Research on Optimization of Cut−off Grade in Polymetallic Mines Using Imperialist Competitive Algorithm
-
摘要:
边界品位是矿山开采的一个重要决策参数,在多金属矿山开采项目中,确定合理的边界品位是为后续开采获取更大经济效益的基础。针对某矿山采选二阶段生产流程,以最大净现值法为基础,利用综合品位构建了基于帝国竞争算法(ICA)算法的多金属矿山边界品位动态优化模型,实现了该银铅矿最佳边界品位的动态确定。实例应用表明:该模型适用于多金属矿山边界品位的确定。在矿山寿命期间,通过ICA算法所确定的铅金银多金属矿最佳铅边界品位为2.619%,后期下降至1.331%,矿山总净现值为
127457.53 万元;对比Lane法,该模型具有全局搜索能力,对矿山后期边界品位指标的动态优化更具优势,为矿山确定合理的边界品位指标提供了新思路。Abstract:Cut−off grade is an important decision parameter in mining operations. In multi metal mining projects, determining a reasonable cut−off grade is the foundation for obtaining greater economic benefits for subsequent mining. Based on the maximum net present value method, a dynamic optimization model for the comprehensive cut−off grade of a polymetallic mine based on ICA algorithm was constructed for the two−stage production process of mining and selection. The optimal cut−off grade of a certain silver lead mine was dynamically determined. The example application shows that the model is suitable for determining the cut−off grade of polymetallic mines. During the lifespan of the mine, the optimal cut−off grade for a Pb−Au−Ag polymetallic material determined by the ICA algorithm was 2.619%, which later decreased to 1.331%. The total net present value of the mine was
1274.5753 million yuan; Compared with the Lane method, this model has global search ability and is more advantageous in dynamic optimization of cut−off grade indicators in the later stage of mining, providing new ideas for determining reasonable cut−off grade indicators in mines. -
-
表 1 矿床经济参数表
Table 1. Economic parameters of ore deposit
指标 采矿成本/(元·t−1) 选矿成本/(元·t−1) 年固定成本/万元 开采能力/(万t·a−1) 选矿能力/(万t·a−1) 折现率/% 数值 171 72 3816 23 15 15 指标 选矿回收率 精矿品位 价格 Pb/% Ag/% Au/% Pb/% Ag/(g·t−1) Au/(g·t−1) Pb/(元·t−1) Ag/(元·t−1) Au/(元·t−1) 数值 91.32 92.67 92.01 40 2602 29.84 13720 3.33 302.55 表 2 ICA算法结果
Table 2. Results of ICA
年份 边界品位 开采量/t 选矿量/t 精矿量/t 现金流量/元 累计净现值/元 1 0.026187 230000 150000 20488.42 192811070.1 1274415276 2 0.026187 230000 150000 20488.42 192811070.1 1272766498 3 0.026187 230000 150000 20488.42 192811070.2 1270870403 4 0.026187 230000 150000 20488.42 192811070.2 1268689893 5 0.026187 230000 150000 20488.42 192811070.2 1266182307 …… …… …… …… …… …… …… 31 0.026187 230000 150000 20488.42 192811078.3 557616793.2 32 0.026187 230000 150000 20488.42 192811081.4 448448241 33 0.023492 212567.1 150000 19591.26 183483088.2 328757845.9 34 0.016052 174485 150000 17315.01 158765044.3 201402698.9 35 0.01331 89025.88 81774.53 9017.471 81805064.02 40009635.65 -
[1] 冯巧云, 马涛, 邓宇. 普通克里格法在草桃背铀矿床资源量估算中的应用[J]. 金属矿山, 2023(12): 171−176.
FENG Q Y, MA T, DENG Y. Application of ordinary Kriging method in resource estimation of Caotaobei uranium deposit[J]. Metal Mines, 2023(12): 171−176.
