-
摘要:
为缓解深井开采高温热害,探明聚氯乙烯(PVC)充填体的隔热性能,对PVC粉末替代水泥掺量为0~20% 的充填体进行热重、导热系数、比热容测试及其微观形貌特征分析。结果表明:添加PVC粉末能改善充填体的隔热性能;PVC颗粒与充填体结合形成致密均匀的结构,但由于PVC的弱黏结性,过量的PVC粉末会使充填体各成分之间的黏结性丧失,内部孔隙和裂纹增多,降低充填体的抗压强度,且抗压强度随PVC粉末含量添加呈先增大后减小的趋势。在料浆质量浓度78%、灰砂比1∶4和PVC粉末替代水泥掺量为10% 的条件下,充填体性能最佳,此时抗压强度最大,为10.782 MPa,导热系数为0.921 W/(m·K)且降幅最大,比热容则为1.391 kJ/(kg·K)。本文分析了PVC粉末充填体的热学性能,为缓解深井开采热害提供新思路。
Abstract:In order to alleviate the heat damage caused by high temperature in deep wells and explore the thermal insulation performance of the polyvinyl chloride (PVC) backfill, thermogravimetry, thermal conductivity, specific heat capacity and micro−morphology of the backfill with 0%~20% PVC powder were measured. The results showed that adding PVC powder can improve the thermal insulation performance of the backfill; PVC particles were combined with the backfill to form a dense and uniform structure. However, due to the weak adhesion of PVC, excessive PVC powder could lead to a loss of adhesion between the components of the backfill, an increase in internal pores and cracks, and a decrease in the compressive strength of the backfill. The compressive strength showed a trend of first increasing and then decreasing with the content of PVC powder. Under the conditions of a slurry mass concentration of 78%, a cement to sand ratio of 1∶4, and a PVC powder replacement cement content of 10%, the backfill had the best performance. At that time, the compressive strength was the highest, at 10.782 MPa, the thermal conductivity was 0.921 W/(m·K), and the decrease was the largest. The specific heat capacity was 1.391 kJ/(kg·K).This article analyzed the thermal properties of PVC powder backfill, providing new ideas for alleviating thermal hazards in deep well mining.
-
-
表 1 PVC粉末物理性质
Table 1. Physical properties of PVC powder
堆积密度/(g·cm−3) 相对黏度/(mL·g−1) 粒径大于250 μm/% 0.52 113.00 0.80 粒径小于3 μm/% 挥发物含量/% 残留单体/(μg·g−1) 98.80 0.08 1.00 -
[1] CAI M F, LI P, TAN W H, et al. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in China[J]. Engineering, 2021, 7(11): 1513−1517. doi: 10.1016/j.eng.2021.07.010
[2] 康君. 废旧塑料回收利用现状及建议对策[J]. 资源再生, 2022(5): 30−33. doi: 10.3969/j.issn.1673-7776.2022.05.011
KANG J. Status quo of waste plastics recycling and countermeasures[J]. Regeneration, 2022(5): 30−33. doi: 10.3969/j.issn.1673-7776.2022.05.011
[3] 陈伟强, 简小枚, 汪鹏, 等. 全球塑料循环体系演化与我国的应对策略[J]. 资源再生, 2020(1): 38−39. doi: 10.3969/j.issn.1673-7776.2020.01.020
CHEN W Q, JIAN X M, WANG P, et al. The evolution of global plastic cycle system and our countermeasures[J]. Regeneration, 2020(1): 38−39. doi: 10.3969/j.issn.1673-7776.2020.01.020
[4] AHMAD J, ALI M, AHMED B E, et al. A step towards sustainable concrete with substitution of plastic waste in concrete: overview on mechanical, durability and micro structure analysis[J]. Crystals, 2022, 12(7): 944. doi: 10.3390/cryst12070944
[5] EDE A N, GIDEON P O, AKPABOT AI, et al. Review of the properties of lightweight aggregate concrete produced from recycled plastic waste and periwinkle shells[J]. In Key Engineering Materials, 2021(876): 83−87.
