Fracture Propagation Law and Controlling Factors of Hydraulic Fracturing Based on Micro Seismic Monitoring
-
摘要:
水力压裂是弱化煤层坚硬顶板,解决井下强矿压、大面积悬顶等动力灾害的关键技术。准确掌握水力压裂过程中坚硬顶板裂隙扩展规律,对于压裂精准施工和效果评价具有重要意义。以渭北某矿井水力压裂工程为背景,采用微震监测技术监测顶板压裂过程中裂隙扩展过程,揭示顶板裂隙扩展规律,评价顶板水力压裂效果并探讨其控制因素。微震监测结果表明:4203工作面坚硬顶板水力压裂过程中顶板裂隙随压裂不断向两侧动态扩展,运输巷道侧裂隙扩展范围为26~33 m,辅运巷道侧扩展范围30~42 m。卸压钻孔监测数据显示辅运巷道侧裂隙扩展范围较大,达到42 m,与微震监测结果基本一致,说明裂隙已经扩展至卸压孔孔底位置,水力压裂效果较好。水力压裂过程中压裂裂隙的扩展范围与压力和压裂时长呈正相关关系,且压裂裂隙的扩展范围同时受到周边采空区的影响。研究成果为精准评价工作面坚硬顶板水力压裂效果提供了科学依据,为微震监测技术在煤矿领域的深入应用奠定基础。
Abstract:Hydraulic fracturing was the key technology to weaken the hard roof of coal seam and solve the dynamic disasters such as strong underground pressure and large area hanging roof. Accurately understanding the propagation law of hard roof fractures during hydraulic fracturing is of great significance for precise fracturing construction and effect evaluation. Taking the hydraulic fracturing project of a mine in northern Shaanxi as the object, the microseismic monitoring technology was used to monitor the process of fracture expansion in the process of roof fracturing, reveal the law of roof fracture propagation law, evaluate the effect of roof hydraulic fracturing and discuss its influencing factors. The microseismic monitoring results indicate that in the process of hydraulic fracturing of the hard roof of the 4203 working face, the roof cracks dynamically expand on both sides with the progress of fracturing, and the final extension range of cracks on the side of transportation roadway is 26 ~ 33 m, and that of the auxiliary transportation roadway is 30 ~ 42 m. The verification of the pressure relief drilling show that the fracture range on the side of the auxiliary roadway is up to 42 m, which is basically consistent with the microseismic monitoring results, indicating that the fracture has been extended to the bottom of the pressure relief hole, and the hydraulic fracturing effect is better. In the process of hydraulic fracturing, the expansion range of fracturing fracture is positively correlated with pressure and fracturing time, and the expansion range of fracturing fracture is also related to the goaf. The results provide the groundwork for the extensive use of microseismic monitoring technologies in the coal mining industry and offer a scientific basis for precisely assessing the hydraulic fracturing effect of the hard top plate in the working face.
-
-
表 1 裂隙扩展微震监测结果
Table 1. Monitoring results of microseismic propagation of fractures
压裂
段次最大
水压/MPa压裂
时长/min微震
事件/个运输巷道侧
裂隙扩展
距离/m辅运巷道侧
裂隙扩展
距离/m2 16.6 108 21 31 32 3 17.1 132 38 27 42 4 16.0 126 27 31 30 5 17.5 103 23 26 33 7 20.0 101 26 26 30 -
[1] 杨俊哲, 郑凯歌, 王振荣, 等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报, 2020, 45(10): 3371−3379.
YANG J Z, ZHENG K G, WANG Z R, et al. The mechanism of overburden dynamic disasters and its control technology in top−coal caving in the mining of thick coal seams[J]. Journal of China Coal Society, 2020, 45(10): 3371−3379.
[2] 赵同彬, 郭伟耀, 谭云亮, 等. 煤厚变异区开采冲击地压发生的力学机制[J]. 煤炭学报, 2016, 41(7): 1659−1666.
ZHAO T B, GUO W Y, TAN Y L, et al. Mechanics mechanism of rock burst caused by mining in the variable region of coal thickness[J]. Journal of China Coal Society, 2016, 41(7): 1659−1666.
[3] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(8): 2091−2098.
PAN Y S. Disturbance response instability theory of rock−burst in coal mine[J]. Journal of China Coal Society, 2018, 43(8): 2091−2098.
[4] 康红普, 冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术, 2017, 45(1): 1−9.
KANG H P, FENG Y J. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology, 2017, 45(1): 1−9.
[5] 张俭, 郑凯歌, 仵胜利, 等. 水力压裂技术在黄陵二矿的工程试验研究[J]. 煤炭工程, 2017, 49(9): 72−74+79.
ZHANG J, ZHENG K G, WU S L, et al. Engineering test research of hydraulic fracturing technology in Huangling No. 2 Mine[J]. Coal Engineering, 2017, 49(9): 72−74+79.
[6] 韩保山. 低渗煤层压裂机理及应用[J]. 煤田地质与勘探, 2016, 44(3): 25−29+35. doi: 10.3969/j.issn.1001-1986.2016.03.005
HAN B S. Research on fracturing mechanism of low permeability coal seam and application of surface CBM drainage[J]. Coal Geology & Exploration, 2016, 44(3): 25−29+35. doi: 10.3969/j.issn.1001-1986.2016.03.005
[7] 康红普, 冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报, 2012, 37(12): 1953−1959.