[2] 杨占峰, 王晗, 侯晓志. 白云鄂博东矿露天境界外铁矿体开采探讨[J]. 稀土, 2022, 43(3): 1−8.
YANG Z F, WANG H, HOU X Z. Exploration of iron ore body mining outside the open−pit cut−off of Bayan Ebo East Mine[J]. Rare Earth, 2022, 43(3): 1−8
[3] 王青, 顾晓薇, 胥孝川. 边界品位对露天矿最佳境界及总利润的影响[J]. 东北大学学报(自然科学版), 2018, 39(8): 1187−1191. doi: 10.12068/j.issn.1005-3026.2018.08.024
WANG Q, GU X W, XU X C. The influence of cut−off grade on the optimal state and total profit of open−pit mines[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39(8): 1187−1191. doi: 10.12068/j.issn.1005-3026.2018.08.024
[4] 熊涛. 国内某铅锌银矿矿床工业指标制定[J]. 有色冶金设计与研究, 2023, 44(4): 1−5. doi: 10.3969/j.issn.1004-4345.2023.04.001
XIONG T. Industrial indicator formulation for a domestic lead zinc silver deposit[J]. Nonferrous Metallurgical Design and Research, 2023, 44(4): 1−5. doi: 10.3969/j.issn.1004-4345.2023.04.001
[5] 魏进平. 沙溪铜矿矿床工业指标探讨[J]. 世界有色金属, 2022(9): 100−102. doi: 10.3969/j.issn.1002-5065.2022.09.034
WEI J P. Discussion on industrial indicators of Shaxi copper deposit[J]. World Nonferrous Metals, 2022(9): 100−102. doi: 10.3969/j.issn.1002-5065.2022.09.034
[6] 徐静, 吕宏芝, 陈丙强, 等. 四川某铜矿矿床工业指标的探讨[J]. 矿业研究与开发, 2016, 36(10): 140−146.
XU J, LV H Z, CHEN B Q, et al. Discussion on industrial indicators of a copper deposit in Sichuan[J]. Mining Research and Development, 2016, 36(10): 140−146.
[7] LANE K F. The economic definition of ore: Cut−off grades in theory and practice[M]. Mining Journal Books, 1988.
[8] ASAD M W A. Optimum cut−off grade policy for open pit mining operations through net present value algorithm considering metal price and cost escalation[J]. Engineering Computations, 2007, 24(7): 723−736. doi: 10.1108/02644400710817961
[9] GITHIRIA J, MUSINGWINI C. A stochastic cut−off grade optimization model to incorporate uncertainty for improved project value[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2019, 119(3): 217−228.
[10] PAITHANKAR A, CHATTERJEE S, GOODFELLOW R, et al. Simultaneous stochastic optimization of production sequence and dynamic cut−off grades in an open pit mining operation[J]. Resources Policy, 2020, 66: 101634. doi: 10.1016/j.resourpol.2020.101634
[11] BALCI M, KUMRAL M. Impacts of grade distribution and economies of scale on cut−off grade and capacity planning[J]. Mining, Metallurgy & Exploration, 2024: 1−23.
[12] 万贵龙. 综合品位指标在多金属矿勘查中的应用−以广西南丹黑水沟−大树脚矿段锌多金属矿为例[J]. 矿产勘查, 2022, 13(1): 95−99.
WAN G L. Application of comprehensive grade indicators in the exploration of polymetallic mines − taking the zinc polymetallic mine in the Heishuigou Dashujiao section of Nandan, Guangxi as an example[J]. Mineral Exploration, 2022, 13(1): 95−99.
[13] 黄炳香, 赵兴龙, 韩晓克, 等. 煤系共伴生矿产协同开发[J]. 采矿与安全工程学报, 2024, 41(1): 1−14.
HUANG B X, ZHAO X L, HAN X K, et al. Collaborative development of coal bearing co associated minerals[J]. Journal of Mining and Safety Engineering, 2024, 41(1): 1−14.
