Dissolution Patterns of Fe3+ and Mg2+ from the Surfaces of Specularite and Chlorite and Their Effects on Floatability
-
摘要:
镜铁矿与绿泥石分选过程中,矿物表面金属离子的溶解会对矿物的可浮性产生影响。利用ICP、电导率和单矿物浮选试验考察了镜铁矿和绿泥石表面离子Fe3+、Mg2+的溶出规律和对可浮性的影响,并结合Zeta电位测试和lgc−pH分析研究了Fe3+、Mg2+对镜铁矿、绿泥石的抑制机理。结果表明:Fe3+、Mg2+会随溶出时间的增加而呈现先增长后减少的趋势,且绿泥石表面Mg2+的溶出量明显高于Fe3+,且随着溶液pH值的升高,溶液中总离子浓度呈现持续降低趋势;Fe3+、Mg2+对镜铁矿和绿泥石均有一定的抑制作用,但Fe3+的抑制效果更强,在Fe3+质量浓度为3.11 mg/L且pH=6的条件下,镜铁矿和绿泥石回收率分别降低至10.23%和13.35%;Fe3+主要以亲水性Fe(OH)3沉淀吸附的形式对矿物产生抑制作用,而Mg2+主要以Mg2+吸附的形式增加了矿物颗粒与十二胺间的静电斥力,造成矿物可浮性下降。
Abstract:During the separation process of specularite/chlorite, the dissolution of metal ions on the mineral surface can affect the floatability of the minerals. Using ICP, conductivity measurements, and single mineral flotation tests, the dissolution patterns of Fe3+ and Mg2+ ions from the surfaces of specularite and chlorite and their effect on floatability were investigated y. Additionally, by combining Zeta potential measurements and lgc−pH analysis, the inhibition mechanisms of Fe3+ and Mg2+ on specularite and chlorite were studied. The results showed that Fe3+ and Mg2+ exhibited a trend of increasing followed by decreasing with dissolution time, and the dissolution amount of Fe3+ from the chlorite surface was significantly higher than that of Fe3+. In addition, the total ion concentration in the solution decreased continuously as the pH of the solution increased. Both Fe3+ and Mg2+ had certain inhibitory effect on specularite and chlorite, but Fe3+ had a stronger inhibitory effect. Under conditions where the Fe3+ concentration was 3.11 mg/L and pH=6, the recovery rates of specularite and chlorite decreased to 10.23% and 13.35%, respectively. Fe3+ primarily inhibits minerals through the adsorption of hydrophilic Fe(OH)3 precipitates, while Mg2+ mainly increases the electrostatic repulsion between mineral particles and DDA through adsorption in the form of Mg2+, resulting in decreased mineral floatability.
-
Key words:
- specularite /
- chlorite /
- surface ion /
- flotation /
- inhibition
-
-
表 1 镜铁矿和绿泥石的XRF分析结果
Table 1. XRF analysis results of specularite and chlorite
/% 矿物名称 Fe2O3 SiO2 Al2O3 MgO CaO TiO2 镜铁矿 95.74 3.36 0.382 0.233 0.0361 / 绿泥石 16.35 59.39 12.48 7.35 0.774 1.91 -
[1] 韩跃新, 张小龙, 高鹏, 等. 中国铁矿石选矿技术发展与展望[J]. 金属矿山, 2024(2): 1−24.
HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in china[J]. Metal Mine, 2024(2): 1−24.
[2] 雷岩, 杜清坤, 郑镝. 铁矿资源形势分析及对策研究[J]. 中国国土资源经济, 2014, 27(12): 15−19.
LEI Y, DU Q K, ZHENG D. Iron ore resources situation analysis and countermeasure research[J]. Chinese Land and Resource Economics, 2014, 27(12): 15−19.
[3] 李东, 李正要, 印万忠, 等. 粒度大小对赤铁矿和石英浮选分离的影响[J]. 工程科学学报, 2020, 42(5): 586−594.
LI D, LI Z Y, YIN W Z, et al. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586−594
[4] 梅光军, 薛玉兰, 余永富. 赤铁矿与含铁硅酸盐浮选分离的研究进展与前景[J]. 金属矿山, 1999(3): 25−29.
MEI G J, XUE Y L, YU Y F. Advance in the study on flotation separation of hematite from iron−containing silicates and its prospect[J]. Metal Mine, 1999(3): 25−29.
