微细粒辉钼矿高效浮选捕收剂创新:从实验筛选到计算模拟

刘晨操, 柴文翠, 呼开放, 谢佳慧, 冯靖雯, 高志胜. 微细粒辉钼矿高效浮选捕收剂创新:从实验筛选到计算模拟[J]. 矿产保护与利用, 2025, 45(3): 59-67. doi: 10.13779/j.cnki.issn1001-0076.2025.03.006
引用本文: 刘晨操, 柴文翠, 呼开放, 谢佳慧, 冯靖雯, 高志胜. 微细粒辉钼矿高效浮选捕收剂创新:从实验筛选到计算模拟[J]. 矿产保护与利用, 2025, 45(3): 59-67. doi: 10.13779/j.cnki.issn1001-0076.2025.03.006
LIU Chencao, CHAI Wencui, HU Kaifang, XIE Jiahui, FENG Jingwen, GAO Zhisheng. Collector Innovation for Efficient Recovery of Fine−grained Molybdenite: from Experimental Screening to Computational Modeling[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 59-67. doi: 10.13779/j.cnki.issn1001-0076.2025.03.006
Citation: LIU Chencao, CHAI Wencui, HU Kaifang, XIE Jiahui, FENG Jingwen, GAO Zhisheng. Collector Innovation for Efficient Recovery of Fine−grained Molybdenite: from Experimental Screening to Computational Modeling[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 59-67. doi: 10.13779/j.cnki.issn1001-0076.2025.03.006

微细粒辉钼矿高效浮选捕收剂创新:从实验筛选到计算模拟

  • 基金项目: 河南省自然科学基金面上项目(242300420006);中原关键金属实验室优秀青年科学家项目(GJJSGFYQ202326)
详细信息
    作者简介: 刘晨操(2000—),男,硕士研究生,研究方向为低品质矿产资源综合利用,E-mail:18237265095@163.com
    通讯作者: 柴文翠,副教授,硕士生导师,研究方向为浮选界面化学,E-mail:chaiwencui@zzu.edu.cn
  • 中图分类号: TD923+.13;TD954

Collector Innovation for Efficient Recovery of Fine−grained Molybdenite: from Experimental Screening to Computational Modeling

More Information
  • 微细粒辉钼矿(MoS2)的高效浮选回收是钼资源可持续开发的关键挑战。聚焦捕收剂创新,系统综述了从实验筛选到计算模拟的研究进展:实验层面,纳米乳液、复合捕收剂通过尺寸效应、协同吸附等机制显著提升微细粒辉钼矿回收率;计算模拟层面,密度泛函理论(DFT)与分子动力学(MD)揭示了捕收剂−矿物界面作用机制,支撑了从“经验试错”向“理性设计”的范式转变;新型捕收剂体系也在工业中进行应用实现了回收率的大幅提升。未来研究需突破多尺度模拟精度、绿色药剂成本控制等瓶颈,推动钼资源加工向高效低碳方向演进。

  • 加载中
  • 图 1  辉钼矿晶体结构[15]

    Figure 1. 

    图 2  柴油(左)和乳化柴油(右)显微镜图像

    Figure 2. 

    图 3  水分子在辉钼矿表面的吸附模型

    Figure 3. 

  • [1]

    王修, 刘冲昊, 王安建, 等. 中国钼资源开发利用现状及未来需求预测[J]. 矿产综合利用, 2024, 45(4): 69−75. doi: 10.3969/j.issn.1000-6532.2024.04.010

    WANG X, LIU C H, WANG A J, et al. Development and utilization status and future demand forecast of molybdenum resources in China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 69−75. doi: 10.3969/j.issn.1000-6532.2024.04.010

    [2]

    LI Z, WU Q, ZHANG B, et al. On the current situation and resource situation of molybdenum mining development and utilization in China[J]. Science & Technology Review, 2024, 42(5): 47−52.

    [3]

    朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172−178.

    ZHU X R. Analysis of supply and demand situation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 172−178.

