铁尾矿制备建筑材料研究进展

史达, 任雪梅, 郝挺宇, 张润. 铁尾矿制备建筑材料研究进展[J]. 矿产保护与利用, 2024, 44(6): 44-55. doi: 10.13779/j.cnki.issn1001-0076.2024.06.005
引用本文: 史达, 任雪梅, 郝挺宇, 张润. 铁尾矿制备建筑材料研究进展[J]. 矿产保护与利用, 2024, 44(6): 44-55. doi: 10.13779/j.cnki.issn1001-0076.2024.06.005
SHI Da, REN Xuemei, HAO Tingyu, ZHANG Run. Research Progress on the Utilization of Iron Tailings as Building Materials[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 44-55. doi: 10.13779/j.cnki.issn1001-0076.2024.06.005
Citation: SHI Da, REN Xuemei, HAO Tingyu, ZHANG Run. Research Progress on the Utilization of Iron Tailings as Building Materials[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 44-55. doi: 10.13779/j.cnki.issn1001-0076.2024.06.005

铁尾矿制备建筑材料研究进展

  • 基金项目: 中国五矿集团科技专项(2021ZXA07);中冶集团“181计划”重大研发项目(CBN2022Kt01)
详细信息
    作者简介: 史达(1994—),男,山西大同人,博士,工程师,主要从事固体废弃物综合利用方面的研究工作,E−mail:617557797@qq.com
  • 中图分类号: TD926.4

Research Progress on the Utilization of Iron Tailings as Building Materials

  • 铁尾矿是铁矿石开发过程中产生的主要固体废弃物,铁尾矿建材化利用是其规模化消纳的重要方向之一。从铁尾矿的物理、化学特性入手,综述了国内外铁尾矿制备建筑材料方面的研究进展,主要包括:(1)水泥;(2)混凝土,主要作为人造粗/细骨料,或经活化处理后作为胶凝材料等;(3)砖材,包括烧结砖、蒸压砖、陶瓷砖、透水砖、免蒸免烧砖等;(4)墙体材料,包括混凝土墙体材料、新型墙板材料如隔声材料与保温隔热材料等;(5)陶瓷材料,包括玻化砖、微晶玻璃、发泡陶瓷等;(6)路用材料,包括路基填料、路面基层、底基层等。分析了铁尾矿建材化利用存在的主要问题和未来发展趋势。由于铁尾矿粒径跨度大、部分粒度细、级配差、活性差、性能波动大、不同铁尾矿性质差异大等特点,导致在建材化利用过程中存在掺量小、处理成本高、产品性能差等问题。提出依据铁尾矿特点开发高效、简单的生产工艺路线。明确进一步降低生产成本,提高产品价值,是目前铁尾矿建材化利用的迫切需求。

  • 加载中
  • 图 1  铁尾矿制备人造免烧骨料工艺流程

    Figure 1. 

    图 2  铁尾矿活化机理示意图[37,47-49]

    Figure 2. 

    图 3  发泡陶瓷制备原理示意图[74]

    Figure 3. 

    表 1  不同地区铁尾矿化学组成

    Table 1.  Chemical composition of iron tailings in different areas /%

    地区 CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O K2O TiO2 LOI CuO F REO 其他 文献
    澳大利亚 0.03 57.31 9.58 25.13 0.08 0.15 0.04 0.04 0.61 6.67 0.36 [5]
    巴西 45.72 2.06 34.26 17.96 [6]
    巴西 69.7 4.8 24 0.1 0.15 1.25 [7]
    尼日利亚 0.61 45.64 3.26 47.7 0.39 0.24 2.16 [8]
    马来西亚 4.3 56 10 8.3 1.5 3.3 16.6 [9]
    辽宁 2.75 69 2 19.17 4.19 1.97 0.49 0.43 [10]
    辽宁 3.42 66.46 2.57 13.01 1.38 0.07 0.24 12.85 [11]
    北京 6.7 61.03 7.53 13.49 7.75 1.71 1.79 [12]
    山西 58.47 27.03 4.92 1.18 6 1.25 1.15 [13]
    四川 11.41 38.09 12.26 12.15 7.72 0.36 18.01 [14]
    安徽 3.47 72.58 8.05 10.29 2.66 0.05 1.07 0.2 1.63 [14]
    河北 21.6 36.62 9.15 13.45 0.25 0.21 1.07 1.86 0.05 15.74 [15]
    内蒙古 20.82 9.7 0.63 20.94 3 3.7 0.75 0.38 0.66 11.3 10.62 11.83 5.67 [16]
    下载: 导出CSV

