三轴荷载下深部裂隙砂岩力学行为及损伤特性分析

胡华瑞, 刘仕威, 汪文德, 王浩明, 张洋凯. 三轴荷载下深部裂隙砂岩力学行为及损伤特性分析[J]. 矿产保护与利用, 2025, 45(2): 14-21. doi: 10.13779/j.cnki.issn1001-0076.2025.02.002
引用本文: 胡华瑞, 刘仕威, 汪文德, 王浩明, 张洋凯. 三轴荷载下深部裂隙砂岩力学行为及损伤特性分析[J]. 矿产保护与利用, 2025, 45(2): 14-21. doi: 10.13779/j.cnki.issn1001-0076.2025.02.002
HU Huarui, LIU Shiwei, WANG Wende, WANG Haoming, ZHANG Yangkai. Analysis of Mechanical Behavior and Damage Characteristics of Fractured Sandstone under Triaxial Stress Load[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 14-21. doi: 10.13779/j.cnki.issn1001-0076.2025.02.002
Citation: HU Huarui, LIU Shiwei, WANG Wende, WANG Haoming, ZHANG Yangkai. Analysis of Mechanical Behavior and Damage Characteristics of Fractured Sandstone under Triaxial Stress Load[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 14-21. doi: 10.13779/j.cnki.issn1001-0076.2025.02.002

三轴荷载下深部裂隙砂岩力学行为及损伤特性分析

  • 基金项目: 国家资助博士后研究人员计划项目(GZB20230451);中国博士后科学基金资助项目(2024T170578);中铁隧道集团科技创新计划项目(隧研合2024-06);中国中铁科研开发计划项目(2025-重大-16)
详细信息
    作者简介: 胡华瑞(1991—),男,湖北天门人,博士,助理研究员,主要从事深部岩石扰动力学方面研究工作,E-mail:hhrui1004@163.com
  • 中图分类号: TD313

Analysis of Mechanical Behavior and Damage Characteristics of Fractured Sandstone under Triaxial Stress Load

  • 深部岩石损伤破坏特征与浅部具有显著差异,探究深部复杂应力环境下裂隙砂岩力学规律有助于深部工程安全实施。以含不同角度裂缝砂岩试样为研究对象,开展了三轴压缩力学实验,分析了裂隙砂岩基础力学性质演化规律,借助能量耗散理论探明了裂隙对试样力学性质的影响规律。研究结果表明:含不同裂缝角度砂岩轴向应力应变演化规律均呈倒“V”形先增大后减小规律变化;径向应力应变曲线呈先增大后缓慢减小规律变化,峰后阶表现出类似屈服平台特征;试样破坏时轴向变形程度较径向变形大,且总体上两者随着裂缝角度增大而增大。随着裂缝角度的增大,试样峰值强度和弹性模量均线性增大,但增加幅度先减小后增大,随着角度从0°到30°、45°、60°和90°依次增大,相邻试样强度后者较前者较依次增加8.58%、3.16%、1.34%和15.12%,弹性模量依次增加5.46%、0.07%、3.13%和3.74%。不同试样吸收总能量、弹性能和耗散能变化规律基本一致,总能量和弹性能较耗散能增长快,试样破坏前耗散能快速增大;定义了储能系数和耗能系数,随着试样角度从0°到30°、45°、60°和90°依次增大,储能系数从0.615依次增至0.618、0.642、0.662、0.712,耗能系数从0.159依次减小至0.153、0.142、0.139、0.127,证明试样强度越大,储能系数越大,耗能系数越小,试样抵抗变形的能力越强。

  • 加载中
  • 图 1  实验系统

    Figure 1. 

    图 2  试样和加载路径

    Figure 2. 

    图 3  试样能量计算

    Figure 3. 

    图 4  应力应变曲线变化规律

    Figure 4. 

    图 5  试样强度变化规律

    Figure 5. 

    图 6  试样弹性模量变化规律

    Figure 6. 

    图 7  不同种类能量演化

    Figure 7. 

    图 8  含不同角度裂缝试样弹性能与总能量关系

    Figure 8. 

    图 9  不同类型能量与裂缝角度关系

    Figure 9. 

    表 1  设备参数

    Table 1.  Equipment parameters

    名称参数名称参数
    轴压3000 kN围压≤210 MPa
    轴向/侧向变形± 6 mm测试精度0.5%
    下载: 导出CSV

    表 2  不同试样破坏时变形量

    Table 2.  Deformation of different samples during failure

    裂缝角度/(°) 轴向应变ε1 /% 径向应变ε3 /% 轴向最大变形/mm
    0 0. 373 −0.186 0.00373
    30 0. 384 −0.191 0.00384
    45 0.422 −0.217 0.00422
    60 0.583 −0.320 0.00633
    90 0.546 −0.281 0.00864
    下载: 导出CSV
  • [1]

    谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283−1305.

