煤基固废充填材料及充填工艺发展现状与展望

刘鹏亮. 煤基固废充填材料及充填工艺发展现状与展望[J]. 矿产保护与利用, 2024, 44(6): 15-24. doi: 10.13779/j.cnki.issn1001-0076.2024.06.002
引用本文: 刘鹏亮. 煤基固废充填材料及充填工艺发展现状与展望[J]. 矿产保护与利用, 2024, 44(6): 15-24. doi: 10.13779/j.cnki.issn1001-0076.2024.06.002
LIU Pengliang. Development Status and Prospects of Coal Based Solid Waste Filling Materials and Filling Mining Technology[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 15-24. doi: 10.13779/j.cnki.issn1001-0076.2024.06.002
Citation: LIU Pengliang. Development Status and Prospects of Coal Based Solid Waste Filling Materials and Filling Mining Technology[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 15-24. doi: 10.13779/j.cnki.issn1001-0076.2024.06.002

煤基固废充填材料及充填工艺发展现状与展望

  • 基金项目: 中国煤炭科工集团公司科技创新创业资金专项(2022−2−ZD004);中国煤炭科工集团有限公司科技创新创业资金专项(2023−TD−ZD004);天地科技有限公司科技创新创业资金专项(2023−TD−ZD004−002);天地科技有限公司科技创新创业资金专项(KCYJY−2022−MS−01)
详细信息
    作者简介: 刘鹏亮(1980—),男,河北元氏人,研究员,博士,主要从事煤基固废处置和绿色充填开采技术研究推广,E-mail:274966405@qq.com
  • 中图分类号: TD849+.5

Development Status and Prospects of Coal Based Solid Waste Filling Materials and Filling Mining Technology

  • 煤基固废是主要的工业废弃物,其规模化处置利用对于煤炭行业可持续发展和矿区生态环境保护具有重要现实意义。充填开采作为兼具煤基固废井下处置和“三下”压煤回收的绿色开采方式,20多年来得到了快速发展和应用,形成了以固体和膏体为主要充填材料形式、以综采充填和连采充填为主要工艺的技术体系。梳理了以煤矸石和粉煤灰为代表的煤基固废充填开采的技术特点和分类,煤矸石、粉煤灰、炉渣、气化渣、脱硫石膏等固废的基本物理化学性质表明,煤基固废具有作为充填材料的可行性,分别总结了矸石固体和膏体充填材料的压缩特性,分析了连采连充与综采充填两种主要充填开采工艺的特点,在拓宽煤基固废充填材料范围、提高充填开采生产能力、降低充填成本等方面进行了展望,以期为煤基固废充填开采未来发展提供思路。

  • 加载中
  • 图 1  充填开采方法分类

    Figure 1. 

    图 2  煤基固废种类及来源

    Figure 2. 

    图 3  矸石充填材料压实曲线[5]

    Figure 3. 

    图 4  综采面固体充填支架

    Figure 4. 

    图 5  综采面胶结体充填支架

    Figure 5. 

    图 6  连采充填分阶段实施示意图

    Figure 6. 

    表 1  几种煤矸石的化学组成[7]

    Table 1.  Chemical composition of coal gangue /%

    样品编号SiO2Al2O3Fe2O3CaOMgOK2OLOL
    CG144.7839.050.450.660.440.1514.32
    CG246.3537.620.530.330.090.0813.99
    CG353.1615.537.434.140.9716.30
    CG461.734.900.852.280.17
    下载: 导出CSV

    表 2  煤矸石矿相组成

    Table 2.  Mineral composition of coal gangue

    主要构成 次要构成
    晶相:高岭石、石英、伊利石、绿泥石、
    白云母、长石、黄铁矿、
    菱铁矿、赤铁矿、方解石等
    非晶相:水分、
    炭质、风化物等
    下载: 导出CSV

    表 3  几种粉煤灰的化学组成[7]

