难选金矿非氰化浸金原理及研究进展

吴志鹏, 王星星, 祁磊, 杨斌, 戴惠新. 难选金矿非氰化浸金原理及研究进展[J]. 矿产保护与利用, 2025, 45(2): 116-124. doi: 10.13779/j.cnki.issn1001-0076.2024.08.016
引用本文: 吴志鹏, 王星星, 祁磊, 杨斌, 戴惠新. 难选金矿非氰化浸金原理及研究进展[J]. 矿产保护与利用, 2025, 45(2): 116-124. doi: 10.13779/j.cnki.issn1001-0076.2024.08.016
WU Zhipeng, WANG Xingxing, QI Lei, YANG Bin, DAI Huixin. Principles and Research Progress of Non−cyanide Leaching of Refractory Gold Ores[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 116-124. doi: 10.13779/j.cnki.issn1001-0076.2024.08.016
Citation: WU Zhipeng, WANG Xingxing, QI Lei, YANG Bin, DAI Huixin. Principles and Research Progress of Non−cyanide Leaching of Refractory Gold Ores[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 116-124. doi: 10.13779/j.cnki.issn1001-0076.2024.08.016

难选金矿非氰化浸金原理及研究进展

  • 基金项目: 国家自然科学基金项目(52364033);矿物加工科学与技术国家重点实验室开放基金项目(BGRIMM−KJSKL−2023−12);云南省科技厅科技计划项目(202401AU070174)
详细信息
    作者简介: 吴志鹏(1999—),男,硕士,主要从事复杂难选有色金属浮选理论和微细粒难选颗粒研究,E−mail:1292290318@qq.com
    通讯作者: 王星星(1993—),女, 助理工程师,主要从事质量管理与检测,E−mail:675537448@qq.com
  • 中图分类号: TD953+.1

Principles and Research Progress of Non−cyanide Leaching of Refractory Gold Ores

More Information
  • 目前难处理金矿最常用的提金方法为氰化浸金,其浸出效率高、成本低;但氰化物具有剧毒性,严重影响环境、危及人体健康,且需要对废水进行无氰化处理。为此,选矿工作者进行了大量的非氰浸金工艺研究,非氰浸金具有低毒、环保等优点,已成为难处理金矿石开发利用的研究热点。对此,详细综述了硫代硫酸盐法、氨基酸法、硫氰酸盐法、石硫合剂法、硫脲法、卤素浸金法、生物浸金法、多硫化物法等非氰化浸金法的基本原理及研究进展,分析了其存在的优点与缺点,并对非氰浸金技术的发展方向进行了展望。

  • 加载中
  • 图 1  在铜−酒石酸盐−硫代硫酸盐溶液中单核铜−酒石酸盐络合物(CuL2${\mathrm{H}}^{6-} $)对金浸出的催化机理[2]

    Figure 1. 

    图 2  CMN相互作用的示意图[9]

    Figure 2. 

  • [1]

    GUI Q, FU L, HU Y, et al. Oxidative pretreatment of refractory gold ore using persulfate under ultrasound for efficient leaching of gold by a novel eco−friendly lixiviant: demonstration of the effect of particle size and economic benefits[J]. Hydrometallurgy, 2023, 221: 106−110.

    [2]

    CHEN J, XIE F , WANG W, et al. Leaching of a carbonaceous gold concentrate in copper−tartrate−thiosulfate solutions[J]. Minerals Engineering, 2022, 183: 107605.

    [3]

    DONG Z, JIANG T, XU B, et al. A systematic and comparative study of copper, nickel and cobalt−ammonia catalyzed thiosulfate processes for eco−friendly and efficient gold extraction from an oxide gold concentrate[J]. Separation and Purification, 2021, 272: 118929. doi: 10.1016/j.seppur.2021.118929

    [4]

    YANG Y, GAO W, XU B , et al. Study on oxygen pressure thiosulfate leaching of gold without the catalysis of copper and ammonia[J]. Hydrometallurgy, 2019, 187. DOI:10.1016/j.hydromet.2019.05.006.

    [5]

    XU B, YANG Y, JIANG T, et al. Improved thiosulfate leaching of a refractory gold concentrate calcine with additives[J]. Hydrometallurgy, 2015, 152: 214−222.