    [4]

    王蕾, 周明智. 国内外钼资源供需形势及未来发展趋势分析[J]. 中国钼业, 2019, 43(5): 57−60.

    WANG L, ZHOU M Z. Analysis of supply and demand situation and future development trend of molybdenum resources at home and abroad[J]. China Molybdenum Industry, 2019, 43(5): 57−60.

    [5]

    FENG H K, CAI Z Y, LI Y G, et al. Domestic and overseas research status on molybdenum resources and its use[J]. Research in Materials and Manufacturing Technologies, 2014, 834/835/836: 401−406.

    [6]

    YI G S, MACHA E, VAN DYKE J, et al. Recent progress on research of molybdenite flotation: A review[J]. Advances in Colloid and Interface Science, 2021, 295: 102466. doi: 10.1016/j.cis.2021.102466

    [7]

    HENCKENS M, DRIESSEN P, WORRELL E. Molybdenum resources: Their depletion and safeguarding for future generations[J]. Resources Conservation and Recycling, 2018, 134: 61−69. doi: 10.1016/j.resconrec.2018.03.002

    [8]

    WU J, YANG B, MARTIN R, et al. Anisotropic adsorption of xanthate species on molybdenite faces and edges and its implication on the flotation of molybdenite fines[J]. Minerals Engineering, 2024, 207: 108571. doi: 10.1016/j.mineng.2023.108571

    [9]

    WANG Y, CAO Y, HU S, et al. Effects of solution pH and polyethylene oxide concentrations on molybdenite–molybdenite, molybdenite–kaolinite, and molybdenite–quartz interaction forces: AFM colloidal probe study[J]. Separation and Purification Technology, 2022, 280: 119926. doi: 10.1016/j.seppur.2021.119926

    [10]

    LI S, GAO L, WANG J, et al. Polyethylene oxide assisted separation of molybdenite from quartz by flotation[J]. Minerals Engineering, 2021, 162: 106765. doi: 10.1016/j.mineng.2020.106765

    [11]

    LIU G, YANG X, ZHONG H. Molecular design of flotation collectors: A recent progress[J]. Advances in Colloid and Interface Science, 2017, 246: 181−195. doi: 10.1016/j.cis.2017.05.008

    [12]

    LOTTER N O, BRADSHAW D J. The formulation and use of mixed collectors in sulphide flotation[J]. Minerals Engineering, 2010, 23(11/12/13): 945−951. doi: 10.1016/j.mineng.2010.03.011

    [13]

    LIU Z Q, NIE K K, QU X Y, et al. General bottom−up colloidal synthesis of nano−monolayer transition−metal dichalcogenides with high 1T phase purity[J]. Journal of the American Chemical Society, 2022, 144(11): 4863−4873. doi: 10.1021/jacs.1c12379

    [14]

    HUANG H H, FAN X F, SINGH DAVID J, et al. First principles study on 2H −1T transition in MoS2 with copper[J]. Physical Chemistry Chemical Physics, 2018, 20(42): 26986−26994. doi: 10.1039/C8CP05445B

    [15]

    WANG S, DI Z, LI B, et al. Ultrastable in− plane 1T − 2H MoS2 heterostructures for enhanced hydrogen evolution reaction[J]. Advanced Energy Materials, 2018, 8(25): 1801345. doi: 10.1002/aenm.201801345

    [16]

    ZHANG Y C, ZHANG R J, GUO Y X, et al. A review on MoS2 structure, preparation, energy storage applications and challenges[J]. Journal of Alloys and Compounds, 2024, 998: 174916. doi: 10.1016/j.jallcom.2024.174916

    [17]

    WU J, FENG J, YANG B, et al. The anisotropic adsorption of potassium cetyl phosphate on molybdenite surface and its implication for improving the flotation of molybdenite fines[J]. Journal of Molecular Liquids, 2023, 378: 121616. doi: 10.1016/j.molliq.2023.121616

    [18]