    Table 3.  Chemical composition of different fly ash /%

    样品编号SiO2Al2O3Fe2O3CaOFeOMgOK2O
    FA145.4632.764.648.820.850.440.15
    FA253.1227.584.537.890.880.090.08
    FA330.4747.263.775.100.600.97
    FA436.8353.693.082.500.900.17
    下载: 导出CSV

    表 4  粉煤灰矿相组成

    Table 4.  Mineral composition of fly ash

    主要构成次要构成
    非晶相:玻璃体晶相:石英、莫来石以及部分
    方解石和赤铁矿等
    下载: 导出CSV

    表 5  炉渣主要化学成分[38]

    Table 5.  Chemical composition of different slag /%

    样品编号SiO2Al2O3Fe2O3CaOK2OMgO
    SL145.7741.812.860.61/0.91
    SL234.4113.016.211.011.01/
    SL350.3123.2110.612.711.140.64
    SL443.5724.4620.934.840.570.92
    下载: 导出CSV

    表 6  炉渣矿相组成

    Table 6.  Mineral composition of slag

    主要构成次要构成
    非晶相:玻璃体晶相:石英、莫来石、长石、赤铁矿等
    下载: 导出CSV

    表 7  几种气化渣的化学组成[7]

    Table 7.  Chemical composition of different coal gasification slags /%

    样品编号SiO2Al2O3Fe2O3CaOMgONa2OLOL
    CGS135.768.7241.1815.881.772.9216.09
    FGS114.877.738.748.171.561.5652.92
    CGS253.3716.8210.058.122.162.141.18
    FGS240.7612.677.286.782.411.9322.82
    CGS327.3414.4423.9119.050.952.146.98
    FGS332.0212.8911.4911.180.873.2325.38
    下载: 导出CSV

    表 8  气化渣矿相组成

    Table 8.  Mineral composition of coal gasification slag

    主要构成次要构成
    非晶相:非晶态铝硅酸盐、炭质晶相:石英、莫来石、
    方铁矿和方解石
    下载: 导出CSV

    表 9  煤基固废典型特征

    Table 9.  Typical characteristics of coal based solid waste

    序号 固料名称 粒径 真密度/(t·m−3) 化学组成 活性特征
    1 矸石 一般<25 mm(机械破碎) 2.2~2.57 SiO2、Al2O3、Fe2O3、CaO、MgO等
    2 粉煤灰 <0.1 mm 2.144~2.314 SiO2、Al2O3、Fe2O3、CaO和未燃炭 潜在活性
    3 炉渣 <10 mm 2.62~2.658 SiO2、Al2O3、Fe2O3、CaO、K2O等
    4 脱硫石膏 30~60 μm 2.3~2.4 CaO、MgO、S、游离水、SiO2、Fe2O3 潜在活性
    5 气化渣 <5 mm 2.24~2.68 SiO2、Al2O3、CaO、Fe2O3 潜在活性
    下载: 导出CSV
  • [1]

    LIU P L. Fully mechanized mining technology and practice of water conservation with large gravity filling of aeolian sand−like paste[J]. Advances in Civil Engineering, 2022: 1−9. DOI: 10.1155/2022/2405174.

    [2]

    张吉雄, 张强, 周楠, 等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报, 2022, 47(12): 4167−4181.

    ZHANG J X, ZHANG Q, ZHOU N, et al. Research progress and prospects of coal based solid waste backfill mining technology[J]. Journal of Coal Science, 2022, 47(12): 4167−4181.

    [3]

    孙志军, 李贞, 赵俊吉, 等. 山西省典型煤电基地煤基固废综合利用研究与资源化分析[J]. 中国煤炭, 2021, 47(4): 70−80.

    SUN Z J, LI Z, ZHAO J J, et al. Research on comprehensive utilization and resource analysis of coal−based solid waste in typical coal power bases in shanxi province[J]. China Coal, 2021, 47(4): 70−80.

