The Relationship between Mineral Structure and Floatability Discussed from the Principle of Coordination Field
-
摘要:
从配位场原理角度研究了矿物晶体结构与可浮选性的关系,解释了晶体结构对矿物可浮性的影响。赤铁矿和黄铁矿中的铁离子分别具有d5和d6构型,且分别拥有0对和3对π电子,致使黄药捕收剂无法与赤铁矿形成反馈π键,而可以与黄铁矿形成较强的反馈π键,因而黄药对黄铁矿有较强的捕收作用而对赤铁矿无捕收作用。姜泰勒效应解释了黄药捕收剂对氧化铜和硫化铜矿物的捕收差异,即氧化铜中占据在dz2轨道上的电子会排斥黄药,因而不利于Cu2+离子与黄药类捕收剂的作用。对于含有d10锌离子的闪锌矿,d轨道活性较大的金属离子如铜、金、银离子都有较大的极化率,能增强了离子和捕收剂分子的共价作用,因而对闪锌矿具有活化作用。在具有单S配位的磁黄铁矿晶体中,磁黄铁矿Fe2+只有1对π电子,与黄药捕收剂的反馈π键作用弱,并且没有空的d轨道,不利于与黄药形成作用较强的内轨型配位,造成黄药对磁黄铁矿的捕收作用弱于黄铁矿。对于含有四配位Fe2+离子的含铁闪锌矿,铁离子的π电子对为1对,与黄药的反馈π键作用弱,因而含铁闪锌矿的可浮性与黄铁矿不同。黄铜矿中铜的3d π电子对多于铁,因而铜与黄药类捕收剂的共价配位作用更强,使铜成为反应活性中心,此外铁离子的自旋耦合效应增强了铜离子的活性。
Abstract:This study investigated the relationship between mineral crystal structure and floatability from the perspective of ligand field theory, explaining the influence of crystal structure on mineral floatability. The iron ions in hematite and pyrite possess d5 and d6 electronic configurations respectively, with 0 and 3 pairs of π electrons correspondingly. This difference prevents xanthate collectors from forming feedback π−bonds with hematite while enabling strong feedback π−bond formation with pyrite, resulting in strong collecting power of xanthate for pyrite but none for hematite. The Jahn−Teller effect explains the differential collecting behavior of xanthate towards copper oxide and copper sulfide minerals. In oxidized copper minerals, electrons occupying the dz2 orbital repel xanthate molecules, thereby hindering the interaction between Cu2+ ions and xanthate-type collectors. For sphalerite containing d10 zinc ions, ions such as copper, gold, and silver exhibit high polarizability, which enhances the covalent interaction between these ions and collector molecules, thereby activating sphalerite. In pyrrhotite crystals with single S coordination, Fe2+ possesses only one pair of π electrons, leading to weak π back−bonding interaction with xanthate. The absence of vacant d−orbitals further hinders the formation of strong inner−sphere coordination complexes, making pyrrhotite less floatable than pyrite. For iron−bearing sphalerite containing tetrahedrally coordinated Fe2+ ions, the single π−electron pair results in weak π back−bonding with xanthate, creating distinct floatability characteristics compared to pyrite. In chalcopyrite, copper possesses more 3d π electron pairs than iron, leading to stronger covalent coordination with xanthate-type collectors, establishing copper as the reactive site. Additionally, spin−coupling effects of iron ions enhance the activity of copper ions.
-
-
图 2 丁基黄药浓度与赤铁矿和黄铁矿浮选回收率的关系[9]
Figure 2.
表 1 不同配位结构下的σ和π轨道[7]
Table 1. The σ and π orbitals under different coordination structures
配位数 结构 σ轨道 π轨道 备注 2 直线 s px py pz dxz dyz 沿x轴成键 3 平面等边
三角形s px py dxy pz dxz dyz xy平面成键 4 平面
正方形dxz dyz xy平面成键 正四面体 dxy dzz dyz dxy dxz dyz 5 三角双锥 dxz dyz dxy
四方锥 dxy dxz dyz 6 正八面体 dxy dxz dyz 8 立方体 dxy dxz dyz dxy dxz dzy -
[1] 梁学谦. 单斜磁黄铁矿与六方磁黄铁矿的分离[J]. 地质与勘探, 1984(7): 25−26.
LIANG X Q. Separation of monoclinic pyrrhotite from hexagonal pyrrhotite[J]. Geology and Exploration, 1984(7): 25−26.
[2] HORNG C S, ROBERTS A P. The low−temperature besnus magnetic transition: Signals due to monoclinic and hexagonal pyrrhotite[J]. Geochemistry Geophysics Geosystems, 2018, 19(9): 3364−3375. doi: 10.1029/2017GC007394
[3] CLARK D A. Hysteresis properties of sized dispersed monoclinic pyrrhotite grains[J]. Geophysical Research Letters, 2013, 11(3): 173−176.