    表 2  铁尾矿的密度与粒度

    Table 2.  Density and particle size characteristics of iron tailings

    样品编号 表观密度/(g·cm−3) 粒径 文献
    1 1.48 D90=34.23 μm [17]
    2 3.06 −45 μm占比69.57% [18]
    3 3.47 D90=170 μm [6]
    4 1.816 D90=169 μm [19]
    5 / D90=84.58 μm [20]
    6 2.8~3.0 / [21]
    下载: 导出CSV
  • [1]

    路畅, 陈洪运, 傅梁杰, 等. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011−5026.

    LU C, CHEN H Y, FU L J, et al. Research progress on the preparation of new building materials using iron tailings[J]. Materials Reports, 2021, 35(5): 5011−5026.

    [2]

    唐志东, 陈国岩, 曲孔辉, 等. 鞍钢东部尾矿工艺矿物学研究[J]. 金属矿山, 2018(6): 109−113.

    TANG Z D, CHEN G Y, QU K H, et al. Research on process mineralogy of eastern tailings in ANSTEEL[J]. Metal Mine, 2018(6): 109−113.

    [3]

    RICO M, BENITO G, SALGUEIRO A R, et al. Reported tailings dam failures: A review of the European incidents in the worldwide context[J]. Journal of Hazardous Materials, 2008, 152(2): 846−852. doi: 10.1016/j.jhazmat.2007.07.050

    [4]

    LI J, WANG C Z, NI W, et al. Orthogonal test design for the optimization of preparation of steel slag−based carbonated building materials with ultramafic tailings as fine aggregates[J]. Minerals, 2022, 12(2): 246. doi: 10.3390/min12020246

    [5]

    ZHAO J S, NI K, SU Y P, et al. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties[J]. Construction and Building Materials, 2021, 286: 122968. doi: 10.1016/j.conbuildmat.2021.122968

    [6]

    CARRASCO E V M, MAGALHAES C, SANTOS W J D, et al. Characterization of mortars with iron ore tailings using destructive and nondestructive tests[J]. Construction and Building Materials, 2017, 131: 31−38. doi: 10.1016/j.conbuildmat.2016.11.065

    [7]

    CONSOLI N C, VOGT J C, SILVA J P S, et al. Behaviour of compacted filtered iron ore tailings−portland cement blends: new brazilian trend for tailings disposal by stacking[J]. Applied Sciences, 2022, 12(2): 836. doi: 10.3390/app12020836

    [8]

    UGAMA T, EJEH S, AMARTEY D. Effect of iron ore tailing on the properties of concrete[J]. Civil and Environmental Research, 2014, 6(10): 7−13.

    [9]

    SHETTIMA A U, HUSSIN M W, AHMAD Y, et al. Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J]. Construction and Building Materials, 2016, 120: 72−79. doi: 10.1016/j.conbuildmat.2016.05.095

    [10]

    张天宇, 霍岩, 肖启飞, 等. 南芬选矿厂尾矿工艺矿物学研究[J]. 现代矿业, 2020, 36(8): 257−258.

    ZHANG T Y, HUO Y, XIAO Q F, et al. Study on process mineralogy research of tailings in Nanfen concentrator[J]. Modern Mining, 2020, 36(8): 257−258.

    [11]

    毛奎, 蔡亮, 吴小文, 等. 几种典型铁尾矿制备加气混凝土性能及水化机理研究[J]. 硅酸盐通报, 2019, 38(12): 3719−3372.

    MAO K, CAI L, WU X W, et al. Hydration mechanism and properties of aerated concrete prepared by several typical iron tailings[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3719−3725.

