Experimental Study on Refined Flocculation and Settlement Parameters of Ultrafine Unclassified tailings from Yinshan Mine
-
摘要:
银山矿全尾砂−19 μm颗粒约占51%,属于超细全尾砂,处理过程中面临浓密脱水难度大的问题,且深锥浓密效果受到季节变化以及尾砂入料质量浓度的显著影响。因此,为提升银山矿深锥浓密机沉降效果,通过室内物化性质检测、室内絮凝沉降实验、现场半工业实验,开展了超细全尾砂精细化絮凝实验研究。结果表明:优选出的DR1030絮凝剂,在尾砂浆质量浓度10%时絮凝剂单耗为30.0 g/t(夏季)、33.0 g/t(其他季节),尾砂浆质量浓度15%时絮凝剂单耗为35.0 g/t(夏季)、38.0 g/t(其他季节)。半工业实验条件下,DR1030絮凝剂的实际单耗34.0 g/t,与现场絮凝剂相比,低4.4 g/t;DR1030对应的底流质量浓度波动性更小,质量浓度更高,平均值提高2.6百分点;扩展度测试表明DR1030对料浆流动性无明显影响。本次实验为提升银山矿充填质量提供了重要的工艺参数,对其他相似矿山也具有一定的借鉴意义。
Abstract:The tailings from the Yinshan Mine contain approximately 51% ultrafine particles of less than 19 μm, presenting significant challenges to the thickening and dewatering processes. In particular, the effectiveness of deep cone thickeners is particularly affected by seasonal variations and the quality and concentration of the tailings feed. In order to improve the settlement performance of the deep cone thickener at the Yinshan Mine. Comprehensive experiments were conducted, including physical and chemical property tests, laboratory−scale flocculation settlement experiments, and semi−industrial experimental focusing on the flocculation of ultrafine unclassified tailings. The results showed that DR1030 proved to be the optimal flocculant. At a tailings slurry concentration of 10%, the consumption of DR1030 was 30.0 g/t in summer and 33.0 g/t in other seasons; at a 15% slurry concentration, the consumption was 35.0 g/t in summer and 38.0 g/t in other seasons. Under semi−industrial experimental conditions, the actual consumption of DR1030 was 34.0 g/t, which was 4.4 g/t less than that of the existing flocculants. Furthermore, the underflow concentration with DR1030 exhibited more stable and higher mass concentration, which was improved by 2.6%. Slump flow measurement demonstrated that DR1030 had no significant effect on the fluidity of the slurry. This study provides critical process parameters that can improve cemented paste backfill quality at the Yinshan Mine, as well as valuable insights for similar mining operations.
-
-
表 1 银山矿全尾砂化学成分
Table 1. Chemical composition of the unclassified tailings of Yinshan Mine
化学成分 SiO2 Al2O3 Fe2O3 K2O SO3 TiO2 CaO MnO 其他 含量/% 58.80 23.10 7.02 6.15 3.10 0.78 0.36 0.15 0.55 表 2 絮凝沉降实验方案
Table 2. Test program of flocculation and settlement
絮凝剂 料浆质量浓度 /% 絮凝剂单耗 /(g·t−1) 温度 /℃ 目的 爱森715s 10 30、40、50、60 − 尾砂絮凝沉降现况 15 30、40、50、60、70 − 爱森715s 10/15 45/65 − 絮凝剂优选 DR1030 10/15 45/65 10AP 10/15 45/65 919 10/15 45/65 DR1030 10 20、30、40 15、27、45 优选絮凝剂添加量确定 15 20、30、40 15、27、45 爱森715s 10~15 40 20~30 半工业实验验证 DR1030 10~15 35 20~30 表 3 不同絮凝剂沉降结果
Table 3. Settling results of different flocculants
絮凝剂型号 砂浆密度/(g·cm−3) 沉降速率/(cm·min−1) 固体通量/(t·m−2·h−1) 料浆质量浓度/% 絮凝剂单耗/(g·t−1) 爱森715s 1.07 22.42 1.43 10 45 DR1030 1.07 31.03 1.99 10 45 10AP 1.07 18.69 1.20 10 45 919 1.07 15.51 0.99 10 45 爱森715s 1.10 23.03 2.29 15 65 DR1030 1.10 30.75 3.05 15 65 10AP 1.10 14.34 1.42 15 65 919 1.10 11.28 1.12 15 65 表 4 絮凝剂综合情况对比
