微晶石墨提纯及深加工产品综述

袁金明, 刘磊. 微晶石墨提纯及深加工产品综述[J]. 矿产保护与利用, 2025, 45(2): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.029
引用本文: 袁金明, 刘磊. 微晶石墨提纯及深加工产品综述[J]. 矿产保护与利用, 2025, 45(2): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.029
YUAN Jinming, LIU Lei. A Review on Microcrystalline Graphite Purification and Deep Processing Product[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.029
Citation: YUAN Jinming, LIU Lei. A Review on Microcrystalline Graphite Purification and Deep Processing Product[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.029

微晶石墨提纯及深加工产品综述

  • 基金项目: 中国地质调查项目(DD20221698);自然资源部高层次科技创新人才工程项目(121106000000180039−2210)
详细信息
    作者简介: 袁金明(2001—),男,硕士研究生,E-mail:jmyuan22101@163.com
    通讯作者: 刘磊(1984—),男,博士,研究员,主要从事战略非金属矿高效利用关键技术研究,E-mail:liulei_9910@163.com
  • 中图分类号: TD975+.2;TD985

A Review on Microcrystalline Graphite Purification and Deep Processing Product

More Information
  • 我国微晶石墨(隐晶质石墨)因为品位高、质量好的优势一直在国际微晶石墨市场中占有重要地位。然而由于长期理论研究和资金投入的欠缺使我国微晶石墨深加工技术在相关领域还存在空白,导致国内大部分石墨矿企业还停留在对微晶石墨原矿直接利用或将原矿初加工成低附加值产品进行出售的阶段。近年来微晶石墨在锂离子电池负极材料和各向同性石墨材料等领域的应用潜力受到越来越多的关注。因而如何保护和科学利用微晶石墨这种宝贵的资源成为当下亟需解决的问题。以石墨的结构、性质及资源分布为起点,回顾了微晶石墨各类提纯方法的原理及特点,概述了各类提纯方法的研究状况。此外,还介绍了微晶石墨在锂离子电池负极材料和各向同性石墨材料应用上的研究,最后指出对微晶石墨的提纯和改性处理是实现微晶石墨深加工制备高附加值产品的关键。

  • 加载中
  • 图 1  六方石墨(a)和菱方石墨(b)晶体结构

    Figure 1. 

    表 1  各类石墨提纯方法优缺点比较[1, 18, 23-25]

    Table 1.  Comparison of the advantages and disadvantages of various graphite purification methods[1, 18, 23-25]

    提纯方法 优点 缺点
    浮选法 能耗和试剂消耗最少,成本最低 石墨精矿品位只能达到一定范围而很难获得高纯度的产品
    高温法 产品质量高,含碳量可达99.995%以上,
    无毒无腐蚀,对环境友好
    须专门设计建造高温炉,设备昂贵,
    一次性投资大,运行成本高
    碱酸法 一次性投资少、产品品位高、工艺适应性强、
    设备常规且通用性强
    需要高温煅烧导致能量消耗大,反应时间长,
    设备腐蚀严重,石墨流失量大,废水污染严重
    氢氟酸法 工艺流程简单、产品品位高、成本相对较低、
    对石墨产品性能影响小
    氢氟酸有剧毒和强腐蚀性,在使用过程中必须采取严格的
    安全保护措施,会产生难处理废水导致环保投入大
    氯化焙烧法 焙烧温度较低使得能量消耗较高温法小;
    具有高的提纯效率和回收率
    氯气具有毒性和腐蚀性导致对设备操作要求高,
    产生难处理废气污染环境
    下载: 导出CSV

    表 2  主要杂质元素的氧化物及对应氯化物的熔沸点[1]

    Table 2.  Melting and boiling points of oxides of major impurity elements and corresponding chlorides[1]

    杂质元素 对应杂质 熔点/℃ 沸点/℃
    Si SiO2 1723 2230
    SiCl4 −70 57.6
    Al Al2O3 2050 2980
    AlCl3 192.6 181.1
    Fe Fe2O3 1565 3414
    FeCl3 306 315
    Ca CaO 2572 2580
    CaCl2 782 1600
    Mg MgO 2800 3600
    MgCl2 712 1412
    下载: 导出CSV
  • [1]