    [4]

    郭朝阳. 煤基固废膏体充填材料研究[D]. 焦作: 河南理工大学, 2023.

    GUO C Y. Research on backfill materials of coal−based solid waste paste[D]. Jiaozuo: Henan Polytechnic University, 2023.

    [5]

    彭毅凡. 煤基固废充填开采覆岩移动规律及渗透性研究[D]. 徐州: 中国矿业大学, 2023.

    PENG Y F. Study on overlying strata movement law and permeability in coal−based solid waste backfill mining[D]. Xuzhou: China University of Mining and Technology, 2023.

    [6]

    ZHOU K Q, GONG K L, ZHOU Q Q, et al. Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards[J]. Journal of Cleaner Production, 2020, 257: 120606.

    [7]

    顾成, 李宇. 煤基固废物综合利用研究进展[J]. 煤炭与化工, 2020, 43(9): 98−101,106.

    GU C, LI Y. Research progress on comprehensive utilization of coal based solid waste[J]. Coal and Chemical Industry, 2020, 43(9): 98−101,106.

    [8]

    GUO Y X, YAN K Z, CUI L. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016, 302: 33−41. doi: 10.1016/j.powtec.2016.08.034

    [9]

    GUO Y X, YAN K Z, CUI L. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51−57. doi: 10.1016/j.minpro.2014.07.001

    [10]

    LI C, WAN J H, SUN H H, et al. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179: 515−520. doi: 10.1016/j.jhazmat.2010.03.033

    [11]

    李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.

    LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165−178.

    [12]

    贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 46−52.

    JIA M. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 46−52.

    [13]

    杨权成. 煤矸石提取氧化铝及其制备功能材料研究[D]. 北京: 中国矿业大学(北京), 2020.

    YANG Q C. Research on the extraction of alumina from coal gangue and its preparation of functional materials [D]. Beijing: China University of Mining and Technology (Beijing), 2020.

    [14]

    王爱国, 朱愿愿, 徐海燕, 等. 混凝土用煤矸石骨料的研究进展[J]. 硅酸盐通报, 2019, 38(7): 2076−2086.

    WANG A G, ZHU Y Y, XU H Y, et al. Research progress on coal gangue aggregates for concrete[J]. Silicate Bulletin, 2019, 38(7): 2076−2086.

    [15]

    XIAO J, LI F C, ZHONG Q F, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118−124. doi: 10.1016/j.hydromet.2015.04.018

    [16]

    HAN L N, REN W G, WANG B, et al. Extraction of SiO2 and Al2O3 from coal gangue activated by supercritical water[J]. Fuel, 2019, 253: 1184−1192. doi: 10.1016/j.fuel.2019.05.118

    [17]

    周楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报, 2020, 37(1): 136−146.

    ZHOU N, YAO Y N, SONG W J, et al. Current status and prospects of coal mine gangue treatment technology[J]. Journal of Mining and Safety Engineering, 2020, 37(1): 136−146.

    [18]

    黄艳利, 王文峰, 卞正富. 新疆煤基固体废弃物处置与资源化利用研究[J]. 煤炭科学技术, 2021, 49(1): 319−331.

    HUANG Y L, WANG W F, BIAN Z F. Prospects of resource utilization and disposal of coal−based solid wastes in Xinjiang[J]. Coal Science and Technology, 2021, 49(1): 319−331.

    [19]

    胡炳南, 刘鹏亮, 崔锋, 等. 我国充填采煤技术回顾及发展现状[J]. 煤炭科学技术, 2020, 48(9): 39−47.

    HU B N, LIU P L, CUI F, et al. Review and development status of filling coal mining technology in China[J]. Coal Science and Technology, 2020, 48(9): 39−47.

    [20]

    LIU L, RUAN S S, QI C C, et al. Co−disposal of magnesium slag and high−calcium fly ash as cementitious materials in backfill[J]. Journal of Cleaner Production, 2021, 279: 123684.