[4] CONEJEROS S, ALEMANY P, LLUNELL M. Electronic structure and magnetic properties of CuFeS2[J]. Inorganic Chemistry, 2015, 54(10): 4840−4849. doi: 10.1021/acs.inorgchem.5b00399
[5] RAIS A, GISMELSEED A M, ALRAWAS A D. Magnetic properties of natural chalcopyrite at low temperature[J]. Materials Letters, 2000, 46(6): 349–353.
[6] 陈建华. 浮选配位化学原理[M]. 北京: 科学出版社, 2021.
CHEN J H. Coordination chemistry of flotation[M]. Beijing: Science Press, 2021.
[7] CHEN J H. Coordination principle of minerals flotation [M]. Beijing: Science Press, 2022.
[8] CHEN J H. The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry[J]. Minerals Engineering, 2021, 171: 107067. doi: 10.1016/j.mineng.2021.107067
[9] 陈建华, 朱阳戈. 浮选体系矿物表面金属离子的半约束性质研究[J]. 中国矿业大学学报, 2021, 50(6): 1181−1188. doi: 10.3969/j.issn.1000-1964.2021.6.zgkydxxb202106015
CHEN J H, ZHU Y G. Study of semi−constrained properties of metal ions on mineral surface of flotation system[J]. Journal of China University of Mining & Technology, 2021, 50(6): 1181−1188. doi: 10.3969/j.issn.1000-1964.2021.6.zgkydxxb202106015
[10] 王福良. 铜铅锌铁主要硫化氧化矿物浮选的基础理论研究[D]. 沈阳: 东北大学, 2008.
WANG F L. Fundamental research of flotation on sulphides/carbonates/oxides of Cu, Pb, Zn and Fe[D]. Shengyang: Northeastern University, 2008.
[11] 陈建华, 李玉琼. 浮选药剂分子设计的配位化学原理[J]. 有色金属(选矿部分), 2025(2): 33–48.
CHEN J H, LI Y Q. Coordination chemistry principle of flotation reagent molecular design[J]. Nonferrous Metals(Mineral Processing Section), 2025(2): 33–48.
[12] RAO S R, FINCH J A. Base metal oxide flotation using long chain xanthates[J]. International Journal of Mineral Processing, 2003, 69(1/2/3/4): 251−258.
[13] 陈建华, 朱阳戈, 李玉琼, 等. 有色金属硫化矿浮选配位化学[J]. 有色金属(选矿部分), 2024(8): 1–17.
CHEN J H, ZHU Y G, LI Y Q, et al. Flotation coordination chemistry of nonferrous metal sulfide ores[J]. Nonferrous Metals(Mineral Processing Section), 2024(8): 1–17.
[14] 沈洪涛, 罗立群, 陈镜文. 磁黄铁矿多型矿物学特征与分选行为差异[J]. 金属矿山, 2022(6): 107−114.
SHEN H T, LUO L Q, CHEN J W. Mineralogical characteristics and separating behavior of different polytypes of pyrrhotite[J]. Metal Mine, 2022(6): 107−114.
[15] BECKER M, VILLIERS J D, BRADSHAW D. The flotation of magnetic and non−magnetic pyrrhotite from selected nickel ore deposits[J]. Minerals Engineering, 2010, 23(11−13): 1045–1052.
[16] VILLIERS J D, LILES D C, BECKER M. The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution[J]. American Mineralogist, 2009, 94(10): 1405–1410.
[17] YANG X, LI Y Q, CHEN J H. DFT study of the occurrence state of In and the correlation of In and Fe in sphalerite[J]. Minerals Engineering, 2022, 183: 107596.
[18] KNIGHT K S, MARSHALL W G, ZOCHOWSKI S W. The low−temperature and high−pressure thermoelastic and structural properties of chalcopyrite, CuFeS2[J]. Canadian Mineralogist, 2011, 49(4): 1015–1034.
[19] TODD E C, SHERMAN D M, PURTON J A. Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2−10) conditions: Cu, Fe L− and O K−edge X−ray spectroscopy[J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2137–2146.
[20] PEARCE C I, PATTRICK R A D, VAUGHAN D J, et al. Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics[J]. Geochimica Et Cosmochimica Acta, 2006, 70(18): 4635–4642.
[21] KLEKOVKINA V V, GAINOV R R, VAGIZOV F G, et al. Oxidation and magnetic states of chalcopyrite CuFeS2: A first principles calculation[J]. Optics and Spectroscopy, 2014, 116(6): 885–888.
[22] LI Y Q, LIU Y C, CHEN J H, et al. Comparison study of crystal and electronic structures for chalcopyrite (CuFeS2) and pyrite (FeS2)[J]. Physicochemical Problems of Mineral Processing, 2021, 57(1): 100–111.
-