Table 4. Comparison of flocculant syntheses
日期 10月18日 10月18日 10月19日 班次 早 中 早 测量前7.5 h内选厂
平均入料质量浓度/%33.6 30.0 31.8 200目以上比例/% 46.7 37.8 42.5 泥层高度/m 爱森715s 1.7 2.8 2.6 DR1030 1.5 2.2 1.8 耙架油压/MPa 爱森715s 1.7 1.7 1.6 DR1030 1.6 1.5 1.6 测量前7.5 h内
絮凝剂单耗/(g·t−1)爱森715s 40.6 41.8 36.4 DR1030 37.9 33.9 31.5 尾砂平均底流
质量浓度/%爱森715s 66.8 66.7 62.9 DR1030 69.3 68.0 67.9 -
[1] 赵兴东, 朱乾坤, 曾楠. 三山岛金矿深部高应力节理化巷道围岩控制技术研究[J]. 黄金, 2023, 44(9): 5−12. doi: 10.11792/hj20230902
ZHAO X D, ZHU Q K, ZENG N. Study on the control technology of deep high−stress jointed surrounding rock in Sanshandao Gold Mine[J]. Gold, 2023, 44(9): 5−12. doi: 10.11792/hj20230902
[2] 胡亚军, 陈彦亭, 赖伟, 等. 超细全尾砂似膏体绿色胶凝充填关键技术研究[J]. 黄金, 2023, 44(5): 12−15+20. doi: 10.11792/hj20230504
HU Y J, CHEN Y T, LAI W, et al. Study of key technology of paste−like green cemented filling with ultra−fine ungraded tailings[J]. Gold, 2023, 44(5): 12−15+20. doi: 10.11792/hj20230504
[3] 吴爱祥, 王勇, 张敏哲, 等. 金属矿山地下开采关键技术新进展与展望[J]. 金属矿山, 2021(1): 1−13.
WU A X, WANG Y, ZHANG M Z, et al. New development and prospect of key technology in underground mining of metal mines[J]. Metal Mine, 2021(1): 1−13.
[4] 吴爱祥, 王勇, 王洪江. 膏体充填技术现状及趋势[J]. 金属矿山, 2016(7): 1−9. doi: 10.3969/j.issn.1001-1250.2016.07.001
WU A X, WANG Y, WANG H J. Status and prospects of the paste backfill technology[J]. Metal Mine, 2016(7): 1−9. doi: 10.3969/j.issn.1001-1250.2016.07.001
[5] 陈述文, 陈启文. HRC高压浓缩机的原理、结构及应用[J]. 金属矿山, 2002(12): 34−37. doi: 10.3321/j.issn:1001-1250.2002.12.012
CHEN S W, CHEN Q W. Principle, structure and application of HRC high pressure thickener[J]. Metal Mine, 2002(12): 34−37. doi: 10.3321/j.issn:1001-1250.2002.12.012
[6] 冯胜利. 谈全尾矿膏体制备与沉降的关系[J]. 铜业工程, 2013(6): 42−44. doi: 10.3969/j.issn.1009-3842.2013.06.013
FENG S L. Discussion on the relationship between preparation and sedimentation of whole−tailing paste[J]. Copper Engineering, 2013(6): 42−44. doi: 10.3969/j.issn.1009-3842.2013.06.013
[7] 吴爱祥, 杨盛凯, 王洪江, 等. 超细全尾膏体处置技术现状与趋势[J]. 采矿技术, 2011, 11(3): 4−8+18. doi: 10.3969/j.issn.1671-2900.2011.03.002
WU A X, YANG S K, WANG H J, et al. Current status and trends of ultra−fine tailings disposal technology[J]. Mining Technology, 2011, 11(3): 4−8+18. doi: 10.3969/j.issn.1671-2900.2011.03.002
[8] Li C H, Shi Y Q, Liu P, et al. Analysis of the sedimentation characteristics of ultrafine tailings based on an orthogonal experiment[J]. Advances in Materials Science and Engineering, 2019(1): 1−13.
[9] 卞继伟, 王新民, 肖崇春. 全尾砂动态絮凝沉降试验研究[J]. 中南大学学报(自然科学版), 2017, 48(12): 3278−3283.
BIAN J W, WANG X M, XIAO C C. Experimental study on dynamic flocculating sedimentation of unclassified tailings[J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3278−3283.
[10] 刘奇, 岑佑华, 唐鸣东, 等. 不同尾砂物理性质对尾砂浓密性能的影响[J]. 矿业研究与开发, 2021, 41(5): 124−130.
LIU Q, CEN Y H, TANG M D, et al. Influence of different physical properties of tailings on thickening performance[J]. Mining Research and Development, 2021, 41(5): 124−130.