    [21]

    李肽脂, 吴锋, 李辉, 等. 复合激发煤气化渣基胶凝材料的制备[J]. 环境工程学报, 2022, 16(7): 2356−2364.

    LI T Z, WU F, LI H, et al. Preparation of composite activated coal gasification slag−based cementitious materials[J]. Chinese Joumal of Environmental Engineering, 2022, 16(7): 2356−2364.

    [22]

    袁晓辉, 石艳羽, 芦峰, 等. 激发剂种类对碱矿渣胶凝材料性能的影响研究[J]. 信阳师范学院学报(自然科学版), 2021, 34(4): 667−672.

    YUAN X H, SHI Y Y, LU F, et al. Studies on the influence of the properties of alkali−activated slag cementitious materials with different activator types[J]. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(4): 667−672.

    [23]

    谢和平, 张吉雄, 高峰, 等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报, 2024, 49(1): 36−46.

    XIE H P, ZHANG J X, GAO F, et al. Theory and technical conception of carbon−negative and highefficient backfill mining in coal mines[J]. Journal of China Coal Society, 2024, 49(1): 36−46.

    [24]

    孙作正. 煤基固废制备低碳胶凝材料及混凝土护坡砌块试验研究[D]. 保定: 华北水利水电大学, 2023.

    SUN Z Z. Experimental study on preparation of low carbon cementitious material and concrete slope protection block by coal based solid waste[D]. Baoding: North China University of Water Resources and Electric Power, 2023.

    [25]

    潘昱蒿. 硫铝酸盐水泥−煤基固废−固废石膏胶凝材料的制备与研究[D]. 太原: 太原理工大学, 2023.

    PAN Y H. Preparation and research of sulphoaluminate cement−coal−based solid waste−solid waste gypsum cementitious material[D]. Taiyuan: Taiyuan University of Technology, 2023.

    [26]

    王志法, 朱玉杰, 王志刚, 等. 原生矸石风力充填技术研究与应用[J]. 科技信息, 2010, 25: 2.

    WANG Z F, ZHU Y J, WANG Z G, et al. Research and application of wind power filling technology for primary gangue[J]. Science & Technology Information, 2010, 25: 2.

    [27]

    蒋光熹, 石文波. 矿井风力充填技术[M]. 北京: 煤炭工业出版社, 1965.

    JIANG G X, SHI W B. Mine wind filling technology[M]. Beijing: China Coal Industry Publishing House, 1965.

    [28]

    张鹏, 余宏, 李乃录, 等. 粉煤灰优化破碎矸石充填材料承载压缩力学特性试验研究[J]. 矿业研究与开发, 2022, 42(3): 89−93.

    ZHANG P, YU H, LI N L, et al. Experimental study on the bearing and compression mechanical properties of fly ash optimized crushed gangue filling materials[J]. Mining Research and Development, 2022, 42(3): 89−93.

    [29]

    刘鹏亮. 固料特性对煤矿充填料浆流动性影响规律研究[D]. 北京: 煤炭科学研究总院, 2021.

    LIU P L. Study on the influence of solid material characteristics on the flow ability of coal mine filling slurry [D]. Beijing: General Institute of Coal Science Research, 2021.

    [30]

    刘鹏亮, 崔锋, 王浩宇, 等. 粗细颗粒混合纯矸石充填料浆流动性实验研究[J]. 煤炭技术, 2021, 40(12): 27−31.

    LIU P L, CUI F, WANG H Y, et al. Experimental study on the flow ability of coarse and fine particle mixed pure gangue filling slurry[J]. Coal Technology, 2021, 40(12): 27−31.

    [31]

    耿华锋, 王新, 王东生, 等. 短壁联采充填工艺提效措施研究与应用[J]. 煤炭科学技术, 2020, 48(S2): 240−244.

    GENG H F, WANG X, WANG D S, et al. Research and application of short wall combined mining back filling technology[J]. Coal Science and Technology, 2020, 48(S2): 240−244.