    [12]

    WU S Z, ZHOU Y, GAO W, et al. Preparation and properties of shape−stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings[J]. Applied Energy, 2024, 355: 122256. doi: 10.1016/j.apenergy.2023.122256

    [13]

    SUN B, GUO Z Y, REN F F, et al. Enhanced photocatalyst with TiO2−anchored iron tailings structure for highly efficient degradation of doxycycline hydrochloride[J]. Journal of Cleaner Production, 2023, 427: 139241. doi: 10.1016/j.jclepro.2023.139241

    [14]

    白润山, 闫彭亮, 张会芳, 等. 铁尾矿在混凝土中的应用研究进展[J]. 河北建筑工程学院学报, 2015, 33(4): 1−4.

    BAI M S, YAN P L, ZHANG H F, et al. Present status of applied studies on iron tailings in concrete[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2015, 33(4): 1−4.

    [15]

    张作金, 周振华, 吴天来, 等. 河北某钒钛磁铁矿尾矿中回收铜实验研究[J]. 矿产综合利用, 2023(3): 27−30+37.

    ZHANG Z J, ZHOU Z H, WU T L, et al. Study on copper recovery from tailings of a vanadium titanomagnetite in Hebei[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 27−30+37.

    [16]

    秦玉芳, 李娜, 王其伟, 等. 白云鄂博选铁尾矿稀土的工艺矿物学研究[J]. 中国稀土学报, 2021, 39(5): 796−804.

    QIN Y F, LI N, WANG Q W, et al. Technological mineralogy of rare earth in Bayan Obo iron tailings[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(5): 796−804.

    [17]

    吴俊权, 马晶, 汪应玲, 等. 高硅铁尾矿制备陶粒工艺试验研究[J]. 矿产保护与利用, 2020, 40(6): 126−132.

    WU J Q, MA J, WANG Y L, et al. Experimental study on preparation of ceramsite with high silicon iron tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 126−132.

    [18]

    李富有, 何余良. 铁尾矿粉在道路工程中的应用研究[J]. 中外公路, 2022, 42(1): 233−239.

    WU J Q, MA J, WANG Y L, et al. Study on application of iron tailings powder in road engineering[J]. Journal of China & Foreign Highway, 2022, 42(1): 233−239.

    [19]

    GAYANA, BANGALORE, CHINNAPPA, et al. Experimental and statistical evaluations of strength properties of concrete with iron ore tailings as fine aggregate[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24(1): 1−14.

    [20]

    王雅琳. 铁尾矿粉−矿渣粉复掺混凝土配合比优化研究[D]. 保定: 河北农业大学, 2022.

    WANG Y L. Optimization study of mixture ratio for concrete mixed with iron tailing powder−slag powder[D]. Baoding: Hebei Agricultural University, 2022.

    [21]

    边伟, 王国安, 荣亚鹏, 等. 铁尾矿砂的静力学特性研究[J]. 山西交通科技, 2023(6): 29−32.

    BIAN W, WANG G A, RONG Y P, et al. Research on static properties of iron tailings sand[J]. Shanxi Science & Technology of Transportation, 2023(6): 29−32.

    [22]

    ZHANG S Q, ZHAO T, LI Y, et al. The effects and solidification characteristics of municipal solid waste incineration fly ash−slag−tailing based backfill blocks in underground mine condition[J]. Construction and Building Materials, 2024, 420: 135508. doi: 10.1016/j.conbuildmat.2024.135508

    [23]

    徐庆荣. 利用铁尾矿烧制硅酸盐水泥熟料[J]. 现代矿业, 2018, 34(5): 165−168.

    XU Q R. Calcining portland cement clinker with iron tailings[J]. Modern Mining, 2018, 34(5): 165−168.

    [24]

    杨飞, 孙晓敏. 利用钒钛磁铁矿尾矿制备普通硅酸盐水泥熟料的研究[J]. 钢铁钒钛, 2020, 41(2): 75−81. doi: 10.7513/j.issn.1004-7638.2020.02.015

    YANG F, SUN X M. Preparation of ordinary portland cement clinker from vanadium−titanium magnetite tailing[J]. Modern Mining, 2020, 41(2): 75−81. doi: 10.7513/j.issn.1004-7638.2020.02.015

    [25]

    尹琛, 白丽梅, 李绍英, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2023, 43(6): 41−53.