    饶娟, 张盼, 何帅, 等. 天然石墨利用现状及石墨制品综述[J]. 中国科学(技术科学), 2017, 47(1): 13−31. doi: 10.1360/N092015-00380

    RAO J, ZHANG P, HE S, et al. A review on the utilization of natural graphite and graphite−based materials[J]. Sci Sin Tech, 2017, 47(1): 13−31. doi: 10.1360/N092015-00380

    [2]

    沈万慈. 石墨产业的现代化与天然石墨的精细加工[J]. 中国非金属矿工业导刊, 2005(6): 3−7. doi: 10.3969/j.issn.1007-9386.2005.06.001

    SHEN W C. Modernization of the graphite industry and fine processing of natural graphite[J]. China Non−Metallic Minerals Industry, 2005(6): 3−7. doi: 10.3969/j.issn.1007-9386.2005.06.001

    [3]

    尹丽文. 世界石墨资源开发利用现状[J]. 国土资源情报, 2011(6): 29−32+23.

    YIN L W. World graphite resources development and utilization status[J]. Land and Resources Information, 2011(6): 29−32+23.

    [4]

    崔源声, 李辉, 徐德龙. 世界天然石墨生产、消费与国际贸易[J]. 中国非金属矿工业导刊, 2012(4): 48−51. doi: 10.3969/j.issn.1007-9386.2012.04.017

    CUI Y S, LI H, XU D L. Production, consumption and global trade of natural graphite[J]. China Non−Metallic Minerals Industry, 2012(4): 48−51. doi: 10.3969/j.issn.1007-9386.2012.04.017

    [5]

    闫广实. 石墨产业发展现状及对策研究[J]. 学理论, 2013(24): 78−79. doi: 10.3969/j.issn.1002-2589.2013.24.037

    YAN G S. Research on the current situation of graphite industry development and countermeasures[J]. Theory Research, 2013(24): 78−79. doi: 10.3969/j.issn.1002-2589.2013.24.037

    [6]

    康飞宇. 天然石墨的改性与应用[M]. 北京: 清华大学出版社, 2022.

    KANG F Y. Modification and application for natural graphite[M]. Beijing: Tsinghua University Press, 2022.

    [7]

    马芳源. 石墨矿纳米气泡高效浮选及其机理研究[D]. 徐州: 中国矿业大学, 2021.

    MA F Y. Study on high−efficiency nanobubble flotation of graphite ore and its mechanisms[D]. Xuzhou: China University of Mining and Technology, 2021.

    [8]

    LI A, MILLER A. China's amorphous graphite rebounds in Q2[J]. Industrial Minerals, 2013, 550: 17.

    [9]

    李建新, 黄启忠, 曹晖. 天然微晶石墨加工及应用技术现状[J]. 炭素技术, 2021, 40(1): 9−14+8.

    LI J X, HUANG Q Z, CAO H. Processing and application situation of amorphous graphite[J]. Carbon Techniques, 2021, 40(1): 9−14+8.

    [10]

    ROBERTS J. "For microcrystalline or amorphous graphite, supply security is a big concern"[J]. Industrial Minerals, 2012, 534: 1.

    [11]

    吴柏君, 张国范, 欧乐明, 等. 隐晶质石墨浮选的试验研究[J]. 非金属矿, 2015, 38(1): 63−65. doi: 10.3969/j.issn.1000-8098.2015.01.019

    WU B J, ZHANG G F, OU L M, et al. Experimental research on flotation of microcrystalline graphite[J]. Non−Metallic Mines, 2015, 38(1): 63−65. doi: 10.3969/j.issn.1000-8098.2015.01.019

    [12]

    周开洪, 于伟, 丁行标. 隐晶质石墨浮选初步研究[J]. 矿业研究与开发, 2012, 32(4): 58−59+80.

    ZHOU K H, YU W, DING X B. Preliminary study on the flotation of aphanitic graphite[J]. Mining Research and Development, 2012, 32(4): 58−59+80.