    [32]

    李永亮, 路彬, 杨仁树, 等. 煤矿连采连充式胶结充填采煤技术与典型工程案例[J]. 煤炭学报, 2022, 47(3): 1055−1071.

    LI Y L, LU B, YANG RS, et al. Cemented backfilling mining technology with continuous mining and continuous backfilling method for underground coal mine and typical engineering cases[J]. Journal of China Coal Society, 2022, 47(3): 1055−1071.

    [33]

    刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1): 141−150.

    LIU JG, LI XW, HE T. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society, 2020, 45(1): 141−150.

    [34]

    冀宇鑫, 李鹤鹤, 宋高峰. 部分充填开采工作面覆岩移动规律研究[J]. 河南理工大学学报(自然科学版), 2023, 42(5): 49−56.

    JI YX, LI H H, SONG G F. Study on surrounding rock stability of partially filled mining face underthe influence of filling stiffness and filling step[J]. Journal of Henan Polytechnic University(Natural Science), 2023, 42(5): 49−56.

    [35]

    常贯峰. 多源煤基固废材料充填特性及其与矸石组合承载性能实验研究[D]. 合肥: 安徽理工大学, 2022.

    CHANG G F. Experimental study on filling characteristics and bearing capacity combined with gangue of multi−source coal based solid waste materials[D]. Hefei: Anhui University of Science and Technology, 2022.

    [36]

    章红专. 关于煤化工气化炉渣资源化利用技术的探讨[J]. 石油化工, 2020(9): 133−134.

    ZHANG H Z. Discussion on the resource utilization technology of coal chemical gasification slag[J]. Petrochemical, 2020(9): 133−134.

    [37]

    张云飞, 姚华彦, 扈慧敏, 等. 燃煤电厂炉渣综合利用现状分析[J]. 中国资源综合利用, 2020, 38(11): 72−74+104.

    ZHANG Y F, YAO H Y, HU H M, et al. Analysis of the current situation of comprehensive utilization of slag in coal−fired power plants [J]. China Resources Comprehensive Utilization, 2020, 38 (11): 72−74+104.

    [38]

    Phan Van Viet, 王东. 热电厂炉渣作为煤矿膏体充填材料的配比试验研究[J]. 中国安全生产科学技术, 2018, 14(1): 49−55.

    Phan Van Viet, WANG D. Experimental study on the ratio of slag from thermal power plants as coal mine paste filling material[J]. China Safety Production Science and Technology, 2018, 14(1): 49−55.

    [39]

    孙祺, 刘泽阳, 刘广友, 等. 浅谈最新燃煤电厂脱硫石膏的处理和资源化[J]. 中国设备工程, 2024(4): 240−242.

    SUN Q, LIU Z Y, LIU GY, et al. Discussion on the treatment and resource utilization of desulfurization gypsum in the latest coal−fired power plants[J]. China Equipment Engineering, 2024(4): 240−242.

    [40]

    杨科, 魏祯, 何祥, 等. 矸石集料承载力学特性模拟研究[J]. 煤炭学报, 2022, 47(3): 1087−1097.

    YANG K, WEI Z, HE X, et al. Simulation study on the bearing mechanical properties of gangue aggregates[J]. Journal of Coal Science, 2022, 47(3): 1087−1097.

    [41]

    刘鹏亮. 矸石充填材料应力应变特征实验研究[J]. 矿业安全与环保, 2019, 46(4): 13−16. doi: 10.3969/j.issn.1008-4495.2019.04.003

    LIU P L. Experimental study on stress−strain characteristics of gangue filling materials[J]. Mining Safety and Environmental Protection, 2019, 46(4): 13−16. doi: 10.3969/j.issn.1008-4495.2019.04.003

  • 加载中

(6)

(9)

计量
  • 文章访问数:  86
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-04-15
刊出日期:  2024-12-15

目录