[6] KHATIB J M, JAHAMI A, ELKORDI A, et al. Structural assessment of reinforced concrete beams incorporating wasteplastic straws[J]. Environments, 2020, 7(11): 96. doi: 10.3390/environments7110096
[7] FAEZ A S, USMAN F, HAYDER G, et al. Evaluation of some beneficial environmental impacts andenhanced thermal properties resulting from waste plastic integration into concrete[J]. Annales de Chimie. Science des Materiaux, 2023, 47(3): 165−178. doi: 10.18280/acsm.470306
[8] POONYAKAN A, RACHAKORNKIJ M, WECHARATANA M, et al. Potential use of plastic wastes for low thermal conductivity concrete[J]. Materials (Basel, Switzerland), 2018, 11(10).
[9] CERAN Ö B, ŞIMŞEK B, UYGUNOĞLU T, et al. PVC concrete composites: Comparative study with other polymer concrete in terms of mechanical, thermal and electrical properties[J]. The Journal of Material Cycles and Waste Management, 2019, 21(4): 818−828. doi: 10.1007/s10163-019-00846-0
[10] HALIM N F A, TAIB N, AZIZ Z A. The performance of thermal property in concrete containing waste pet (polyethylene terephthalate) as an alternative sustainable building material[J]. In IOP Conference Series: Earth and Environmental Science, 2020, 452(1): 012108. doi: 10.1088/1755-1315/452/1/012108
[11] BAHIJ S, OMARY S, FEUGEAS F, et al. Fresh and hardened properties of concrete containing different forms of plastic waste−A review[J]. Waste Management, 2020(113): 157−175.
[12] BAMIGBOYE G O, TARVERDI K, UMOREN A, et al. Evaluation of eco−friendly concrete having waste PET as fine aggregates[J]. Cleaner Materials, 2021(2): 100026.
[13] ACIU C, ILUTIU−VARVARA D A, MANEA D L, et al. Recycling of plastic waste materials in the composition of ecological mortars[J]. Procedia Manufacturing, 2018(22): 274−279.
[14] RUIZ−HERRERO J L, VELASCO NIETO D, LÓPEZ−GIL A, et al. Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste[J]. Construction and Building Materials, 2016(104): 298−310.
[15] ALI K, SAINGAM P, MUHAMMAD IQ, et al. Influence of recycled plastic incorporation as coarse aggregates on concrete properties[J]. Sustainability, 2023, 15(7): 5937. doi: 10.3390/su15075937
[16] SHARMA N. Influence of PVC waste powder and calcined clay on the properties of concrete[J]. AIP Conference Proceedings, 2023, 2721(1): 020001.
[17] 李庆坤. 聚氯乙烯塑料改性胶结充填体力学特性试验研究[D]. 青岛: 青岛科技大学, 2023.
LI Q K. Experimental study on mechanical properties of polyvinyl chloride modified cemented backfill[D]. Qingdao: Qingdao University of Science and Technology, 2023.
[18] FRIGIONE M. Recycling of PET bottles as fine aggregate in concrete[J]. Waste Management, 2010(30): 1101−1106.
[19] 徐敏, 雷俊伟, 高瑞通, 等. 聚氯乙烯热解动力学及热解产物组成研究[J]. 石油学报(石油加工), 2024, 40(2): 462−471.
XU M, LEI J W, GAO R T, et al. Study on the pyrolysis kinetics and pyrolysis products composition of polyvinyl chloride[J]. Journal of Petroleum (petroleum processing), 2024, 40(2): 462−471.
[20] 王晓军, 蒋旭, 王石, 等. 加气混凝土相变充填体强度及热学特性研究[J]. 地下空间与工程学报, 2023, 19(2): 391−399.
WANG X J, JIANG X, WANG S, et al. Study on strength and thermal properties of aerated concretephase change backfill[J]. Journal of underground space and engineering, 2023, 19(2): 391−399.
[21] SENGUL O, AZIZI S, KARAOSMANOGLU F, et al. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete[J]. Energy and Buildings, 2011(43): 671−676.
[22] ŞIMŞEK B, UYGUNOĞLU T. Multi−response optimization of polymer blended concrete: a TOPSIS based Taguchi application[J]. Construction and Building Materials, 2016(117): 251−26211.
[23] ŞIMŞEK B, UYGUNOĞLU T. A full factorial−based desirability function approach to investigate optimal mixture ratio of polymer concrete[J]. Polymer Composites, 2018, 39(9): 3199−3211. doi: 10.1002/pc.24330
-