-
摘要:
随着细粒选矿技术的发展,尾砂的粒径逐渐减小,已经达到了超细级别。要实现选厂超细尾砂的高浓度充填,超细尾砂絮凝沉降浓密是技术关键。为此以钢铁盐酸酸洗废液制得的三氯化铁为絮凝剂开展了某超细铁尾砂絮凝研究。采用工业CCD相机和计算机图像处理软件(Image−Pro Plus),考察了三氯化铁的用量、搅拌转速、搅拌时间对超细铁尾砂絮凝效果的影响。实验结果表明,在三氯化铁用量为
2700 g/t、磁力搅拌器转速为800 r/min、搅拌时间为80 s时,絮凝体的粒径为39.79 μm,分形维数为1.92,取得了较好的指标。基于 Box−Behnken 原理,应用响应曲面法建立三氯化铁用量、搅拌转速及搅拌时间三者之间的交互作用对超细铁尾砂絮凝影响的多元回归方程,并进行ANOVA 分析,分析结果表明,其最佳条件为三氯化铁用量2763.74 g/t,搅拌转速832.76 r/min,搅拌时间95.89 s时模型预测絮凝体粒径为40.28 μm,分形维数为1.92,与实验结果基本相符。通过对絮凝条件的探究,得出其对超细铁尾砂的作用规律,为指导超细铁尾砂的高效絮凝生产实践应用提供了理论支撑。本研究同时实现了废酸的综合利用,有利于节能减排,降低工业生产的成本。Abstract:With the advancement of mineral processing technology, the diameter of tailings is getting smaller and smaller, even reaching the ultra−fine level. In order to realize the high concentration filling of ultrafine tailings in the concentrator, the flocculation settling and thickening of ultrafine tailings is the critical technology. Therefore, the flocculation of certain ultrafine iron tailings was studied with ferric chloride produced from iron and steel hydrochloric acid pickling waste liquor as a flocculant. The effects of ferric chloride dosage, stirring speed, and stirring time on the flocculation of ultra-fine iron tailings were investigated using an industrial CCD camera and image processing software (Image−Pro Plus). The experimental results show that when the amount of FeCl3 was
2700 g/t, the speed of the magnetic stirrer was 800 r/min, the stirring time was 80 s, the particle size of the floc was 39.79 μm, and the fractal dimension was 1.92. Based on the Box−Behnken principle, response surface methodology was used to establish the multiple regression equation of the interaction among the amount of flocculant FeCl3, stirring speed, and stirring time on the flocculation of ultra−fine tailings, and ANOVA was used to analyse the experimental results. The results showed that the optimum conditions were2763.74 g/t of ferric chloride, 832.76 r/min of stirring speed, 95.89 s of stirring time, and 40.28 μm of floc particle size, and 1.92 of fractal dimension predicted by the model, which were consistent with the experimental results. The effect law of superfine tailings is obtained by studying flocculation conditions, which provides theoretical support for the practice of high-efficiency flocculation of superfine tailings. This study also realize the comprehensive utilization of waste acid, which is conducive to energy saving and emission reduction and reduces the cost of industrial production.-
Key words:
- iron tailings /
- ultra−fine /
- flocculation /
- response surface method
-
-
表 1 FeCl3技术指标
Table 1. Technical index of FeCl3
FeCl3含量/% FeCl2含量/% 比重 游离酸/% 水不溶物/% 30~40 ≤0.25 1.30~1.50 ≤0.5 ≤0.3 表 2 超细铁尾砂性质
Table 2. Ultra−fine tailings properties
分形维数 松散密度
/(g·cm−3)真密度
/(g·cm−3)体积加权
平均粒径/μm1.70 1.19 2.82 10.06 表 3 超细铁尾砂化学多元素分析结果
Table 3. Results of chemical multielement analysis of superfine tailings
/% 成分 SiO2 Fe2O3 CaO Al2O3 MgO K2O P2O5 Na2O TiO2 SO3 其他 含量 64.63 10.52 8.37 7.63 3.84 2.12 0.83 0.82 0.61 0.37 0.26 表 4 响应曲面设计因素及水平