    [13]

    KWIECIŃSKA B, PETERSEN H I. Graphite, semi−graphite, natural coke, and natural char classification—ICCP system[J]. International Journal of Coal Geology, 2004, 57(2): 99−116. doi: 10.1016/j.coal.2003.09.003

    [14]

    王宁, 申克, 郑永平, 等. 微晶石墨制备各向同性石墨的研究[J]. 中国非金属矿工业导刊, 2011(2): 11−13+27. doi: 10.3969/j.issn.1007-9386.2011.02.004

    WANG N, SHEN K, ZHENG Y P, et al. Study on preparation of isotropic graphite with natural amorphous graphite[J]. China Non−Metallic Minerals Industry, 2011(2): 11−13+27. doi: 10.3969/j.issn.1007-9386.2011.02.004

    [15]

    ARNOLD F, NYéKI J, SAUNDERS J. Superconducting sweet−spot in microcrystalline graphite revealed by point−contact spectroscopy[J]. JETP Letters, 2018, 107(9): 577−578.

    [16]

    左力艳, 张万益, 李状. 全球石墨资源产业现状分析与我国石墨行业发展建议[J]. 矿产保护与利用, 2019, 39(6): 32−38.

    ZUO L Y, ZHANG W Y, LI Z. Current situation analysis of the global graphite resources industry and suggestions for China's graphite industry development[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 32−38.

    [17]

    李超, 王登红, 赵鸿, 等. 中国石墨矿床成矿规律概要[J]. 矿床地质, 2015, 34(6): 1223−1236.

    LI C, WANG D H, ZHAO H, et al. Minerogenetic regularity of graphite deposits in China[J]. Mineral Deposits, 2015, 34(6): 1223−1236.

    [18]

    唐维, 匡加才, 谢炜, 等. 隐晶质石墨纯化研究进展[J]. 化学工程师, 2012, 26(4): 30−33. doi: 10.3969/j.issn.1002-1124.2012.04.010

    TANG W, KUANG J C, XIE W, et al. Development of the methods of aphanitic graphite purification[J]. Chemical Engineer, 2012, 26(4): 30−33. doi: 10.3969/j.issn.1002-1124.2012.04.010

    [19]

    李顺利. 微晶石墨提纯工艺研究[D]. 长沙: 湖南大学, 2018.

    LI S L. The purification process research of microcrystalline graphite[D]. Changsha: Hu’nan University, 2018.

    [20]

    宋昱晗. 微细鳞片石墨和隐晶质石墨选矿工艺特性差异研究[D]. 武汉: 武汉理工大学, 2014.

    SONG Y H. Study on the difference of beneficiation process characteristic between fine flake graphite and aphanitic graphite[D]. Wuhan: Wuhan University of Technology, 2014.

    [21]

    ZAGHIB K, SONG X, GUERFI A, et al. Purification process of natural graphite as anode for Li−ion batteries: chemical versus thermal[J]. Journal of Power Sources, 2003, 119/120/121: 8−15. doi: 10.1016/S0378-7753(03)00116-2

    [22]

    黄锋, 苏振平, 王三胜. 石墨提纯与石墨基碳材料改性方法研究进展[J/OL]. 矿产综合利用, 1-21[2024-01-10]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231109.1623.012.html.

    HUANG F, SU Z P, WANG S S. Advances in graphite purification and graphite−based carbon material modification methods[J]. Multipurpose Utilization of Mineral Resources: 1−21[2024-01-10]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231109.1623.012.html.

    [23]

    罗立群, 谭旭升, 田金星. 石墨提纯工艺研究进展[J]. 化工进展, 2014, 33(8): 2110−2116. doi: 10.3969/j.issn.1000-6613.2014.08.028

    LUO L Q, TAN X S, TIAN J X. Research progress of graphite purification[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2110−2116. doi: 10.3969/j.issn.1000-6613.2014.08.028

    [24]

    史淇森, 燕溪溪, 乔永民, 等. 微晶石墨提纯工艺研究进展[J]. 当代化工研究, 2023(14): 16−18.