KANG H P, FENG Y J. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution[J]. Journal of China Coal Society, 2012, 37(12): 1953−1959.
[8] 朱海波, 杨心超, 王瑜, 等. 水力压裂微地震监测的震源机制反演方法应用研究[J]. 石油物探, 2014, 53(5): 556−561. doi: 10.3969/j.issn.1000-1441.2014.05.008
ZHU H B, YANG X C, WANG Y, et al. The application of microseismic source mechanism inversion in hydraulic fracturing monitoring[J]. Geophysical Prospecting for Petroleum, 2014, 53(5): 556−561. doi: 10.3969/j.issn.1000-1441.2014.05.008
[9] 赵睿, 范涛, 李宇腾, 等. 钻孔瞬变电磁探测在水力压裂效果检测中的应用[J]. 煤田地质与勘探, 2020, 48(4): 41−45. doi: 10.3969/j.issn.1001-1986.2020.04.006
ZHAO R, FAN T, LI Y T, et al. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. Coal Geology & Exploration, 2020, 48(4): 41−45. doi: 10.3969/j.issn.1001-1986.2020.04.006
[10] 李 好. 无线电波坑道透视法在煤矿井下水力压裂效果评价中的应用[J]. 物探与化探, 2017, 41(4): 741−747.
LI H. The application of radio wave tunnel penetration methodto evaluating fracturing effect in underground coal mine[J]. Geophysicaland Geochemical Exploration, 2017, 41(4): 741−747.
[11] 闫江平, 庞长庆, 段建华, 等. 煤矿井下水力压裂范围微震监测技术及其影响因素[J]. 煤田地质与勘探, 2019, 47(S1): 92−97. doi: 10.3969/j.issn.1001-1986.2019.S1.018
YAN J P, PANG C Q, DUAN J H, et al. Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors[J]. Coal Geology & Exploration, 2019, 47(S1): 92−97. doi: 10.3969/j.issn.1001-1986.2019.S1.018
[12] 李楠, 王恩元, GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报, 2017, 42(1): 83−96.
LI N, WANG E Y, GE M C. Microseismic monitoring technique and its applications at coal mines present status and future prospects[J]. Journal of China Coal Society, 2017, 42(1): 83−96.
[13] 张坤, 方海, 李邵东, 等. 大埋深坚硬顶板厚煤层冲击地压微震监测及防治措施[J]. 中国矿业, 2021, 30(10): 77−83. doi: 10.12075/j.issn.1004-4051.2021.10.017
ZHANG K, FANG H, LI S D, et al. Microseismic monitoring and prevention of working face rock burst in thick coal seam with hard roof and large buried depth[J]. China Mining Magazine, 2021, 30(10): 77−83. doi: 10.12075/j.issn.1004-4051.2021.10.017
[14] 靳德武, 段建华, 李连崇, 等. 基于微震的底板采动裂隙扩展及导水通道识别技术研究[J]. 工程地质学报, 2021, 29(4): 962−971.
JIN D W, DUAN J H, LI L C, et al. Micro seismicity−based research for Ming induced fracture propagation and water pathway identification technology of floor[J]. Journal of Engineering Geology, 2021, 29(4): 962−971.
[15] 侯恩科, 范继超, 谢晓深, 等. 基于微震监测的深埋煤层顶板导水裂隙带发育特征[J]. 煤田地质与探, 2020, 48(5): 89−96.
HOU E K, FAN J C, XIE X S, et al. Development characteristics of water−conducting fractured zone in deep coal seam based on microseismic monitoring[J]. Coal Geology & Exploration, 2020, 48(5): 89−96.
[16] 范继超. 文家坡矿4104综放工作面导水裂隙带发育特征研究[D]. 西安: 西安科技大学, 2020.
FAN J C. Study on development characteristics of water flowing fracture zone in 4104 working face of Wenjiapo Coal Mine[D]. Xi’an: Xi’an University of Science and Technology, 2020.
[17] 申鹏磊, 吕帅锋, 李贵山. 深部煤层气水平井水力压裂技术−以沁水盆地长治北地区为例[J]. 煤炭学报, 2021, 46(8): 2488−2500.
SHEN P L, LV S F, LI G S. Hydraulic fracturing technology for deep coalbed methane horizontal wells: A case study in North Changzhi area of Qinshui Basin[J]. Journal of China Coal Society, 2021, 46(8): 2488−2500.
[18] 贾奇锋, 倪小明, 赵永超, 等. 不同煤体结构煤的水力压裂裂隙延伸规律[J]. 煤田地质与勘探, 2019, 47(2): 51−57.
JIA Q F, NI X M, ZHAO Y C. Fracture extension law of hydraulic fracture in coal with different structure[J]. Coal Geology & Exploration, 2019, 47(2): 51−57.
[19] 段建华, 汤红伟, 王云宏. 基于微震和瞬变电磁法的煤层气井水力压裂监测技术[J]. 煤炭科学技术, 2018, 46(6): 160−166.
DUAN J H, TANG H W, WANG Y H. Detection technology of hydraulic fracturing in coalbed methane coal seam based on microseismic monitoring[J]. Coal Science and Technology, 2018, 46(6): 160−166.
[20] 李超峰, 虎维岳, 王云宏, 等. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探, 2018, 46(1): 101−107.
LI C F, HU W Y, WANG Y H, et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration, 2018, 46(1): 101−107.
-