    YIN C, BAI L M, LI S Y, et al. Research progress of comprehensive utilization of iron tailings[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 41−53.

    [26]

    吴瑞东. 石英岩型铁尾矿微粉及废石对水泥基材料的性能影响及机理[D]. 北京: 北京科技大学, 2020.

    WU R D. Performance and mechanism analysis of quartz−type iron tailings powder and waste rock in cement−based materials[D]. Beijing: University of Science and Technology Beijing, 2020.

    [27]

    LIU J H, WU R D, WU A X, et al. Bleeding characteristics and improving mechanism of self−flowing tailings filling slurry with low concentration[J]. Minerals, 2017, 7(8): 131. doi: 10.3390/min7080131

    [28]

    赵威, 曹宝月, 崔孝炜, 等. 铁尾矿基陶粒混凝土的制备及性能研究[J]. 矿产保护与利用, 2022, 42(6): 89−93.

    ZHAO W, CAO B Y, CUI X W, et al. Study on preparation and performance of iron tailings−based ceramsite concrete[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 89−93.

    [29]

    李国峰, 那威, 田江涛, 等. 铁尾矿基陶粒的物理力学性能及其微观性质研究[J]. 金属矿山, 2022(10): 245−249.

    LI G F, NA W, TIAN J T, et al. Physical−mechanical properties and microcosmic properties of iron tailings−based ceramsite[J]. Metal Mine, 2022(10): 245−249.

    [30]

    YANG C M, CUI C, QIN J. Recycling of low−silicon iron tailings in the production of lightweight aggregates[J]. Ceramics International, 2015, 41(1): 1213−1221. doi: 10.1016/j.ceramint.2014.09.050

    [31]

    祁会军, 张慧爱, 段瑞斌. 聚苯颗粒陶粒超轻混凝土的试验研究[J]. 混凝土, 2023(9): 173−177+183. doi: 10.3969/j.issn.1002-3550.2023.09.035

    QI H J, ZHANG H A, DUAN R B. Experimental study on polystyrene particle lytag super−light weight concrete[J]. Concrete, 2023(9): 173−177+183. doi: 10.3969/j.issn.1002-3550.2023.09.035

    [32]

    崔皓楠. 全固废免烧陶粒试验研究[D]. 北京: 北方工业大学, 2023.

    CUI H N. Experimental study on all solid waste unburned ceramsite[D]. Beijing: North China University of Technology, 2023.

    [33]

    李杰. 细颗粒固废免烧陶粒及其透水混凝土的制备与性能研究[D]. 马鞍山: 安徽工业大学, 2021.

    LI J. Preparation and properties of non fired ceramicite of fine solidwaste and its permeable concrete[D]. Maanshan: Anhui University of Technology, 2021.

    [34]

    童思意, 刘长淼, 刘玉林, 等. 我国固体废弃物制备陶粒的研究进展[J]. 矿产保护与利用, 2019, 39(3): 140−150.

    TONG S Y, LIU C Y, LIU Y L, et al. Research status of ceramsite prepared from solid waste in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 140−150.

    [35]

    YAN R F, YIN S H, ZHANG H S, et al. Effect of superplasticizer on the setting behaviors and mechanical properties of tailings−waste rock cemented paste backfills[J]. Case Studies in Construction Materials, 2023, 18: 1714.

    [36]

    CHENG Y H, HUANG F, LI W C, et al. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete[J]. Construction and Building Materials, 2016, 118: 164−170. doi: 10.1016/j.conbuildmat.2016.05.020

    [37]

    张延年, 刘柏男, 顾晓薇, 等. 铁尾矿多元掺合料机械活化机理[J]. 沈阳工业大学学报, 2022, 44(1): 95−101.

    ZHANG Y N, LIU B N, GU X W, et al. Mechanical activation mechanism of multi−componentiron tailings admixture[J]. Journal of Shenyang University of Technology, 2022, 44(1): 95−101.

    [38]

    ZHANG M G, LI K Q, NI W, et al. Preparation of mine backfilling from steel slag−based non−clinker combined with ultra−fine tailing[J]. Construction and Building Materials, 2022, 320: 126248. doi: 10.1016/j.conbuildmat.2021.126248

    [39]

    程兴旺. 铁尾矿粉混凝土力学性能与耐久性分析[J]. 粉煤灰综合利用, 2018(5): 15−17+22.