    SHI Q S, YAN X X, QIAO Y M, et al. Research progress of microcrystalline graphite purification process[J]. Modern Chemical Research, 2023(14): 16−18.

    [25]

    张琳, 方建军, 赵敏捷, 等. 隐晶质石墨提纯研究进展[J]. 化工进展, 2017, 36(1): 261−267.

    ZHANG L, FANG J J, ZHAO M J, et al. Development of aphanitic graphite purification[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 261−267.

    [26]

    CHEHREH CHELGANI S, RUDOLPH M, KRATZSCH R, et al. A review of graphite beneficiation techniques[J]. Mineral Processing and Extractive Metallurgy Review, 2015, 37(1): 58−68.

    [27]

    WAKAMATSU T, NUMATA Y. Flotation of graphite[J]. Minerals Engineering, 1991, 4(7): 975−982.

    [28]

    夏云凯, 任子敏, 陈鸿仙, 等. 隐晶质石墨浮选新工艺研究及其工业应用实践[J]. 非金属矿, 1996(3): 26−28.

    XIA Y K, REN Z M, CHEN H X, et al. Research on new flotation process of cryptocrystalline graphite and its industrial application practice[J]. Non−Metallic Mines, 1996(3): 26−28.

    [29]

    陈军, 闵凡飞, 王辉. 微细粒矿物疏水聚团的研究现状及进展[J]. 矿物学报, 2014, 34(2): 181−188.

    CHEN J, MIN F F, WANG H. A review: research status and progress on hydrophobic aggregation of the fine particles mineral[J]. Acta Mineralogica Sinica, 2014, 34(2): 181−188.

    [30]

    WENG X, LI H, SONG S, et al. Reducing the entrainment of gangue fines in low grade microcrystalline graphite ore flotation using multi−stage grinding−flotation process[J]. Minerals, 2017, 7(3): 38−49.

    [31]

    张团团, 彭耀丽, 谢广元, 等. 隐晶质石墨旋流微泡浮选柱与浮选机试验研究[J]. 非金属矿, 2017, 40(1): 7−9+12. doi: 10.3969/j.issn.1000-8098.2017.01.003

    ZHANG T T, PENG Y L, XIE G Y, et al. Experiment of flotation of microcrystalline graphite by cyclonic micro−bubble flotation column and flotator[J]. Non−Metallic Mines, 2017, 40(1): 7−9+12. doi: 10.3969/j.issn.1000-8098.2017.01.003

    [32]

    WANG X X , ZHANG J, MUHAMMAD B, et al. Effects of sec−octanol and terpineol on froth properties and flotation selectivity index for microcrystalline graphite[J]. Minerals, 2023, 13(9): 1231.

    [33]

    丁行标, 于伟, 周开洪. 某隐晶质石墨浮选对比试验研究[J]. 矿山机械, 2011, 39(11): 82−85.

    DING X B, YU W, ZHOU K H. Study on contrastive experiment for flotation of aphanitic graphite[J]. Mining & Processing Equipment, 2011, 39(11): 82−85.

    [34]

    卢文光, 王祖讷. 一种选别隐晶质石墨的新方法[J]. 非金属矿, 1994(1): 17−18.

    LU W G, WANG Z N. A new method for selecting cryptocrystalline graphite[J]. Non−Metallic Mines, 1994(1): 17−18.

    [35]

    CHAO N, ZHANG Q S, JIN M G, et al. Effect of high−speed shear flocculation on the flotation kinetics of ultrafine microcrystalline graphite[J]. Powder Technology, 2021, 396: 345−353.

    [36]

    LIANG L, ZHANG T, PENG Y, et al. Inhibiting heterocoagulation between microcrystalline graphite and quartz by pH modification and sodium hexametaphosphate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 149−154.

    [37]

    QIU Y, MAO Z, SUN K, et al. Cost−efficient clean flotation of amorphous graphite using water−in−oil kerosene emulsion as a novel collector[J]. Advanced Powder Technology, 2022, 33(11): 103770.