Table 4. Factors and levels of response surface design
变量和编码 编码 编码水平 –1 0 1 FeCl3用量/(g·t–1) X1 2000 2700 3400 搅拌转速/(r·min–1) X2 600 800 1000 搅拌时间/s X3 40 80 120 表 5 BBD 实验设计方案与结果
Table 5. Design scheme and test results of BBD
编号 变量编码值 响应值 X1 X2 X3 粒径Y1/μm 分形维数Y2 1 3400 600 80 32.62 1.82 2 2000 1000 80 31.88 1.87 3 2700 800 80 39.79 1.92 4 2700 800 80 39.79 1.92 5 2700 1000 40 31.88 1.87 6 3400 1000 80 34.05 1.82 7 2700 800 80 39.79 1.92 8 3400 800 40 32.41 1.8 9 2700 600 120 32.41 1.86 10 2700 600 40 30.86 1.85 11 2700 1000 120 37.13 1.89 12 2000 600 80 29.91 1.82 13 3400 800 120 36.78 1.86 14 2000 800 40 30.87 1.85 15 2700 800 80 39.79 1.92 16 2700 800 80 39.79 1.92 17 2000 800 120 33.53 1.85 表 6 粒径的模型方差分析
Table 6. Model variance analysis of particle size
来源 平方和 自由度 均方差 F值 P值 模型 223.28 9 24.81 250.93 < 0.0001 X1 11.69 1 11.69 118.22 < 0.0001 X2 10.44 1 10.44 105.62 < 0.0001 X3 23.91 1 23.91 241.82 < 0.0001 X1X2 0.0729 1 0.0729 0.7373 0.4189 X1X3 0.731 1 0.731 7.39 0.0298 X2X3 3.42 1 3.42 34.62 0.0006 X12 56.83 1 56.83 574.78 < 0.0001 X22 67.41 1 67.41 681.82 < 0.0001 X32 31.12 1 31.12 314.79 < 0.0001 残差 0.6921 7 0.0989 失拟 0.6921 3 0.2307 纯误差 0 4 0.0001 总离差 223.97 16 R2= 0.9969 ;=
0.9506 表 7 分形维数的模型方差分析
Table 7. Model variance analysis of fractal dimension
来源 平方和 自由度 均方差 F值 P值 模型 0.0265 9 0.0029 165.03 < 0.0001 X1 0.0010 1 0.001 56.70 0.0001 X2 0.0013 1 0.0013 70.00 < 0.0001 X3 0.0010 1 0.001 56.70 0.0001 X1X2 0.0006 1 0.0006 35.00 0.0006 X1X3 0.0009 1 0.0009 50.40 0.0002 X2X3 0.0000 1 0.0000 1.40 0.2753 X12 0.0139 1 0.0139 779.58 < 0.0001 X22 0.0038 1 0.0038 212.21 < 0.0001 X32 0.0021 1 0.0021 119.37 < 0.0001 残差 0.0001 7 0.0000 失拟 0.0001 3 0.0000 纯误差 0.0000 4 0.0000 总离差 0.0266 16 R2= 0.9953 ;=
0.9249 表 8 响应曲面法的验证结果
Table 8. Verification results of the response surface method
编号 实验条件 粒径
/μm分形
维数FeCl3用量
/(g·t−1)搅拌转速
/(r·min−1)搅拌时间
/min1 2763.74 832.76 95.89 40.29 1.92 2 2763.74 832.76 95.89 40.28 1.93 3 2763.74 832.76 95.89 40.27 1.92 -
[1] 阮竹恩, 吴爱祥, 王贻明, 等. 絮凝沉降对浓缩超细尾砂料浆屈服应力的影响[J]. 工程科学学报, 2021, 43(10): 1276−1282.
RUAN Z E, WU A X, WANG Y M, et al. Effect of flocculation settlement on yield stress of concentrated ultrafine tailings slurry[J]. Chinese Journal of Engineering Science, 2021, 43(10): 1276−1282.
[2] WANG X, LI S, et al. Fly−ash−based magnetic coagulant for rapid sedimentation of electronegative slimes and ultrafine tailings[J]. Powder Technology, 2016, 303(12): 20−26.
[3] LI W, CHENG S, ZHOU L, et al. Enhanced iron recovery from magnetic separation of ultrafine specularite through polymer−bridging flocculation: A study of flocculation performance and mechanism[J]. Separation and Purification Technology, 2023, 308: 122882. doi: 10.1016/j.seppur.2022.122882
[4] 杨纪光, 吴再海, 寇云鹏, 等. 某金矿两段分级超细尾砂静态沉降与半工业浓密试验研究[J]. 金属矿山, 2022(9): 37−42.
YANG J G, WU Z H, KOU Y P, et al. Experimental study on static sedimentation and semi−industrial thickening of two−stage graded ultrafine tailings in a gold mine[J]. Metal Mine, 2022(9): 37−42.