    [6]

    WANG J, XIE F, WANG W ,et al. Leaching of gold from a free milling gold ore in copper-citrate-thiosulfate solutions at elevated temperatures[J]. Minerals Engineering, 155[2024-07-26].DOI:10.1016/j.mineng.2020.106476.

    [7]

    WANG J, WANG R, PAN Y , et al. Thermodynamic analysis of gold leaching by copper−glycine−thiosulfate solutions using Eh−pH and species distribution diagrams[J]. Minerals Engineering, 2022, 179: 107438.

    [8]

    LIN Y, HU X, ZI F. Synergistical thiourea and thiosulfate leaching gold from a gold concentrate calcine with copper−ammonia catalysis[J]. Separation and Purification Technology, 2023, 327(2): 124928.

    [9]

    GUO X, ZHANG L, TIAN Q, et al. Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea[J]. Hydrometallurgy 2020, 194: 105330.

    [10]

    LI K, LI Q, ZHANG Y, et al. Improved thiourea leaching of gold from a gold ore using additives[J]. Hydrometallurgy, 2023, 222: 106204.

    [11]

    GUO Y, GUO X, WU H, et al. A novel bio−oxidation and two−step thiourea leaching method applied to a refractory gold concentrate[J]. Hydrometallurgy, 2017, 171: 213–221.

    [12]

    任传裕, 武彪, 尚鹤. 生物预氧化—酸性硫脲浸金联合工艺[J]. 矿冶, 2020, 29(4): 61−67. doi: 10.3969/j.issn.1005-7854.2020.04.012

    REN C Y, WU B, SHANG H. Combined process of biological pre−oxidation and gold leaching with acid thiourea[J]. Mining and Metallurgy, 2020, 29(4): 61−67. doi: 10.3969/j.issn.1005-7854.2020.04.012

    [13]

    孟宇群, 代淑娟, 宿少玲. 某微细粒砷黄铁矿包裹金矿的非氰浸出研究[J]. 贵金属, 2019, 40(3): 33−42.

    MENG Y Q, DAI S J, SU S L, et al. Study on non−cyanide extraction for a ore micro−fine gold enclosed by arsenopyrite[J]. Precious Metals, 2019, 40(3): 33−42.

    [14]

    印万忠, 缪彦. 金矿石的新型环保浸出剂研究现状与应用进展[J]. 矿产保护与利用, 2019, 39(1): 118−130.

    YIN W Z, MIAO Y. Research Status and application progress of environment − friendly leaching agents for gold ores[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 118−130.

    [15]

    WEN Q, WU Y, WANG X, et al. Researches on preparation and properties of sodium polysulphide as gold leaching agent[J]. Hydrometallurgy, 2017: S0304386X16304029.

    [16]

    FU L, ZHANG L, WANG S, et al. Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination−oxidation[J]. Ultrasonics Sonochemistry, 2017, 37: 471−477. doi: 10.1016/j.ultsonch.2017.02.008

    [17]

    ORABY E A, EKSTEEN J J. The leaching of gold, silver and their alloys in alkaline glycine–peroxide solutions and their adsorption on carbon[J]. Hydrometallurgy, 2015, 152: 199−203. doi: 10.1016/j.hydromet.2014.12.015

    [18]

    张建元, 刘昱辰, 王洪凯. 金精矿硫氰酸盐浸金试验研究[J]. 选矿与冶炼, 2021, 7(42): 63−77.

    ZHANG J Y, LIU Y C, WANG H K. Experimental study on gold leaching from gold concentrates by thiocyanate[J]. Beneficiation and Smelting, 2021, 7(42): 63−77.

    [19]

    HAO W, FENG Y, HUANG W, et al. The role of glycine in the ammonium thiocyanate leaching of gold[J]. Hydrometallurgy, 2019. DOI:10.1016/j.hydromet.2019.01.019.