    [38]

    王承二, 彭伟军, 胡宇, 等. 乳化煤油粒度对隐晶质石墨浮选效果的影响[J]. 非金属矿, 2015, 38(5): 48−49+53. doi: 10.3969/j.issn.1000-8098.2015.05.015

    WANG C E, PENG W J, HU Y, et al. Effect of the granularity of the emulsified kerosene on the flotation of amorphous graphite[J]. Non−Metallic Mines, 2015, 38(5): 48−49+53. doi: 10.3969/j.issn.1000-8098.2015.05.015

    [39]

    PENG W, WANG C, HU Y, et al. Effect of droplet size of the emulsified kerosene on the floatation of amorphous graphite[J]. Journal of Dispersion Science and Technology, 2016, 38(6): 889−894.

    [40]

    GAO J, BU X, ZHOU S, et al. Graphite flotation by β−cyclodextrin/kerosene pickering emulsion as a novel collector[J]. Minerals Engineering, 2022, 178: 107412.

    [41]

    卜祥宁, 高继轩, 倪超, 等. β−环糊精/煤油皮克林乳液改善隐晶质石墨浮选效果的机理[J]. 煤炭学报, 2023, 48(S1): 288−295.

    BU X N, GAO J X, NI C, et al. Mechanism of β−cyclodextrin/kerosene pickering lotion for improving the flotation effect of aphanitic graphite[J]. Journal of China Coal Society, 2023, 48(S1): 288−295.

    [42]

    WANG X, BU X, ALHESHIBRI M, et al. Effect of scrubbing medium’s particle size distribution and scrubbing time on scrubbing flotation performance and entrainment of microcrystalline graphite[J]. International Journal of Coal Preparation and Utilization, 2021, 42(10): 3032−3053.

    [43]

    WANG X, BU X, NI C, et al. Effect of scrubbing medium’s particle size on scrubbing flotation performance and mineralogical characteristics of microcrystalline graphite[J]. Minerals Engineering, 2021, 163: 106766.

    [44]

    梁刚, 赵国刚, 王振廷. 感应加热制取高纯石墨研究[J]. 炭素技术, 2013, 32(4): 44−46.

    LIANG G, ZHAO G G, WANG Z T. The investigation of high purity graphite by induction heating[J]. Carbon Techniques, 2013, 32(4): 44−46.

    [45]

    WANG H, FENG Q, LIU K, et al. A novel technique for microcrystalline graphite beneficiation based on alkali−acid leaching process[J]. Separation Science and Technology, 2017, 53(6): 982−989.

    [46]

    陈浩, 冯雅丽, 马英, 等. 微晶石墨高温焙烧制备高纯石墨研究[J]. 炭素技术, 2017, 36(6): 60−64.

    CHEN H, FENG Y L, MA Y, et al. Research on preparation of high purity graphite from amorphous graphite by high temperature[J]. Carbon Techniques, 2017, 36(6): 60−64.

    [47]

    WANG H, FENG Q, TANG X, et al. Preparation of high−purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre−treatment and acid leaching process[J]. Separation Science and Technology, 2016, 51(14): 2465−2472. doi: 10.1080/01496395.2016.1206933

    [48]

    CHEN Q, LI Y. Study on purification and modification processing technology of microcrystalline graphite[J]. IOP Conference Series: Earth and Environmental Science, 2021, 859: 012040.

    [49]

    姜芳, 宾晓蓓, 涂秉峰, 等. 盐酸−氢氟酸法纯化制备微晶石墨研究[J]. 炭素技术, 2014, 33(5): 23−25.

    JIANG F, BIN X B, TU B F, et al. Hydrochloric acid−hydrofluoric acid purification method for the preparation of microcrystalline graphite[J]. Carbon Techniques, 2014, 33(5): 23−25.