    CHEN X, WANG Z, WEI Y, et al. High phase−purity 1T− MoS2 ultrathin nanosheets by a spatially confined template[J]. Angewandte Chemie (International Edition), 2019, 58(49): 17621−17624. doi: 10.1002/anie.201909879

    [19]

    LEI D, GUI W, ZHAO X, et al. New insight into poor flotation recovery of fine molybdenite: An overlooked phase transition from 2H to 1T MoS2[J]. Separation and Purification Technology, 2023, 304: 122286. doi: 10.1016/j.seppur.2022.122286

    [20]

    CASTRO S, LOPEZ−VALDIVIESO A, LASKOWSKI J S. Review of the flotation of molybdenite. Part I: Surface properties and floatability[J]. International Journal of Mineral Processing, 2016, 148: 48−58. doi: 10.1016/j.minpro.2016.01.003

    [21]

    CHANDER S, FUERSTENAU D W. The effect of potassium diethyldithiophosphate on the electrochemical properties of platinum, copper and copper sulfide in aqueous solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 56(2): 217−247. doi: 10.1016/S0022-0728(74)80330-X

    [22]

    吕建业, 沈耀平, 张洪恩. 辉钼矿表面特性及其可浮性的研究[J]. 有色金属(选矿部分), 1992(4): 4−8.

    LYU J Y, SHEN Y P, ZHANG H G. Study on surface characteristics and floatability of molybdenite[J]. Nonferrous Metals(Mineral Processing Section), 1992(4): 4−8.

    [23]

    WANG H, CHEN L, FU J, et al. Interface thermodynamics of molybdenite floatation system[J]. Journal of Central South University of Science and Technology, 2007, 38(5): 893−899.

    [24]

    LIN Q, GU G, WANG H, et al. Flotation mechanisms of molybdenite fines by neutral oils[J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(1): 1−10. doi: 10.1007/s12613-018-1540-8

    [25]

    LIN Q, WU Q, DAI Z, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3): 37−41+45.

    [26]

    LIN Q, GU G, CHEN X, et al. Flotation kinetics of molybdenite fines[J]. Journal of Central South University of Science and Technology, 2018, 49(7): 1573−1581.

    [27]

    刘栖巧, 车宇航, 陈伟, 等. 辉钼矿与滑石浮选药剂研究进展[J]. 金属矿山, 2024(2): 56−68.

    LIU Q Q, CHE Y H, CHEN W, et al. Research progress in the flotation reagent of molybdenite and talc[J]. Metal Mine, 2024(2): 56−68.

    [28]

    韩树山. 辉钼矿浮选时巯基捕收剂的作用机理[J]. 国外金属矿选矿, 1974(Z1): 52−82.

    HAN S S. The mechanism of action of thiol collectors in molybdenite flotation[J]. Metallic Ore Dressing Abroad, 1974(Z1): 52−82.

    [29]

    张艳娇, 赵平, 郭珍旭, 等. 极性捕收剂在难选辉钼矿浮选中的应用[J]. 中国矿业, 2015, 24(11): 122−125. doi: 10.3969/j.issn.1004-4051.2015.11.026

    ZHANG Y J, ZHAO P, GUO Z X, et al. Application of polar collectors in flotation of refractory molybdenite[J]. China Mining, 2015, 24(11): 122−125. doi: 10.3969/j.issn.1004-4051.2015.11.026

    [30]

    严海. 铜钼浮选分离新型抑制剂及其机理研究[D]. 武汉: 武汉工程大学, 2022.

    YAN H. Novel inhibitors for copper−molybdenum flotation separation and their mechanisms[D]. Wuhan: Wuhan University of Technology, 2022.