    XIE H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283−1305.

    [2]

    夏开文, 姚伟, 付岩, 等. 深部岩石动力学SHPB实验研究进展[J]. 工程爆破, 2024, 30(5): 29−44.

    XIA K W, YAO W, FU Y, et al. Advances on dynamic behaviors of deep rocks using SHPB[J]. Engineering Blasting, 2024, 30(5): 29−44.

    [3]

    何满潮, 武毅艺, 高玉兵, 等. 深部采矿岩石力学进展[J]. 煤炭学报, 2024, 49(1): 75−99.

    HE M C, WU Y Y, GAO Y B, et al. Research progress of rock mechanics in deep mining[J]. Journal of China Coal Society, 2024, 49(1): 75−99.

    [4]

    李占金, 刘紫琼, 李群, 等. 高应力条件下深部巷道受循环扰动诱发岩爆特征试验研究[J]. 矿业研究与开发, 2025, 45(1): 1−8.

    LI Z J, LIU Z Q, LI Q, et al. Experimental study on rock burst characteristics induced by cyclic disturbance in deep tunnels under high−stress conditions[J]. Minging Research and Development, 2025, 45(1): 1−8.

    [5]

    卢宏建, 梁鹏, 顾乃满, 等. 多次开挖扰动下采空区围岩应力演化数值模拟[J]. 矿产保护与利用, 2016(6): 17−20.

    LU H J, LIANG P, GU N M, et al. Stress evolution numerical simulation of goaf surrounding rock under repetitious excavation disturbance[J]. Conservation and Utilization of Mineral Resources, 2016(6): 17−20.

    [6]

    谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161−2178.

    XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161−2178.

    [7]

    张良, 王来贵, REN T, 等. 强扰煤岩体蠕变过程中跨尺度非连续结构演化研究进展[J]. 煤田地质与勘探, 2024, 52(10): 47−59.

    ZHANG L, WANG L G, REN T, et al. Advances in research on the evolution of trans−scale discontinuous structures during the creeps of strongly disturbed coals[J]. Coal Geology & Exploration, 2024, 52(10): 47−59.

    [8]

    刘造保, 王川, 周宏源, 等. 岩石高温高压两刚一柔型真三轴时效力学试验系统研制与应用[J]. 岩石力学与工程学报, 2021, 40(12): 2477−2486.

    LIU Z B, WANG C, ZHOU H Y, et al. A true triaxial time−dependent test system with two rigid and one flexible loading frame for rock under real−time high temperature and high pressure and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2477−2486.

    [9]

    谢和平, 高明忠, 付成行, 等. 深部不同深度岩石脆延转化力学行为研究[J]. 煤炭学报, 2021, 46(3): 701−715.

    XIE H P, GAO M Z, FU C H, et al. Mechanical behavior of brittle−ductile transition in rocks at different depths[J]. Journal of China Coal Society, 2021, 46(3): 701−715.

    [10]

    谢和平, 张茹, 张泽天, 等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报, 2023, 48(11): 3959−3978.

    XIE H P, ZHANG R, ZHANG Z T, et al. Reflections and explorations on deep earth science and deep earth engineering technology[J]. Journal of China Coal Society, 2023, 48(11): 3959−3978.

    [11]

    张茹, 张安林, 谢和平, 等. 不同赋存深度岩石力学行为差异及本构模型研究[J]. 中国科学基金, 2022, 36(6): 1008−1015.

    ZHANG R, ZHANG A L, XIE H P, et al. Mechanical behavior differences and constitutive model of rock at different depths[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 1008−1015.

    [12]

    郑可跃, 施成华, 娄义黎, 等. 深部高地应力隧道开挖卸荷围岩能量计算方法及演化机制[J]. 岩土力学, 2025, 46(1): 165−177.

    ZHENG K Y, SHI C H, LOU Y L, et al. Calculation method and evolution mechanism of surrounding rock energy during excavation unloading of deep tunnels in high in−situ stress field[J]. Rock and Soil Mechanics, 2025, 46(1): 165−177.

    [13]

    云丽, 张志龙, 刘洋, 等. 深部高应力下花岗岩力学损伤的孔隙水压影响[J]. 实验室研究与探索, 2025, 44(1): 158−163.