[11] 郭佳宾, 王洪江, 田志刚, 等. 不同类型絮凝剂对超细尾砂浓密性能的影响[J]. 矿业研究与开发, 2021, 41(4): 141−145.
GUO J B, WANG H J, TIAN Z G, et al. Effect of different types of flocculant on the thickening property of superfine tailings mining[J]. Research and Development, 2021, 41(4): 141−145.
[12] 王洪江, 杨亚楠, 郭佳宾. 基于双重絮凝的超细尾砂浓密脱水性能及絮凝机制[J]. 中南大学学报(自然科学版), 2023, 54(9): 3597−3608.
WANG H J, YANG Y N, GUO J B. Thickening dehydration performance and flocculation mechanism of ultrafine tailings based on dual flocculation[J]. Journal of Central South University (Science and Technology), 2023, 54(9): 3597−3608.
[13] 杨晴, 杨仕教, 张冉玥. 基于上澄清液浊度的超细尾砂絮凝沉降试验[J]. 黄金科学技术, 2022, 30(6): 948−957.
YANG Q, YANG S J, ZHANG R Y. Optimal flocculating sedimentation parameters of unclassified tailings slurry[J]. Gold Science and Technology, 2022, 30(6): 948−957.
[14] 王新民, 刘吉祥, 陈秋松, 等. 超细全尾砂絮凝沉降参数优化模型[J]. 科技导报, 2014, 32(17): 23−28.
WANG X M, LIU J X, CHEN Q S, et al. Optimal flocculating sedimentation parameters of unclassified tailings[J]. Science & Technology Review, 2014, 32(17): 23−28.
[15] 吴再海. 超细尾砂充填料浆絮凝沉降特性与浓密机理研究[D]. 北京: 北京科技大学, 2022.
WU Z H. Study on flocculation settling characteristics and thickening mechanism of ultrafine tailing slurry[D]. Beijing: University of Science and Technology Beijing, 2022.
[16] 王洪江, 王小林, 张玺, 等. 超细全尾砂深锥动态絮凝浓密试验[J]. 工程科学学报, 2022, 44(2): 163−169.
WANG H J, WAGN X L, ZHANG X, et al. Deep cone dynamic flocculation thickening of ultrafine full tailings[J]. Chinese Journal of Engineering, 2022, 44(2): 163−169.
[17] 田长林. 武山铜矿全尾砂沉降浓缩试验研究[J]. 铜业工程, 2023(1): 127−131. doi: 10.3969/j.issn.1009-3842.2023.01.016
TIAN C L. Sedimentation and concentration of unclassified tailings in Wushan Copper Mine[J]. Copper Engineering, 2023(1): 127−131. doi: 10.3969/j.issn.1009-3842.2023.01.016
[18] 陈格仲, 李翠平, 阮竹恩, 等. 膏体充填中絮凝条件对絮团结构及固液分离效率的影响[J]. 中国有色金属学报, 2022, 32(10): 3169−3182.
CHEN G Z, LI C P, RUAN Z E, et al. Influence of flocculation conditions on floc structure and solid−liquid separation in cemented paste filling[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3169−3182.
[19] 李公成, 王洪江, 吴爱祥, 等. 基于动态沉降压密实验的深锥浓密机关键参数确定[J]. 中国有色金属学报, 2017, 27(8): 1693−1700.
LI G C, WANG H J, WU A X, et al. Key parameters determination of deep cone thickener based on dynamical settling and compaction experiments[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1693−1700.
[20] 谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2016.
XIE G Y. Mineral processing[M]. Xuzhou: China University of Mining and Technology Press, 2016.
[21] 刘克爽, 康长科, 崔宝玉, 等. 黑龙江某铜钼混合精矿絮凝沉降性能及机理研究[J]. 中国矿业, 2024, 33(7): 1−9. doi: 10.12075/j.issn.1004-4051.20241368
LIU K S, KANG Z K, CUI B Y, et al. Flocculation and settling performance and mechanism of a copper−molybdenum mixed concentrate in Heilongjiang Province[J]. China Mining Magazine, 2024, 33(7): 1−9. doi: 10.12075/j.issn.1004-4051.20241368
[22] OWEN M. The effect of temperature on the settling velocities of an estuary mud[R]. Wallingford: Hydraulics Research station, 1972.
[23] 张钦礼, 王石, 王新民. 絮凝剂单耗对全尾砂浆浑液面沉速的影响规律[J]. 中国有色金属学报, 2017, 27(2): 318−324.
ZHANG Q L, WANG, WANG X M. Influence rules of unit consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(2): 318−324.
[24] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017.
Ministry of Housing and Urban−Rural Development of the People's Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture and Building Press, 2017.
-