    [50]

    洪泉, 何月德, 刘洪波, 等. 纯化处理对天然微晶石墨电化学性能影响的研究[J]. 非金属矿, 2010, 33(3): 45−48+51. doi: 10.3969/j.issn.1000-8098.2010.03.015

    HONG Q, HE Y D, LIU H B, et al. Investigations on electrochemical performances of purified natural microcrystalline graphite[J]. Non−Metallic Mines, 2010, 33(3): 45−48+51. doi: 10.3969/j.issn.1000-8098.2010.03.015

    [51]

    段佳琪, 孙红娟, 彭同江. 超声−混酸法提纯微晶石墨[J]. 非金属矿, 2017, 40(1): 58−61. doi: 10.3969/j.issn.1000-8098.2017.01.018

    DUAN J Q, SUN H J, PENG T J. Purification of microcrystalline graphite by ultrasonic treatment and mixed acid[J]. Non−Metallic Mines, 2017, 40(1): 58−61. doi: 10.3969/j.issn.1000-8098.2017.01.018

    [52]

    匡加才, 徐华, 谢炜, 等. 氟化铵−盐酸法提纯隐晶质石墨工艺研究[J]. 材料导报, 2013, 27(10): 9−12. doi: 10.3969/j.issn.1005-023X.2013.10.003

    KUANG J C, XU H, XIE W, et al. Investigation of purification technology for aphanitic graphite by ammonium fluoride and hydrochloric acid[J]. Materials Reports, 2013, 27(10): 9−12. doi: 10.3969/j.issn.1005-023X.2013.10.003

    [53]

    XIE W, WANG Z, KUANG J, et al. Fixed carbon content and reaction mechanism of natural microcrystalline graphite purified by hydrochloric acid and sodium fluoride[J]. International Journal of Mineral Processing, 2016, 155: 45−54. doi: 10.1016/j.minpro.2016.08.002

    [54]

    葛鹏, 王化军, 解琳, 等. 石墨提纯方法进展[J]. 金属矿山, 2010(10): 38−43.

    GE P, WANG H J, XIE L, et al. Progress of the methods of graphite purification[J]. Metal Mine, 2010(10): 38−43.

    [55]

    夏云凯. 氯化焙烧法提纯天然鳞片石墨工艺研究[J]. 非金属矿, 1993(5): 21−24.

    XIA Y K. Study on the purification process of natural flake graphite by chlorination roasting method[J]. Non−Metallic Mines, 1993(5): 21−24.

    [56]

    童曦, 伍江涛, 范德波. 隐晶质石墨的性能特点及其应用研究进展[J]. 中国非金属矿工业导刊, 2015(5): 1−4. doi: 10.3969/j.issn.1007-9386.2015.05.001

    TONG X, WU J T, FAN D B. Characteristics and application research progress of cryptocrystalline graphite[J]. China Non−Metallic Minerals Industry, 2015(5): 1−4. doi: 10.3969/j.issn.1007-9386.2015.05.001

    [57]

    刘磊, 孙华星, 郭理想, 等. 坦桑尼亚某晶质石墨大鳞片保护工艺研究[J]. 矿产保护与利用, 2023, 43(3): 96−104.

    LIU L, SUN H X, GUO L X, et al. Study on the protection process of a crystalline graphite macroscale in Tanzania[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 96−104.

    [58]

    孙华星, 赵恒勤, 刘磊. 晶质石墨碎磨中鳞片保护的研究进展[J]. 矿产保护与利用, 2021, 41(6): 20−26.

    SUN H X, ZHAO H Q, LIU L. Advanced in the protection of crystalline graphite flake during grinding[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 20−26.

    [59]

    杨森, 杨绍斌, 董伟, 等. 天然微晶石墨提纯工艺及可逆储锂性能[J]. 硅酸盐通报, 2019, 38(4): 1148−1154.

    YANG S, YANG S B, DONG W, et al. Purification process and reversible lithium storage performance of natural microcrystalline graphite[J]. Bulletin of The Chinese Ceramic Society, 2019, 38(4): 1148−1154.

    [60]

    WANG J, HUANG J, YAN R, et al. Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage†[J]. Journal of Materials Chemistry A, 2014, 3(6): 3144−3150.

    [61]

    XIAN H, PENG T, SUN H, WANG J. Preparation of graphene nanosheets from microcrystalline graphite by low−temperature exfoliated method and their supercapacitive behavior[J]. Journal of Materials Science, 2015, 50(11): 4025−4033.