    [20]

    谢良军, 冷桂平, 李颖欣. 碘−硫氰酸盐体系浸取废旧线路板中的金[J]. 韩山师范学院学报, 2017, 38(6): 61−66. doi: 10.3969/j.issn.1007-6883.2017.06.011

    XIE L J, LENG, G P, LI Y X. Gold Leaching from waste circuit boards by iodine−thiocyanate system[J]. Journal of Hanshan Normal University, 2017, 38(6): 61−66. doi: 10.3969/j.issn.1007-6883.2017.06.011

    [21]

    乐观. 硫氰酸盐对金及其主要伴生硫化矿物的溶解行为研究[D]. 北京: 北京有色金属研究总院, 2020: 1−68.

    LE G. Dissolution behavior of gold and its main coexistent sulfide minerals in acid thiocyanate solutions[D]. Beijing: Beijing Nonferrous Metals Research Institute, 2020: 1−68.

    [22]

    朱一民, 周振亚, 张凛. 硫氰酸钠在难处理金矿浸出中的应用[J]. 金属矿山, 2020, 8(1): 91−96.

    ZHU Y M, ZHOU Z Y, ZHANG L. Application of NaSCN in leaching refractory gold ore[J]. Metal Mine, 2020, 8(1): 91−96.

    [23]

    李导远. 巨大芽孢杆菌浸出金矿试验研究[D]. 包头: 内蒙古科技大学, 2018: 1−55.

    LI D Y, Experimental study on leaching of gold ore by bacillus megaterium[D]. Baotou: Inner Mongolia University of Science and Technology, 2018: 1−55.

    [24]

    葛忠英, 李晶莹, 安妮,等. 紫色色杆菌从废旧电子线路板中浸出金的研究[J]. 贵金属, 2017, 38(1): 48−52.

    GE Z Y, LI J Y, AN N, et al. Study on gold leaching by chromobacterium violaceum from waste printed circuit boards[J]. Precious Metals, 2017, 38(1): 48−52.

    [25]

    安妮. 绿脓杆菌从废弃线路板中浸金的研究[D]. 青岛: 青岛科技大学, 2019: 1−73.

    AN N. Study on gold leaching from the waste printed circuit boards by pseudomonas aeruginosa[D]. Qingdao: Qingdao University of Science and Technology, 2019: 1−73.

    [26]

    郭洋. 产氰细菌从废弃线路板中浸金的研究[D]. 青岛: 青岛科技大学, 2020: 1−68.

    GUO Y. Study on Leaching of gold from waste circuit boards by using cyanogenic bacteria[D]. Qingdao: Qingdao University of Science and Technology, 2020: 1−68.

    [27]

    SHEEL A, PANT D. Thiourea bacillus combination for gold leaching from waste lithium−ion batteries[J]. Bioresource Technology Reports, 2021, 15: 100789.

    [28]

    MENG Q, YAN X, LI G. Eco−friendly and reagent recyclable gold extraction by iodination leaching−electrodeposition recovery[J]. Journal of Cleaner Production, 2021, 323: 129115.

    [29]

    梁昌金, 马传净. 碘−氨浸出体系用于废旧印刷线路板中金的浸取[J]. 黄金科学技术, 2019, 27(5): 784−788.

    LIANG C J, MA C J. Iodine−ammonia leaching system for leaching gold from waste printed circuit boards[J]. Gold Science and Technology, 2019, 27(5): 784−788.

    [30]

    PAK K S, ZHANG T A, KIM C S , et al. Research on chlorination leaching of pressure−oxidized refractory gold concentrate[J]. Hydrometallurgy, 2020, 194(1−3): 105325.

    [31]

    LIU X, WANG Y, XIAO L, et al. Eco−friendly and rapid extraction of gold by in−situ catalytic oxidation with n−bromosuccinimide[J]. Heliyon, 2022, 8 (6): E09706.

    [32]

    WANG Q, HU X, ZI F, et al. Extraction of gold from refractory gold ore using bromate and ferric chloride solution[J]. Minerals Engineering, 2019, 136: 89−98. doi: 10.1016/j.mineng.2019.02.037

    [33]

    SOUSA R, FUTURO A, FIÚZA ANTÓNIO, et al. Bromine leaching as an alternative method for gold dissolution[J]. Minerals Engineering, 2018, 118: 16−23. doi: 10.1016/j.mineng.2017.12.019

  • 加载中

(2)

计量
  • 文章访问数:  47
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2024-06-14
刊出日期:  2025-04-15

目录