    [31]

    赵开乐, 闫武, 刘飞燕, 等. 细粒嵌布硫化钼矿铜钼高效分离技术[J]. 矿产综合利用, 2021(2): 1−7. doi: 10.3969/j.issn.1000-6532.2021.02.001

    ZHAO K L, YAN W, LIU F Y, et al. High−efficiency separation technology of copper and molybdenum sulfide ore with fine grains embedded in cloth[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 1−7. doi: 10.3969/j.issn.1000-6532.2021.02.001

    [32]

    张萌. O3、O3/H2O2和UV/O3氧化技术降解浮选药剂丁基黄药的研究[D]. 上海: 东华大学, 2011.

    ZHANG M. Degradation of butyl xanthate by O3, O3/H2O2 and UV/O3 oxidation techniques[D]. Shanghai: Donghua University, 2011.

    [33]

    胡运祯. 超声处理铜钼混合精矿对铜钼分离浮选过程的强化作用研究[D]. 赣州: 江西理工大学, 2020.

    HU Y Z. Study on the strengthening effect of ultrasonic treatment of copper−molybdenum mixed concentrate on copper−molybdenum separation and flotation process[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.

    [34]

    陈建华, 朱阳戈, 李玉琼, 等. 有色金属硫化矿浮选配位化学[J]. 有色金属(选矿部分), 2024(8): 1−17.

    CHEN J H, ZHU Y G, LI Y Q, et al. Coordination chemistry of flotation of nonferrous metal sulfide ores[J]. Nonferrous Metals (Mineral Processing Section), 2024(8): 1−17.

    [35]

    徐胜. NaHS与L−半胱氨酸组合抑制剂在铜钼分离浮选中的应用研究[D]. 沈阳: 东北大学, 2021.

    XU S. Application of NaHS and L−cysteine combination inhibitors in copper−molybdenum separation flotation[D]. Shenyang: Northeastern University, 2021.

    [36]

    WAN H, HE T, YANG J, et al. Experimental study on the improvement of molybdenum flotation by hydrocarbon oil collector[J]. Nonferrous Metals Engineering, 2017, 7(4): 58−63.

    [37]

    WAN H, HE T, YANG J, et al. Influence of process water from molybdenum−tungsten flotation on molybdenite floatation for aliphatic hydrocarbon oil as collectors[J]. Nonferrous Metals Engineering, 2018, 8(1): 66−70.

    [38]

    WAN H, HE T, YANG J, et al. Study on the improvement of molybdenite flotation effect in high calcium recycled water by composite hydrocarbon oil collector[J]. Nonferrous Metals Engineering, 2018, 8(2): 91−95.

    [39]

    WAN H, YI P, SONG X, et al. Role of improving molybdenite flotation by using aromatic hydrocarbon collector in high−calcium water: A multiscale investigation[J]. Minerals Engineering, 2023, 191: 107984. doi: 10.1016/j.mineng.2022.107984

    [40]

    CHAO Y, LI S, GAO L, et al. Enhanced flotation recovery of fine molybdenite particles using a coal tar−based collector[J]. Minerals, 2021, 11(12): 1439. doi: 10.3390/min11121439

    [41]

    LI H, HE T, WAN H, et al. Insights into selection of the auxiliary collector and its applicability analysis for improving molybdenite flotation[J]. Minerals, 2021, 11(5): 528. doi: 10.3390/min11050528

    [42]

    LI L, LI S, GAO L, et al. Influence mechanism of a compound collector from coal tar and dodecane in the flotation of fine molybdenite particles[J]. Minerals Engineering, 2023, 202: 108242. doi: 10.1016/j.mineng.2023.108242

    [43]

    HUANG H, HUANG K, ZENG H. Influence mechanism of a compound collector from edible fatty acid−based oil and polycyclic aromatic hydrocarbons in the flotation of fine molybdenite particles[J]. Colloids and Surfaces a−Physicochemical and Engineering Aspects, 2025, 708: 135987.

    [44]

    MA Z, PAN W, LI S, et al. Study on the flotation mechanism of molybdenite fines by synergistic enhancement of n−dodecanethiol and kerosene[J]. Journal of China University of Mining & Technology, 2023, 52(6): 1231−1240.