    [62]

    LIN S F, LIU F X, CHEN G H. Effective production of nano−sized graphene via straight−forward exfoliation of microcrystalline graphite[J]. RSC Advances, 2014, 4(86): 45885−45889.

    [63]

    XIAN H, PENG T, SUN H, et al. Preparation, characterization and supercapacitive performance of graphene nanosheets from microcrystalline graphite[J]. Journal of Materials Science: Materials in Electronics, 2014, 26(1): 242−249.

    [64]

    HUANG L, LI H, WANG X, et al. High−efficiency, self−grinding exfoliation of small graphene nanosheets from microcrystalline graphite driven by microbead milling as conductive additives[J]. Science China Materials, 2022, 65(9): 2463−2471. doi: 10.1007/s40843-021-2015-8

    [65]

    XIE W, ZHU X, XU S, et al. Cost−effective fabrication of graphene−like nanosheets from natural microcrystalline graphite minerals by liquid oxidation–reduction method[J]. RSC Advances, 2017, 7(51): 32008−32019.

    [66]

    沈万慈, 康飞宇, 黄正宏, 等. 石墨产业的现状与发展[J]. 中国非金属矿工业导刊, 2013(2): 1−3+43. doi: 10.3969/j.issn.1007-9386.2013.02.001

    SHEN W C, KANG F Y, HUANG Z H, et al. Current situation and development of Chinese graphite industry[J]. China Non−Metallic Minerals Industry, 2013(2): 1−3+43. doi: 10.3969/j.issn.1007-9386.2013.02.001

    [67]

    赵建民. 石墨深加工技术概况及应用[J]. 科学技术创新, 2018(20): 185−186. doi: 10.3969/j.issn.1673-1328.2018.20.115

    ZHAO J M. Graphite deep processing technology overview and application[J]. Science and technology innovation, 2018(20): 185−186. doi: 10.3969/j.issn.1673-1328.2018.20.115

    [68]

    ZOU L, KANG F, LI X, et al. Investigations on the modified natural graphite as anode materials in lithium ion battery[J]. Journal of Physics and Chemistry of Solids, 2008, 69(5/6): 1265−1271. doi: 10.1016/j.jpcs.2007.10.096

    [69]

    李宽. 天然微晶石墨的浸润性及制备各向同性石墨的研究[D]. 北京: 清华大学, 2016.

    LI K. Wettability of natural microcrystalline graphite and its application in isotropic graphite preparation[D]. Beijing: Tsinghua University, 2016.

    [70]

    YANG S, ZHANG S, DONG W, et al. Purification mechanism of microcrystalline graphite and lithium storage properties of purified graphite[J]. Materials Research Express, 2022, 9(2): 025505.

    [71]

    ENDO T, YAMADA H, SUMOMOGI T, et al. Atomic−resolution images of structural defects on microcrystalline graphite[J]. Ultramicroscopy, 1992, 42/43/44: 674−678.

    [72]

    LIU B, HUANG P, LIU M, et al. Utilization of impurities and carbon defects in natural microcrystalline graphite to prepare silicon−graphite composite anode for high−performance lithium−ion batteries[J]. Journal of Materials Science, 2021, 56(31): 17682−17693.

    [73]

    HUANG P, LIU B, ZHANG J, et al. Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium−ion batteries[J]. Ionics, 2021, 27: 1957−1966.

    [74]

    WANG C, GAI G, YANG Y. Shape modification and size classification of microcrystalline graphite powder as anode material for lithium−ion batteries[J]. JOM, 2018, 70(8): 1392−1397.

    [75]

    WANG X, GAI G S, YANG Y F, et al. Preparation of natural microcrystalline graphite with high sphericity and narrow size distribution[J]. Powder Technology, 2008, 181(1): 51−56.