[5] 杨任新, 董亚宁, 李明阳, 等. 霓石、镜铁矿晶体各向异性及粒度差异对可浮性的影响[J]. 金属矿山, 2020(12): 101−107.
YANG R X, DONG Y N, LI M Y, et al. Effect of crystalanisotropy and size fraction difference on the floatability of specularite and aegirite[J]. Metal Mine, 2020(12): 101−107.
[6] 查显维. 铁矿石阴离子反浮选体系中各药剂浮选特性研究[D]. 马鞍山: 安徽工业大学, 2019.
ZHA X W. Study on flotation characteristics of agents in anion reverse flotationsystem of iron ore[D]. Maanshan: Anhui University of Technology, 2019.
[7] 陈雯. 贫细杂难选铁矿石选矿技术进展[J]. 金属矿山, 2010(5): 55−59.
CHEN W. Technological progress in processing low−grade fine−grained complicated refractory ironores[J]. Metal Mine, 2010(5): 55−59.
[8] 罗溪梅, 马鸣泽, 孙传尧, 等. 铁矿石浮选体系中矿物交互影响的作用形式[J]. 中国矿业大学学报, 2018, 47(3): 645−651.
LUO X M, MA M Z, SUN C Y, et al. Interaction forms among minerals in iron ore flotation system[J]. Journal of China University of Mining & Technology, 2018, 47(3): 645−651.
[9] 陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106.
CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106.
[10] KAPIAMBA K F, KIMPIAB M. The effects of partially replacing amine collectors by a commercial frother in a reverse cationic hematite flotation[J]. Heliyon, 2021(3): 142−164
[11] 刘星, 张晋霞, 徐亮, 等. 金属离子对赤铁矿、石英、绿泥石可浮性的影响[J]. 西部探矿工程, 2016(7): 93−96.
LIU X, ZHANG J X, XU L, et al. Effect of metal Ions on the flotability of hematite, quartz and chlorite[J]. Western Mining Engineering, 2016(7): 93−96.
[12] ZHAO K, GU G, WANG X, et al. The effect of depressant sesbaniagum on the flotation of a talc−containing scheelite ore[J]. Journal of Materials Research and Technology, 2019, 8(1): 14−21. doi: 10.1016/j.jmrt.2018.01.006
[13] 伍喜庆, 王志熙, 岳涛. 铁离子淀粉配合物在某铁矿石反浮选中的抑制行为及机理[J]. 金属矿山, 2017(11): 70−74.
WU X Q, WANG Z X, YUE T, et al. Study on depressing effect and mechanism of ferric−starch complex in reverse flotation of an iron mine[J]. Metal Mine, 2017(11): 70−74.
[14] 李明阳, 廉德, 郝军杰, 等. 水中Ca2+和Mg2+对镜铁矿和绿泥石可浮性的影响机理[J]. 过程工程学报, 2020, 20(8): 959−969.
LI M Y, LIAN D, HAO J J, et al. Effect mechanism of Ca2+ and Mg2+ in water on the floatability of specularite and chlorite[J]. The Chinese Journal of Process Engineering, 2020, 20(8): 959−969.
[15] CHEN J H, AO X Q, XIE Y, et al. Effects of iron ion dissolution and migration from phosphorite on the surface properties of dolomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128618. doi: 10.1016/j.colsurfa.2022.128618
[16] 李明阳, 陈泽, 胡义明, 等. 霓石溶出金属离子对镜铁矿、霓石可浮性的影响[J]. 金属矿山, 2019(4): 53−57.
LI M Y, CHEN Z, HU Y M, et al. Effect of dissolved metal ions from aegirite on the floatability of specularite and aegirite[J]. Metal Mine, 2019(4): 53−57.
[17] ZHU X, LIN Y, HUANG Y, et al. Adsorption of ferric ions on the surface of bastnaesite and its significance in flotation[J]. Minerals Engineering, 2020, 158: 106588. doi: 10.1016/j.mineng.2020.106588
[18] ZHU Y, ZHANG G, FENG Q, et al. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite[J]. Transactions of nonferrous metals society of china, 2011, 21(5): 1149−1154. doi: 10.1016/S1003-6326(11)60835-2
[19] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科技出版社, 1988.
WANG D Z, HU Y H. Chemistry of flotation solutions[M]. Changsha: Hunan Science and Technology Press, 1988.
-