聚氯乙烯废塑料对充填体热学性能影响实验研究

李婷婷, 郭进平, 王小林, 刘亚雄, 侯展娜, 吴琼. 聚氯乙烯废塑料对充填体热学性能影响实验研究[J]. 矿产保护与利用, 2025, 45(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2024.08.024
引用本文: 李婷婷, 郭进平, 王小林, 刘亚雄, 侯展娜, 吴琼. 聚氯乙烯废塑料对充填体热学性能影响实验研究[J]. 矿产保护与利用, 2025, 45(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2024.08.024
LI Tingting, GUO Jinping, WANG Xiaolin, LIU Yaxiong, HOU Zhanna, WU Qiong. Effect of Polyvinyl Chloride Waste Plastic on the Thermal Properties of Backfill[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2024.08.024
Citation: LI Tingting, GUO Jinping, WANG Xiaolin, LIU Yaxiong, HOU Zhanna, WU Qiong. Effect of Polyvinyl Chloride Waste Plastic on the Thermal Properties of Backfill[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2024.08.024

聚氯乙烯废塑料对充填体热学性能影响实验研究

  • 基金项目: 陕西省自然科学基金项目(2024JC−YBQN−0507);国家资助博士后研究人员计划项目(GZC20232063);陕西省博士后科研项目(2023BSHYDZZ142)
详细信息
    作者简介: 李婷婷(1996—),女,硕士,从事矿山充填开采理论与技术研究,E-mail:1776813949@qq.com
    通讯作者: 郭进平(1970—),男,副教授,硕士生导师,从事矿山开采、安全与应急研究,E-mail:414075711@qq.com 王小林(1991—),男,讲师,博士,从事膏体充填理论与技术研究,E-mail:18706841567@163.com
  • 中图分类号: TD853.34

Effect of Polyvinyl Chloride Waste Plastic on the Thermal Properties of Backfill

More Information
  • 为缓解深井开采高温热害,探明聚氯乙烯(PVC)充填体的隔热性能,对PVC粉末替代水泥掺量为0~20% 的充填体进行热重、导热系数、比热容测试及其微观形貌特征分析。结果表明:添加PVC粉末能改善充填体的隔热性能;PVC颗粒与充填体结合形成致密均匀的结构,但由于PVC的弱黏结性,过量的PVC粉末会使充填体各成分之间的黏结性丧失,内部孔隙和裂纹增多,降低充填体的抗压强度,且抗压强度随PVC粉末含量添加呈先增大后减小的趋势。在料浆质量浓度78%、灰砂比1∶4和PVC粉末替代水泥掺量为10% 的条件下,充填体性能最佳,此时抗压强度最大,为10.782 MPa,导热系数为0.921 W/(m·K)且降幅最大,比热容则为1.391 kJ/(kg·K)。本文分析了PVC粉末充填体的热学性能,为缓解深井开采热害提供新思路。

  • 加载中
  • 图 1  尾砂粒度分布

    Figure 1. 

    图 2  不同PVC粉末掺量的充填体表观密度

    Figure 2. 

    图 3  不同PVC粉末掺量的充填体质量随温度变化曲线

    Figure 3. 

    图 4  不同PVC粉末掺量的充填体导热系数

    Figure 4. 

    图 5  表观密度和导热系数拟合

    Figure 5. 

    图 6  不同PVC粉末掺量的充填体比热容

    Figure 6. 

    图 7  PVC粉末掺量为15%的充填体的微观形貌

    Figure 7. 

    表 1  PVC粉末物理性质

    Table 1.  Physical properties of PVC powder

    堆积密度/(g·cm−3) 相对黏度/(mL·g−1) 粒径大于250 μm/%
    0.52113.000.80
    粒径小于3 μm/%挥发物含量/%残留单体/(μg·g−1)
    98.800.081.00
    下载: 导出CSV
  • [1]

    CAI M F, LI P, TAN W H, et al. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in China[J]. Engineering, 2021, 7(11): 1513−1517. doi: 10.1016/j.eng.2021.07.010

    [2]

    康君. 废旧塑料回收利用现状及建议对策[J]. 资源再生, 2022(5): 30−33. doi: 10.3969/j.issn.1673-7776.2022.05.011

    KANG J. Status quo of waste plastics recycling and countermeasures[J]. Regeneration, 2022(5): 30−33. doi: 10.3969/j.issn.1673-7776.2022.05.011

    [3]

    陈伟强, 简小枚, 汪鹏, 等. 全球塑料循环体系演化与我国的应对策略[J]. 资源再生, 2020(1): 38−39. doi: 10.3969/j.issn.1673-7776.2020.01.020

    CHEN W Q, JIAN X M, WANG P, et al. The evolution of global plastic cycle system and our countermeasures[J]. Regeneration, 2020(1): 38−39. doi: 10.3969/j.issn.1673-7776.2020.01.020

    [4]

    AHMAD J, ALI M, AHMED B E, et al. A step towards sustainable concrete with substitution of plastic waste in concrete: overview on mechanical, durability and micro structure analysis[J]. Crystals, 2022, 12(7): 944. doi: 10.3390/cryst12070944

    [5]

    EDE A N, GIDEON P O, AKPABOT AI, et al. Review of the properties of lightweight aggregate concrete produced from recycled plastic waste and periwinkle shells[J]. In Key Engineering Materials, 2021(876): 83−87.