[14] 李静. 蔡家隈子镍钴多金属矿最低综合工业品位制定方法[J]. 有色矿冶, 2023, 39(5): 62−63+66. doi: 10.3969/j.issn.1007-967X.2023.05.017
LI J. Determination method of the minimum comprehensive industrial grade of the Caijiakuizi Nickel−cobalt polymetallic ore[J]. Nonferrous Metals and Metallurgy, 2023, 39(5): 62−63+66. doi: 10.3969/j.issn.1007-967X.2023.05.017
[15] 高任, 李旭辉, 叶少贞, 等. 综合勘查系统: 一种适合铜−银共生矿床的勘查理论方法[J]. 中国矿业, 2021, 30(2): 25−30.
GAO R, LI X H, YE S Z, et al. Comprehensive exploration system: A theoretical method for exploration of copper silver symbiotic deposits [J]. China Mining, 2021, 30(2): 25−30.
[16] OSANLOO M, ATAEI M. Using equivalent grade factors to find the optimum cut−off grades of multiple metal deposits[J]. Minerals Engineering, 2003, 16(8): 771−776. doi: 10.1016/S0892-6875(03)00163-8
[17] ATAEI M, OSANLOO M. Using a combination of genetic algorithm and the grid search method to determine optimum cutoff grades of multiple metal deposits[J]. International Journal of Surface Mining, Reclamation and Environment, 2004, 18(1): 60−78. doi: 10.1076/ijsm.18.1.60.23543
[18] AHMADI M R, SHAHABI R S. Cutoff grade optimization in open pit mines using genetic algorithm[J]. Resources Policy, 2018, 55: 184−191. doi: 10.1016/j.resourpol.2017.11.016
[19] CETIN E. Assessment of costs in cut−off grades optimization by using grid search method[J]. Gospodarka Surowcami Mineralnymi, 2018, 34(2): 67−80.
[20] CETIN E, DALGIC A. The optimization of cut−off grades by means of memetic algorithms[J]. Gospodarka Surowcami Mineralnymi−Mineral Resources Management, 2022, 38(1): 107−122.
[21] ATASHPAZ−GARGARI E, LUCAS C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition[C]//2007 Ieee congress on evolutionary computation, 2007: 4661−4667.
[22] 李斌, 黄起彬. 面向资源约束项目调度的二阶段帝国竞争算法[J]. 计算机科学与探索, 2023, 17(11): 2620−2639. doi: 10.3778/j.issn.1673-9418.2208055
LI B, HUANG Q B. Two−stage imperial competition algorithm for resource−constrained project scheduling[J]. Computer Science and Exploration, 2023, 17(11): 2620−2639. doi: 10.3778/j.issn.1673-9418.2208055
[23] 王庆丰, 马少飞, 刘强, 等. 基于帝国竞争算法的主动配电网多目标优化研究[J]. 智慧电力, 2018, 46(8): 74−78. doi: 10.3969/j.issn.1673-7598.2018.08.012
WANG Q F, MA S F, LIU Q, et al. Research on multi−objective optimization of active distribution networks based on imperial competition algorithm[J]. Smart Power, 2018, 46(8): 74−78. doi: 10.3969/j.issn.1673-7598.2018.08.012
[24] 全国自然资源与国土空间规划标准化技术委员会. 矿产资源综合利用技术指标及其计算方法: GB/T 42249—2022[S].
[25] ASAD M W A, QURESHI M A, JANG H. A review of cut−off grade policy models for open pit mining operations[J]. Resources Policy, 2016, 49: 142−152. doi: 10.1016/j.resourpol.2016.05.005
[26] 李裕伟. 边界品位确定方法及其在矿产勘查中的应用[J]. 中国国土资源经济, 2022, 35(3): 4−15.
LI Y W. Method for determining cut−off grade and its application in mineral exploration[J]. China Land and Resources Economy, 2022, 35(3): 4−15.
-