    [76]

    何明, 盖国胜, 刘旋, 等. 制粉工艺对微晶石墨结构与电性能的影响[J]. 电池, 2002(4): 197−200. doi: 10.3969/j.issn.1001-1579.2002.04.003

    HE M, GAI G S, LIU X, et al. Effect of milling means on structure and electrochemical properties of natural graphite[J]. Battery Bimonthly, 2002(4): 197−200. doi: 10.3969/j.issn.1001-1579.2002.04.003

    [77]

    肖海河, 刘洪波, 何月德, 等. 沥青炭包覆微晶石墨用作锂离子电池负极材料的研究[J]. 功能材料, 2013, 44(19): 2759−2763. doi: 10.3969/j.issn.1001-9731.2013.19.004

    XIAO H H, LIU H B, HE Y D, et al. Study on coal−tar pitch carbon coated microcrystalline graphite used as lithium ion batteries anode[J]. Journal of Functional Materials, 2013, 44(19): 2759−2763. doi: 10.3969/j.issn.1001-9731.2013.19.004

    [78]

    何明, 刘旋, 陈湘彪, 等. 树脂碳包覆微晶石墨的制备及其电化学性能[J]. 电池, 2003(5): 281−284. doi: 10.3969/j.issn.1001-1579.2003.05.005

    HE M, LIU X, CHEN X B, et al. Preparation and electrochemical properties of resin carbon−coated graphite[J]. Battery Bimonthly, 2003(5): 281−284. doi: 10.3969/j.issn.1001-1579.2003.05.005

    [79]

    何月德, 刘洪波, 洪泉, 等. 酚醛树脂炭包覆对天然微晶石墨电化学性能的影响[J]. 功能材料, 2013, 44(16): 2397−2400+2405. doi: 10.3969/j.issn.1001-9731.2013.16.024

    HE Y D, LIU H B, HONG Q, et al. Investigation on pyrolitic carbon−coated microcrystalline graphite as anode material for Li−ion batteries[J]. Journal of Functional Materials, 2013, 44(16): 2397−2400+2405. doi: 10.3969/j.issn.1001-9731.2013.16.024

    [80]

    何月德, 刘洪波, 石磊, 等. 改性球形微晶石墨用作锂离子电池负极材料的研究[J]. 湖南大学学报(自然科学版), 2009, 36(11): 44−46+61.

    HE Y D, LIU H B, SHI L, et al. Study on modified spherical microcrystalline graphite as anode material for Li−ion batteries[J]. Journal of Hunan Universuty (Natural Sciences), 2009, 36(11): 44−46+61.

    [81]

    MA Y, ZHENG Y, XU M, et al. One−step binding and wrapping fragmented natural microcrystalline graphite via phenolic resin into secondary particles for high−performance lithium−ion battery anode[J]. JOM, 2023, 75(12): 5321−5330.

    [82]

    SUN Y, HAN F, ZHANG C, et al. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium−ion batteries[J]. Energy Technology, 2019, 7(4).

    [83]

    黄四信, 何永康, 马历乔. 等静压石墨的生产工艺、主要用途和国内市场分析[J]. 炭素技术, 2010, 29(5): 32−37. doi: 10.3969/j.issn.1001-3741.2010.05.007

    HUANG S X, HE Y K, MA L Q. Production, applications and domestic market analysis for isostatically pressed graphites[J]. Carbon Techniques, 2010, 29(5): 32−37. doi: 10.3969/j.issn.1001-3741.2010.05.007

    [84]

    王宁. 用天然微晶石墨制备各向同性石墨的研究[D]. 北京: 清华大学, 2011.

    WANG N. Study on preparation of isotropic graphite with nature amorphous graphite[D]. Beijing: Tsinghua University, 2011.

    [85]

    SHEN K, HUANG Z H, HU K, et al. Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation[J]. Carbon, 2015, 90: 197−206. doi: 10.1016/j.carbon.2015.03.068

    [86]

    SHEN K, CAO X, HUANG Z H, et al. Microstructure and thermal expansion behavior of natural microcrystalline graphite[J]. Carbon, 2021, 177: 90−96.

    [87]

    HE Z, SONG J, WANG Z, et al. Comparison of ultrafine−grain isotropic graphite prepared from microcrystalline graphite and pitch coke[J]. Fuel, 2021, 290: 120055.

  • 加载中

(1)

(2)

计量
  • 文章访问数:  31
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2024-09-19
刊出日期:  2025-04-15

目录