    CHENG X W. Research on mechanical properties and durability of iron tailing powder concrete[J]. Fly Ash Comprehensive Utilization, 2018(5): 15−17+22.

    [40]

    冯永存, 宋少民. 铁尾矿微粉复合矿物掺合料的试验研究[J]. 粉煤灰综合利用, 2015(1): 44−45+47.

    FENG Y C, SONG S M. Experimental study on iron tailings powder as concrete admixture[J]. Fly Ash Comprehensive Utilization, 2015(1): 44−45+47.

    [41]

    HU Z H, GU X W, CHENG B J, et al. The role of chemical activation in strengthening iron ore tailings supplementary cementitious materials[J]. Buildings, 2024, 14(4): 963. doi: 10.3390/buildings14040963

    [42]

    YANG Y C, YANG Z L, CHENG Z X, et al. Effects of wet grinding combined with chemical activation on the activity of iron tailings powder[J]. Case Studies in Construction Materials, 2022, 17: e01385. DOI:10.1016/j.cscm.2022.e01385.

    [43]

    施惠生, 吴敏. 土聚水泥的聚合反应与研究现状[J]. 材料导报, 2007, 21(8): 88−91.

    SHI H S, WU M. Geo−polymerization and research status of geopolymeric cement[J]. Materials Reports, 2007, 21(8): 88−91.

    [44]

    易忠来, 孙恒虎, 李宇. 热活化对铁尾矿胶凝活性的影响[J]. 武汉理工大学学报, 2009, 31(12): 5−7+34. doi: 10.3963/j.issn.1671-4431.2009.12.002

    YI Z L, SUN H H, LI Y. Research on the influence of thermal activation for the cementitious activity of iron ore tailing[J]. Journal of Wuhan University of Technology, 2009, 31(12): 5−7+34. doi: 10.3963/j.issn.1671-4431.2009.12.002

    [45]

    张延年, 孙厚启, 顾晓薇, 等. 铁尾矿基多固废矿物掺和料耦合活化机理分析[J]. 非金属矿, 2022, 45(3): 82−85.

    ZHANG Y N, SUN H Q, GU X W, et al. Coupling activation mechanism analysis of iron tailings based solid waste mineral admixture[J]. Non−Metallic Mines, 2022, 45(3): 82−85.

    [46]

    王荣林, 席雅允, 冯建, 等. 改性铁尾矿微粉对中高强混凝土性能的影响研究[J]. 矿业研究与开发, 2023, 43(1): 32−37.

    WANG R L, XI Y Y, FENG J, et al. Influence of modified iron tailings powder on the properties of medium and high strength concrete[J]. Mining Research and Development, 2023, 43(1): 32−37.

    [47]

    李晓, 夏禹, 王珏. 多维激发对富硅铁尾矿活化的耦合效应研究[J]. 新型建筑材料, 2022, 49(6): 1−5.

    LI X, XIA Y, WANG J, et al. Study on the coupling effect of multi−dimensional excitation on the activation of silicon−rich iron tailings[J]. New Building Materials, 2022, 49(6): 1−5.

    [48]

    YAO G, LIU Q, WANG J X, et al. Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings[J]. Journal of Cleaner Production, 2019, 217: 12−21. doi: 10.1016/j.jclepro.2019.01.175

    [49]

    申艳军, 白志鹏, 郝建帅, 等. 尾矿制备混凝土研究进展与利用现状分析[J]. 硅酸盐通报, 2021, 40(3): 845−857.

    LI X, XIA Y, WANG J, et al. Research progress and utilization status analysis of concrete prepared by tailings[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 845−857.

    [50]

    崔孝炜, 邓惋心, 赵雨曦, 等. 利用铁尾矿作为混凝土掺和料的基础研究[J]. 非金属矿, 2020, 43(4): 88−91.

    CUI X W, DENG W X, ZHAO Y X, et al. Basic research on the preparation of mineral admixtures with iron ore tailings[J]. Non−Metallic Mines, 2020, 43(4): 88−91.