[5] 吴爱祥, 阮竹恩, 王建栋, 等. 基于超级絮凝的超细尾砂絮凝行为优化[J]. 工程科学学报, 2019, 41(8): 981−986.
WU A X, RUAN Z E, WANG J D, et al. Optimization of flocculation behavior of ultrafine tailings based on super flocculation[J]. Chinese Journal of Engineering, 2019, 41(8): 981−986.
[6] 吴再海. 基于超细尾砂絮凝沉降浓密试验及应用分析[J]. 有色金属工程, 2022, 12(10): 117−125.
WU Z H. Test and application analysis of thickening based on flocculation settlement of ultrafine tailings[J]. Nonferrous Metals Engineering, 2022, 12(10): 117−125.
[7] 周解臻, 王祎, 石旭, 等. 三氯化铁絮凝沉淀和生化组合工艺处理百菌清生产工艺废水[J]. 现代农药, 2019, 18(2): 17−20+23.
ZHOU X Z, WANG Y, SHI X, et al. Treatment of chlorothalonil production process wastewater by ferric chloride flocculation and precipitation and biochemical combination process[J]. Modern Pesticide, 2019, 18(2): 17−20+23.
[8] 何亮亮, 黄春梅, 邵燕. 三氯化铁在废水中絮凝性能研究[J]. 广东化工, 2022, 49(18): 147−150.
HE L L, HUANG C M, SHAO Y. Study on flocculation performance of ferric chloride in wastewater[J]. Guangdong Chemical Industry, 2022, 49(18): 147−150.
[9] 张晋霞, 王聪磊, 牛福生, 等. 三氯化铁−淀粉复合絮凝剂的制备及性能[J/OL]. 矿产综合利用: 1−10[2024−03−14]. http: //kns. cnki. net/kcms/detail/51.1251. td. 20231107.1434. 020. html.
ZHANG J X, WANG C L, NIU F S, et al. Preparation and performance of ferric chloride−starch composite flocculant[J/OL]. Comprehensive Utilization of Minerals: 1−10[2024−03−14]. http://kns.cnki.net/kcms/detail/51.1251.td.20231107.1434.020.html.
[10] 龙国兵, 张红梅, 石肖, 等. 三氯化铁对细粒铁尾矿絮凝沉降的影响研究[J]. 矿业研究与开发, 2022, 42(9): 110−115.
LONG G B, ZHANG H M, SHI X, et al. Effect of ferric chloride on flocculation and sedimentation of fine−grained iron tailings[J]. Mining Research and Development, 2022, 42(9): 110−115.
[11] 赵亚伟. 赤铁矿絮凝形态特征及演化规律[D]. 唐山: 华北理工大学, 2020.
ZHAO Y W. Hematite flocculation morphology and evolution[D]. Tangshan: North China University of Technology, 2020.
[12] OFORI P, NGUYEN A VFIRTH B, et al. Shear−induced floc structure changes for enhanced dewatering of coal preparation plant tailings[J]. Chemical Engineering Journal, 2011, 172(2): 914−923.
[13] GREGORY J, O'MELIA C R. Fundamentals of flocculation[J]. Critical Reviews in Environmental Control, 1989, 19(3): 185−230. doi: 10.1080/10643388909388365
[14] 王铎, 董佳甜, 吴权佳, 等. 电絮凝处理酸性矿山废水及响应面优化[J]. 有色金属(冶炼部分), 2023(12): 69−77.
WANG D, DONG J T, WU Q J, et al. Electrocoagulation treatment of acidic mine wastewater and optimization of response surface[J]. Nonferrous Metals (Smelting Part), 2023(12): 69−77.
[15] 牛福生, 武佳慧, 于晓东, 等. 响应曲面法优化细粒铁尾矿浆絮凝沉降试验研究[J]. 矿冶工程, 2023, 43(3): 47−51+60.
NIU F S, WU J H, YU X D, et al. Experimental study on flocculation and sedimentation of fine−grained iron tailings slurry optimized by response surface method[J]. Mining and Metallurgical Engineering, 2023, 43(3): 47−51+60.
[16] 张晋霞, 牛福生. 响应曲面法优化赤铁矿絮凝体浮选行为研究[J]. 矿产综合利用, 2021(3): 22−26+38.
ZHANG J X, NIU F S. Study on optimization of hematite floc flotation behavior by response surface method[J]. Comprehensive Utilization of Minerals, 2021(3): 22−26+38.
-