil improvement for lettuce planting with coal gangue as substrate[D]. Shenyang: Liaoning University, 2021.

    [108]

    刘元生, 陈祖拥, 刘方, 等. 白云岩砂改良煤矸石基质对黑麦草生长及重金属淋溶影响[J]. 中国水土保持科学(中英文), 2023, 21(5): 138−145.

    LIU Y S, CHEN Z Y, LIU F, et al. Effect of dolomite sand−improved coal gangue substrate on ryegrass growth and heavy metal leaching[J]. Science of Soil and Water Conservation, 2023, 21(5): 138−145.

    [109]

    范秋运, 张超英, 耿玉清, 等. 添加粉煤灰对煤矸石基质性质和植物生长的影响[J]. 中国水土保持科学(中英文), 2022, 20(5): 85−92.

    FAN Q Y, ZHANG C Y, GENG Y Q, et al. Effects of fly ash application on the properties of coal gangue matrix and plant growth[J]. Science of Soil and Water Conservation, 2022, 20(5): 85−92.

    [110]

    关禹. 煤矸石的肥效及重金属活性钝化的研究[D]. 阜新: 辽宁工程技术大学, 2015.

    GUAN Y. The study on fertilizer efficiency and passivation on heavy metals activated of coal gangue[D]. ‌‌Fuxin: Liaoning Technical University, 2015.

    [111]

    王丽艳, 张成梁, 韩有志, 等. 煤矸石山不同植被恢复模式对土壤侵蚀和养分流失的影响[J]. 中国水土保持科学, 2011, 9(2): 93−99+105. doi: 10.3969/j.issn.1672-3007.2011.02.017

    WANG L Y, ZHANG C L, HAN Y Z, et al. Effects of different vegetation restoration patterns in gangue pile on soil erosion and nutrient loss[J]. Science of Soil and Water Conservation, 2011, 9(2): 93−99+105. doi: 10.3969/j.issn.1672-3007.2011.02.017

    [112]

    郭爱科. 煤矸石混合土壤水分入渗与蒸发特性试验及模拟研究[D]. 邯郸: 河北工程大学, 2022.

    GUO A K. Experimental and simulation study on water infiltration and evaporation characteristics of coal gangue mixed soil[D]. Handan: Hebei University of Engineering, 2022.

    [113]

    邵玉飞, 马建, 陈欣. 利用煤矸石制作水稻育苗基质的研究[J]. 农业资源与环境学报, 2017, 34(6): 555−561.

    SHAO Y F, MA J, CHEN X. Rice seedling substrate produced by coal gangue[J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 555−561.

    [114]

    李娜. 秸秆与煤矸石混配基质的育苗性能研究[D]. 沈阳: 沈阳建筑大学, 2020.

    LI N. Study on the seedling performance of the mixture of straw and gangue[D]. Shenyang: Shenyang Jianzhu University, 2020.

    [115]

    任晓玲, 周蕙昕, 高明, 等. 煤矸石肥料的研究进展[J]. 中国煤炭, 2021, 47(1): 103−109. doi: 10.3969/j.issn.1006-530X.2021.01.016

    REN X L, ZHOU H X, GAO M, et al. Research progress of coal gangue fertilizer[J]. China Coal, 2021, 47(1): 103−109. doi: 10.3969/j.issn.1006-530X.2021.01.016

    [116]

    MOTESHAREZADEH B, AHMADIYAN E, ALIKHANI H A, et al. The use of coal gangue as a cultivation bed conditioner in forage maize inoculated with arbuscular mycorrhizal fungi[J]. Communications in Soil Science and Plant Analysis, 2017, 48(11): 1266−1279. doi: 10.1080/00103624.2017.1322602

    [117]

    GU T Y, MAO Y Y, CHEN C, et al. Diversity of arbuscular mycorrhiza fungi in rhizosphere soil and roots in vetiveriazizanioides plantation chronosequence in coal gangue heaps[J]. Symbiosis, 2022, 86(1): 111−122. doi: 10.1007/s13199-022-00829-0

    [118]

    BAI D S, WANG Y W, YANG X, et al. Effects of long−term (10 years) remediation of Caragana on soil enzyme activities, heavy metals, microbial diversity and metabolic spectrum of coal gangue[J]. Ecological Engineering, 2022, 181: 106679. doi: 10.1016/j.ecoleng.2022.106679

    [119]

    LU Z J, WANG H S, WANG Z X, et al. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction[J]. Journal of Environmental Management, 2024, 368: 122200.

    [120]

    许旭旦. 黄腐酸(FA)研究的意义与成就[J]. 腐植酸, 1996(1): 32−34.

    XU X D. Significance and achievements of fulvic acid (FA) research[J]. Humic Acid, 1996(1): 32−34.

    [121]

    刘信平, 吴少尉, 张驰. 富硒煤矸石活化技术及煤矸石硒肥高效利用研究[J]. 植物营养与肥料学报, 2020, 26(8): 1526−1535. doi: 10.11674/zwyf.19260

    LIU X P, WU S W, ZHANG C. Study on activation technology of selenium−rich coal gangue and efficient utilization of selenium−enriched coal gangue fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1526−1535. doi: 10.11674/zwyf.19260

    [122]

    FAN Y, JIA H Q, PINO V, et al. A Si−K−based amendment prepared by coal gangue and plant ash could improve the growth of maize plants in saline soils[J]. Journal of Soil Science and Plant Nutrition, 2023, 24: 761−774.

    [123]

    LUO C, LI S H, REN P Y, et al. Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study[J]. Environmental Pollution, 2024, 348: 123439. doi: 10.1016/j.envpol.2024.123439

    [124]

    苏迪. 煤矸石基人造土壤制备工艺及性能研究[D]. 太原: 山西大学, 2021.

    SU D. Study on preparation technology and properties of artificial soil based on coal gangue[D]. Taiyuan: Shanxi University, 2021.

    [125]

    ZHANG Y, LIU Y Z, LIU J, et al. Control mechanism of the migration of heavy metal ions from gangue backfill bodies in mined−out areas[J]. Frontiers in Earth Science, 2023, 10: 1090799. doi: 10.3389/feart.2022.1090799

  • 加载中

(2)

(3)

计量
  • 文章访问数:  126
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-10-29
刊出日期:  2024-12-15

目录