    [51]

    ZHANG X L, LIU P F, GAO P, et al. A clean and green technology for iron extraction from refractory siderite ore via fluidization self−magnetization roasting[J]. Powder Technology, 2024, 444: 119993. doi: 10.1016/j.powtec.2024.119993

    [52]

    LI Z M, HAN Y X, SUN Y S, et al. Fluidization characteristics of ore particles for downstream hydrogen mineral phase transformation equipment[J]. Powder Technology, 2024, 443: 119993.

    [53]

    王金忠. 铁尾矿部分代替粘土在烧结砖中的应用研究[J]. 房材与应用, 2000(3): 27−30.

    WANG J Z. Study on application of replacing clay partially with iron tailings in burnt brick[J]. Construction Conserves Energy, 2000(3): 27−30.

    [54]

    王金忠, 李晖. 利用铁尾矿生产烧结砖的实验研究[J]. 辽宁建材, 2000(3): 21−23.

    WANG J Z. Experimental study on producing sintered brick from iron tailings[J]. LiaoNing Building Materials, 2000(3): 21−23.

    [55]

    陈永亮. 鄂西低硅铁尾矿烧结制砖及机理研究[D]. 武汉: 武汉科技大学, 2012.

    CHEN Y L. Preparation and mechanism of fired bricks and tiles with low−silicon iron tailings from Western Hubei[D]. Wuhan: Wuhan University of Science and Technology, 2012.

    [56]

    田玉梅. 利用铁矿尾矿制备烧结多孔砖技术研究[D]. 济南: 山东大学, 2004.

    TIAN Y M. Study on preparation of sintered porous brick from iron ore tailings[D]. Ji’nan: Shandong University, 2004.

    [57]

    衣德强, 张剑锋. 铁矿尾矿烧结制砖可行性探讨[J]. 宝钢技术, 2008(6): 58−61.

    YI D Q, ZHANG J F. Discussion on the feasibility of iron ore tailings for sintering bricks[J]. Baosteel Technology, 2008(6): 58−61.

    [58]

    朱华根, 衣德强. 铁矿尾矿烧结制砖试验研究[J]. 中国资源综合利用, 2008, 26(12): 19−21. doi: 10.3969/j.issn.1008-9500.2008.12.010

    ZHU H G, YI D Q. Research on brick production by firing with iron ore tailings[J]. China Resources Comprehensive Utilization, 2008, 26(12): 19−21. doi: 10.3969/j.issn.1008-9500.2008.12.010

    [59]

    杜建发. 梅山选厂细粒级尾矿综合利用进展[J]. 金属矿山, 2008(6): 145−147+149. doi: 10.3321/j.issn:1001-1250.2008.06.039

    DU J F, YI D Q. Progress in comprehensive utilization of Meishan concentrator's fine tailings[J]. Metal Mine, 2008(6): 145−147+149. doi: 10.3321/j.issn:1001-1250.2008.06.039

    [60]

    周怡笛, 王丽娟, 闵鑫, 等. 铁尾矿高值化利用研究进展[J]. 现代矿业, 2022, 38(10): 251−254.

    ZHOU Y D, WANG L J, MIN X, et al. Research progress on the high−value utilization of iron tailings[J]. Modern Mining, 2022, 38(10): 251−254.

    [61]

    张立侠, 胡晨光, 宋裕增, 等. 利用铁尾矿粉制备保温砌块的研究[J]. 建设科技, 2016(3): 80−81.

    ZHANG L X, HU C G, SONG Y Z, et al. Study on preparation of thermal insulation block from iron tailings powder[J]. Construction Science and Technology, 2016(3): 80−81.

    [62]

    王长龙, 荆牮霖, 齐洋, 等. 钒钛铁尾矿制备硅酸钙隔声板材及其性能研究[J]. 钢铁钒钛, 2023, 44(3): 105−113.

    WANG C L, JING J L, QI Y, et al. Preparation and properties of calcium silicate sound insulation boardfrom vanadium−titanium iron ore tailings[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 105−113.

    [63]

    王鹏昕. 微纳铁尾矿砂/SiO2气凝胶保温隔热建筑新材料的制备及其参数影响规律[D]. 南昌: 南昌航空大学, 2020.