    [6]

    KHATIB J M, JAHAMI A, ELKORDI A, et al. Structural assessment of reinforced concrete beams incorporating wasteplastic straws[J]. Environments, 2020, 7(11): 96. doi: 10.3390/environments7110096

    [7]

    FAEZ A S, USMAN F, HAYDER G, et al. Evaluation of some beneficial environmental impacts andenhanced thermal properties resulting from waste plastic integration into concrete[J]. Annales de Chimie. Science des Materiaux, 2023, 47(3): 165−178. doi: 10.18280/acsm.470306

    [8]

    POONYAKAN A, RACHAKORNKIJ M, WECHARATANA M, et al. Potential use of plastic wastes for low thermal conductivity concrete[J]. Materials (Basel, Switzerland), 2018, 11(10).

    [9]

    CERAN Ö B, ŞIMŞEK B, UYGUNOĞLU T, et al. PVC concrete composites: Comparative study with other polymer concrete in terms of mechanical, thermal and electrical properties[J]. The Journal of Material Cycles and Waste Management, 2019, 21(4): 818−828. doi: 10.1007/s10163-019-00846-0

    [10]

    HALIM N F A, TAIB N, AZIZ Z A. The performance of thermal property in concrete containing waste pet (polyethylene terephthalate) as an alternative sustainable building material[J]. In IOP Conference Series: Earth and Environmental Science, 2020, 452(1): 012108. doi: 10.1088/1755-1315/452/1/012108

    [11]

    BAHIJ S, OMARY S, FEUGEAS F, et al. Fresh and hardened properties of concrete containing different forms of plastic waste−A review[J]. Waste Management, 2020(113): 157−175.

    [12]

    BAMIGBOYE G O, TARVERDI K, UMOREN A, et al. Evaluation of eco−friendly concrete having waste PET as fine aggregates[J]. Cleaner Materials, 2021(2): 100026.

    [13]

    ACIU C, ILUTIU−VARVARA D A, MANEA D L, et al. Recycling of plastic waste materials in the composition of ecological mortars[J]. Procedia Manufacturing, 2018(22): 274−279.

    [14]

    RUIZ−HERRERO J L, VELASCO NIETO D, LÓPEZ−GIL A, et al. Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste[J]. Construction and Building Materials, 2016(104): 298−310.

    [15]

    ALI K, SAINGAM P, MUHAMMAD IQ, et al. Influence of recycled plastic incorporation as coarse aggregates on concrete properties[J]. Sustainability, 2023, 15(7): 5937. doi: 10.3390/su15075937

    [16]

    SHARMA N. Influence of PVC waste powder and calcined clay on the properties of concrete[J]. AIP Conference Proceedings, 2023, 2721(1): 020001.

    [17]

    李庆坤. 聚氯乙烯塑料改性胶结充填体力学特性试验研究[D]. 青岛: 青岛科技大学, 2023.

    LI Q K. Experimental study on mechanical properties of polyvinyl chloride modified cemented backfill[D]. Qingdao: Qingdao University of Science and Technology, 2023.

    [18]

    FRIGIONE M. Recycling of PET bottles as fine aggregate in concrete[J]. Waste Management, 2010(30): 1101−1106.

    [19]

    徐敏, 雷俊伟, 高瑞通, 等. 聚氯乙烯热解动力学及热解产物组成研究[J]. 石油学报(石油加工), 2024, 40(2): 462−471.

    XU M, LEI J W, GAO R T, et al. Study on the pyrolysis kinetics and pyrolysis products composition of polyvinyl chloride[J]. Journal of Petroleum (petroleum processing), 2024, 40(2): 462−471.

    [20]

    王晓军, 蒋旭, 王石, 等. 加气混凝土相变充填体强度及热学特性研究[J]. 地下空间与工程学报, 2023, 19(2): 391−399.

    WANG X J, JIANG X, WANG S, et al. Study on strength and thermal properties of aerated concretephase change backfill[J]. Journal of underground space and engineering, 2023, 19(2): 391−399.

    [21]

    SENGUL O, AZIZI S, KARAOSMANOGLU F, et al. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete[J]. Energy and Buildings, 2011(43): 671−676.

    [22]

    ŞIMŞEK B, UYGUNOĞLU T. Multi−response optimization of polymer blended concrete: a TOPSIS based Taguchi application[J]. Construction and Building Materials, 2016(117): 251−26211.

    [23]

    ŞIMŞEK B, UYGUNOĞLU T. A full factorial−based desirability function approach to investigate optimal mixture ratio of polymer concrete[J]. Polymer Composites, 2018, 39(9): 3199−3211. doi: 10.1002/pc.24330

  • 加载中

(7)

(1)

计量
  • 文章访问数:  102
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-06-03
刊出日期:  2025-02-15

目录