    [45]

    PAN W, LI S, ZHU Y, et al. Application of a novel auxiliary collector for molybdenite fines recovery in sustainable froth flotation production: Combining DFT calculations and experiments[J]. Colloids and Surfaces a−Physicochemical and Engineering Aspects, 2025, 704. DOI: 10.1016/j.colsurfa.2024.135570.

    [46]

    白阳. 组合捕收剂在白云母浮选中的协同作用及其机理研究[D]. 阜新: 辽宁工程技术大学, 2020.

    BAI Y. Study on the synergistic effect and mechanism of combined collectors in muscovite flotation[D]. Fuxin: Liaoning Technical University, 2020.

    [47]

    徐龙华, 田佳, 巫侯琴, 等. 组合捕收剂在矿物表面的协同效应及其浮选应用综述[J]. 矿产保护与利用, 2017(2): 107−112.

    XU L H, TIAN J, WU H Q, et al. Review of synergy effect of combined collectors on mineral surfaces and their flotation applications[J]. Conservation and Utilization of Mineral Resources, 2017(2): 107−112.

    [48]

    胡岳华, 韩海生, 田孟杰, 等. 苯甲羟肟酸铅金属有机配合物在氧化矿浮选中的作用机理及其应用[J]. 矿产保护与利用, 2018(1): 42−47.

    HU Y H, HAN H S, TIAN M J, et al. The action mechanism and application of lead−metal−organic complexes of benzohydroxamic acid in oxidation ore flotation[J]. Conservation and Utilization of Mineral Resources, 2018(1): 42−47.

    [49]

    王林林, 朱灵燕, 刘跃龙, 等. 阴阳离子混合捕收剂用于中低品位锂云母的浮选试验研究[J]. 有色金属(选矿部分), 2019(3): 86−92.

    WANG L L, ZHU L Y, LIU Y L, et al. Flotation test of mixed anion and cation collectors for medium and low grade lithium mica[J]. Nonferrous Metals (Mineral Processing), 2019(3): 86−92.

    [50]

    SUN W, WANG J, HAN H, et al. Advances in flotation reagent interfacial assembly technology[J]. Journal of China University of Mining & Technology, 2022, 51(3): 544−553.

    [51]

    ZHANG X, GUO D, WANG L, et al. Autogenous−carrier flotation of coal slime[J]. Journal of China Coal Society, 2018, 43(4): 1127−1133.

    [52]

    KANG W, WANG H, KONG X, et al. Study of flotation performance of kerosene after ultrasonic emulsified[J]. Journal of China Coal Society, 2008, 33(1): 89−93.

    [53]

    宛鹤, 何廷树, 杨剑波, 等. 辉钼矿捕收剂的应用现状和发展趋势[J]. 矿山机械, 2016, 44(12): 1−6.

    WAN H, HE T S, YANG J B, et al. Application status and development trend of molybdenite collectors[J]. Mining Machinery, 2016, 44(12): 1−6.

    [54]

    SIDDIQUI S W, NORTON I T. Oil−in−water emulsification using confined impinging jets[J]. Journal of Colloid and Interface Science, 2012, 377: 213−221. doi: 10.1016/j.jcis.2012.03.062

    [55]

    王志远. 水包油型乳化柴油制备及其强化辉钼矿浮选的机理研究[D]. 西安: 西安建筑科技大学, 2022.

    WANG Z Y. Preparation of oil−in−water emulsified diesel and its mechanism for strengthening molybdenite flotation[D]. Xi'an : Xi'an University of Architecture and Technology, 2022.

    [56]

    王森, 王志远, 宛鹤, 等. 水包油型乳化柴油制备及其对辉钼矿浮选的强化[J]. 金属矿山, 2023(1): 204−209.

    WANG S, WANG Z Y, WAN H, et al. Preparation of oil−in−water emulsified diesel and its enhancement for molybdenite flotation[J]. Metal Mine, 2023(1): 204−209.