    WANG P X. Preparation of new material for micro−nano iron tailing sand/SiO2 aerogel thermal insulation building and laws of parameter influence[D]. Nanchang: Nanchang Hangkong University, 2020.

    [64]

    喻杰, 柯昌云, 喻振贤, 等. 大比例掺用铁尾矿制备轻质保温墙体材料[J]. 金属矿山, 2013, 43(3): 161−164.

    YU J, KE C Y, YU Z X, et al. Preparation of lightweight thermal insulation walling material with high content of iron tailings[J]. Construction Science and Technology, 2013, 43(3): 161−164.

    [65]

    隋延力, 王继全, 杨芳, 等. 铁尾矿生产陶瓷玻化砖离工业化还有多远[J]. 金属世界, 2014(1): 9−13.

    SUI Y L, WANG J Q, YANG F, et al. How far is it from iron ore tailings to the industrialized production of ceramic tiles[J]. Metal World, 2014(1): 9−13.

    [66]

    焦娟, 郭志猛, 刘祥庆, 等. 用程潮铁尾矿制备黑色通体砖[J]. 金属矿山, 2010(12): 167−170+174.

    JIAO J, GUO Z M, LIU X Q, et al. Preparation of black full−body brick with Chengchao iron tailings[J]. Metal Mine, 2010(12): 167−170+174.

    [67]

    石棋, 崔文豪, 隋延力. 利用攀钢铁尾矿制备黑色玻化砖的研究[J]. 中国陶瓷, 2012, 48(10): 55−57.

    SHI Q, CUI W H, SUI Y L, et al. Study on preparation of black vitrified brick from Panzhihua iron and steel tailings[J]. China Ceramics, 2012, 48(10): 55−57.

    [68]

    薛路, 成兆鑫, 赵勇. 基于铁尾矿的微晶玻璃的制备[J]. 现代矿业, 2016, 32(8): 289−290.

    XUE L, CHENG Z X, ZHAO Y, et al. Preparation of glass−ceramics based on iron tailings[J]. Modern Mining, 2016, 32(8): 289−290.

    [69]

    ZHANG H J, ZHAO W G, LI F L, et al. Preparation and erosion resistance of CaO−Al2O3−MgO−SiO2 microcrystalline glass ceramics[J]. Rare Metal Materials and Engineering, 2016, 44: 277−280.

    [70]

    LU X W, ZHOU C, LIU Y X, et al. Crystallization characteristics and properties of glass ceramics derived from iron tailing[J]. Journal of Sustainable Metallurgy, 2022, 8(3): 1117−1129. doi: 10.1007/s40831-022-00553-5

    [71]

    杨博宇, 张雪峰. 微波加热法制备尾矿微晶玻璃的研究[J]. 中国陶瓷, 2018, 54(2): 63−67.

    YANG B Y, ZHANG X F. Preparation of tailing glass−ceramics by microwave heating treatment[J]. China Ceramics, 2018, 54(2): 63−67.

    [72]

    南宁, 崔孝炜, 孙强强, 等. 铁尾矿制备微晶玻璃的研究[J]. 矿产综合利用, 2022(3): 47−50. doi: 10.3969/j.issn.1000-6532.2022.03.009

    NAN N, CUI X W, SUN Q Q, et al. Investigation on preparation of glass−ceramics with iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2022(3): 47−50. doi: 10.3969/j.issn.1000-6532.2022.03.009

    [73]

    CHEN S Z, LUO L M, SUN H J, et al. Effect and mechanism of Fe2O3 decomposition in the preparation of foaming ceramics from industrial solid waste[J]. International Journal of Applied Ceramic Technology, 2024, 21(2): 934−946. doi: 10.1111/ijac.14587

    [74]

    李林, 姜涛, 陈超, 等. 攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究[J]. 矿产综合利用, 2020(6): 7−13+6. doi: 10.3969/j.issn.1000-6532.2020.06.002

    LI L, JIANG T, CHEN C, et al. Study on preparation of water−retaining foam ceramics from vanadium−titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 7−13+6. doi: 10.3969/j.issn.1000-6532.2020.06.002

    [75]

    姜葱葱, 董祎然, 黄世峰, 等. 基于原位发泡工艺的固废基发泡陶瓷研究进展[J]. 硅酸盐学报, 2022, 50(9): 2510−2526.