    YUN L, ZHANG Z L, LIU Y, et al. Effect of pore water pressure on mechanical damage of granite under deep high stress[J]. Research and Exploration in Laboratory, 2025, 44(1): 158−163.

    [14]

    陶明, 吴星宇, 赵瑞, 等. 岩体应力梯度力学特性研究进展与展望[J]. 中南大学学报(自然科学版), 2024, 55(12): 4473−4492.

    TAO M, WU X Y, ZHAO R, et al. Advancements and future prospects of mechanical characteristics of rock stress gradients[J]. Journal of Central South University (Science and Technology), 2024, 55(12): 4473−4492.

    [15]

    罗勇, 宫凤强. 深部硬岩巷道围岩板裂破坏试验研究进展与展望[J]. 煤炭科学技术, 2022, 50(6): 46−60.

    LUO Y, GONG F Q. Research progress and prospect of laboratory test of rock spalling in deep hard rock roadway[J]. Coal Science and Technology, 2022, 50(6): 46−60.

    [16]

    张广超, 周泽森, 周广磊, 等. 基于亚临界裂纹扩展的岩石蠕变-冲击变形破裂特征研究[J/OL]. 煤炭学报, 1-16[2025-01-26]. https://doi.org/10.13225/j.cnki.jccs.2024.1357.

    ZHANG G C, ZHOU Z S, ZHOU G L, et. al. Deformation and fracture characteristics of rock under creep−impact loading based on subcritical crack growth [J/OL]. Journal of China Coal Society, 1-16[2025-01-26]. https://doi.org/10.13225/j.cnki.jccs.2024.1357.

    [17]

    邵陆航, 康志强, 辛东夫, 等. 深部片麻岩破坏全过程声发射时频域信号特征及前兆预警研究[J]. 河南理工大学学报(自然科学版), 2021, 40(2): 15−21.

    SHAO L H, KANG Z Q, XIN D F, et al. Study on the time frequency domain signal characteristics and precursor early warning of acoustic emission in deep gneiss failure[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(2): 15−21.

    [18]

    王苏生, 杨圣奇, 田文岭, 等. 预制裂隙岩石裂纹扩展相场模拟方法研究[J]. 岩石力学与工程学报, 2023, 42(2): 365−377.

    WANG S S, YANG S Q, TIAN W L, et al. Research on phase−field simulation method of crack propagation of rock with pre−existing fissures[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 365−377.

    [19]

    YU X J, YANG Y P, LI X F, et al. Cracking formation and evolution in surrounding rock of a deep fractured rock mass roadway: A study of the 790 m level segment engineering at the Jinchuan Mine, China[J]. Engineering Geology, 2024, 331: 107431.

    [20]

    GUO Y J, XIONG Z M, LI Z H, et al. Damage behavior study of specimens with double−prefabricated cracks under dynamic−static coupling loads[J]. Buildings, 2023, 13(11): 2793. doi: 10.3390/buildings13112793

    [21]

    HU H R, XIA B W, LUO Y F, et al. Effect of crack angle and length on mechanical and ultrasonic properties for the single cracked sandstone under triaxial stress loading−unloading[J]. Frontiers in Earth Science, 2022, 10: 900238. doi: 10.3389/feart.2022.900238

    [22]

    HU H R, LU Y Y, XIA B W, et al. Damage characteristics of sandstone with different crack angles subjected to true triaxial cyclic loading and unloading[J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103444. doi: 10.1016/j.tafmec.2022.103444

    [23]

    李艳, 杨宇冰, 梁文彪, 等. 围压对花岗岩强度特性与脆性的影响及其表征[J]. 地下空间与工程学报, 2024, 20(5): 1528−1540.

    LI Y, YANG Y B, LIANG W B, et al. Influence of confining pressure on strength characteristics and brittleness of granite and its characterization[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(5): 1528−1540.

    [24]

    何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005(16): 2803−2813.

    HE M C, XIE H P, PENG S P, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(16): 2803−2813.

    [25]

    李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846−866.

    LI X B, GONG F Q. Research progress and prospect of deep mining rock mechanics based on coupled static−dynamic loading testing[J]. Journal of China Coal Society, 2021, 46(3): 846−866.

    [26]

    韩震宇, 李地元, 朱泉企, 等. 含端部裂隙大理岩单轴压缩破坏及能量耗散特性[J]. 工程科学学报, 2020, 42(12): 1588−1596.

    HAN Z Y, LI D Y, ZHU Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface[J]. Chinese Journal of Engineering, 2020, 42(12): 1588−1596.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  39
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2025-02-15
刊出日期:  2025-04-15

目录