    [57]

    YOU X, LI L, LYU X. Flotation of molybdenite in the presence of microemulsified collector[J]. Physicochemical Problems of Mineral Processing, 2017, 53(1): 333−340.

    [58]

    WU J, YANG B, SONG S, et al. The efficient recovery of molybdenite fines using a novel collector : Flotation performances, adsorption mechanism and DFT calculation[J]. Minerals Engineering, 2022, 188: 107848.

    [59]

    WU J, LI S Y, YANG B Q, et al. Improving the flotation of molybdenite fines based on the targeted regulation of edges using a novel chelating collector[J]. Colloids and Surfaces A−Physicochemical and Engineering Aspects, 2024, 703: 135354.

    [60]

    CHEN J, LING Y, SUN Y, et al. Molecular simulation study of quaternary ammonium salts adsorption on kaolinite surfaces[J]. Journal of China University of Mining & Technology, 2021, 50(6): 1204−1211.

    [61]

    ZHAO L, GAO J, XU C. Molecular calculation theory method and its application in chemical engineering calculation field[J]. Computers and Applied Chemistry, 2004, 21(5): 764−772.

    [62]

    高倪, 范永太, 邵泽庆, 等. 计算化学的应用研究进展[J]. 山东化工, 2020, 49(6): 88−89. doi: 10.3969/j.issn.1008-021X.2020.06.032

    GAO N, FAN Y T, SHAO Z Q, et al. Application research progress of computational chemistry[J]. Shandong Chemical Industry, 2020, 49(6): 88−89. doi: 10.3969/j.issn.1008-021X.2020.06.032

    [63]

    孙伟松, 于思荣, 孙霜青, 等. 分子动力学模拟方法应用于环氧树脂涂料的研究进展[J]. 当代化工, 2022, 51(11): 2704−2708. doi: 10.3969/j.issn.1671-0460.2022.11.038

    SUN W S, YU S R, SUN S Q, et al. Research progress of molecular dynamics simulation method applied to epoxy resin coatings[J]. Contemporary Chemical Industry, 2022, 51(11): 2704−2708. doi: 10.3969/j.issn.1671-0460.2022.11.038

    [64]

    ZHAO C, CHEN J, WU B, et al. Density functional theory study on natural hydrophobicity of sulfide surfaces[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2): 491−498. doi: 10.1016/S1003-6326(14)63087-9

    [65]

    LIN Q, ZHAN X, ZHANG H, et al. Crystal structures and surface properties of molybdenite and pyrite[J]. Mining and Metallurgical Engineering, 2019, 39(3): 40−45.

    [66]

    魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3): 31−36.

    WEI Z L, LI Y B. Molybdenite crystal plane anisotropy and its influence mechanism on flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 31−36.

    [67]

    WAN H, YI P, QU J, et al. Adsorption behaviors of straight−chain alkanes on a molybdenite [001]/ [100] surface: A molecular dynamics study[J]. Minerals, 2021, 11(5): 489. doi: 10.3390/min11050489

    [68]

    LI S, MA X, WANG J, et al. Effect of polyethylene oxide on flotation of molybdenite fines[J]. Minerals Engineering, 2020, 146: 106146. doi: 10.1016/j.mineng.2019.106146

    [69]

    徐芮, 孙宁, 孙伟, 等. 分子动力学模拟在矿物浮选中的研究进展[J]. 中南大学学报(自然科学版), 2024, 55(1): 1−19.

    XU R, SUN N, SUN W, et al. Research progress of molecular dynamics simulation in mineral flotation[J]. Journal of Central South University(Science and Technology), 2024, 55(1): 1−19.

    [70]

    ZHANG S, FENG Q, WEN S, et al. Flotation separation of chalcopyrite from molybdenite with sodium thioglycolate: Mechanistic insights from experiments and MD simulations[J]. Separation and Purification Technology, 2024, 342: 126958. doi: 10.1016/j.seppur.2024.126958

  • 加载中

(3)

计量
  • 文章访问数:  33
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2025-03-20
刊出日期:  2025-06-15

目录