    JIANG C C, DONG Y R, HUANG S F, et al. Research progress on solid waste−based foamed ceramics based on in−situ foaming process[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2510−2526.

    [76]

    DENG F Q, WANG F, SHI X P, et al. Synthesis and properties of foam glass−ceramics from granite tailings by using SiC and MnO2 as the mixed foaming agent[J]. Ceramics International, 2023, 49(22): 34647−34656. doi: 10.1016/j.ceramint.2023.08.120

    [77]

    王晶. 铁尾矿在国内外道路工程中的应用[J]. 环境与发展, 2014, 26(7): 51−55+100. doi: 10.3969/j.issn.1007-0370.2014.07.016

    WANG J. The application of iron tailings in road construction in China and abroad[J]. Environment and Development, 2014, 26(7): 51−55+100. doi: 10.3969/j.issn.1007-0370.2014.07.016

    [78]

    赵宇翔, 张茜, 刘碧雯, 等. 尾矿制备建筑材料的研究进展[J]. 中国资源综合利用, 2021, 39(9): 120−124. doi: 10.3969/j.issn.1008-9500.2021.09.037

    ZHAO Y X, ZHANG Q, LIU B W, et al. Progress of research on building materials prepared from tailings[J]. China Resources Comprehensive Utilization, 2021, 39(9): 120−124. doi: 10.3969/j.issn.1008-9500.2021.09.037

    [79]

    易龙生, 李行, 齐莉娜, 等. 铁尾矿用于路面基层材料的研究进展及前景[J]. 矿业研究与开发, 2015, 35(10): 27−32.

    YI L S, LI X, QI L N, et al. Research progress and application prospect of iron tailings for pavement base material[J]. Mining Research and Development, 2015, 35(10): 27−32.

    [80]

    杨青. 无机结合料稳定铁尾矿砂的路用性能研究[D]. 大连:大连理工大学,2008.

    YANG Q. Study on road performance of iron tailings stabilized by inorganic binder[D]. Dalian: Dalian University of Technology, 2008.

    [81]

    郭晓华. 尾矿砂在道路工程中的应用前景[J]. 公路交通科技(应用技术版), 2011, 7(5): 99−101.

    GUO X H. Application prospect of tailings in road engineering[J]. Highway Traffic Technology, 2011, 7(5): 99−101.

    [82]

    苏更. 铁矿尾矿料在公路工程中的应用[J]. 内蒙古公路与运输, 2007(1): 29−32. doi: 10.3969/j.issn.1005-0574.2007.01.008

    SU G. Application of iron−ore tailing to highway engineering[J]. Highways & Transportation in Inner Mongolia, 2007(1): 29−32. doi: 10.3969/j.issn.1005-0574.2007.01.008

    [83]

    孙吉书, 陈朝霞, 肖田, 等. 石灰粉煤灰稳定铁尾矿碎石的路用性能研究[J]. 武汉理工大学学报, 2012, 34(3): 59−62. doi: 10.3963/j.issn.1671-4431.2012.03.014

    SUN J S, CHEN Z X, XIAO T, et al. Research on the performances of lime fly ash stabilized iron tailing gravel in highway application[J]. Journal of Wuhan University of Technology, 2012, 34(3): 59−62. doi: 10.3963/j.issn.1671-4431.2012.03.014

    [84]

    万磊. 铁尾矿用作路面基层材料的研究[D]. 长沙: 中南大学, 2014.

    WAN L. The apply of iron tailings as subgrade materials[D]. Changsha: Central South University, 2014.

    [85]

    王一峰. 固化剂改良铁尾矿路用性能研究[D]. 张家口: 河北建筑工程学院, 2019.

    WAN Y F. Road performance study of curingagent stabilized iron tailing[D]. Zhangjiakou: Hebei University of Architecture, 2019.

  • 加载中

(3)

(2)

计量
  • 文章访问数:  278
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2024-04-24
刊出日期:  2024-12-15

目录