Collector Innovation for Efficient Recovery of Fine−grained Molybdenite: from Experimental Screening to Computational Modeling
-
摘要:
微细粒辉钼矿(MoS2)的高效浮选回收是钼资源可持续开发的关键挑战。聚焦捕收剂创新,系统综述了从实验筛选到计算模拟的研究进展:实验层面,纳米乳液、复合捕收剂通过尺寸效应、协同吸附等机制显著提升微细粒辉钼矿回收率;计算模拟层面,密度泛函理论(DFT)与分子动力学(MD)揭示了捕收剂−矿物界面作用机制,支撑了从“经验试错”向“理性设计”的范式转变;新型捕收剂体系也在工业中进行应用实现了回收率的大幅提升。未来研究需突破多尺度模拟精度、绿色药剂成本控制等瓶颈,推动钼资源加工向高效低碳方向演进。
Abstract:Efficient flotation recovery of fine−grained molybdenite (MoS2) represents a critical challenge for the sustainable exploitation of molybdenum resources. This review focuses on collector innovation, systematically summarizing recent advances from experimental screening to computational modeling. At the experimental level, nanoemulsions and composite collectors have significantly enhanced the recovery of fine particles by size effects and synergistic adsorption mechanisms. At the computational modeling level, density functional theory (DFT) and molecular dynamics (MD) simulations have elucidated the interfacial interaction mechanisms between collectors and mineral surfaces, facilitating a paradigm shift from "empirical trial−and−error" to "rational design." Emerging collector systems have demonstrated substantial improvements in recovery during industrial tests. Future research must address bottlenecks such as multiscale simulation accuracy and cost−effective green reagent development to advance molybdenum resource processing toward high−efficiency and low−carbon practices.
-
Key words:
- fine particle flotation /
- molybdenite /
- interfacial interaction /
- collector /
- computational simulation
-
-
图 1 辉钼矿晶体结构[15]
Figure 1.
-
[1] 王修, 刘冲昊, 王安建, 等. 中国钼资源开发利用现状及未来需求预测[J]. 矿产综合利用, 2024, 45(4): 69−75. doi: 10.3969/j.issn.1000-6532.2024.04.010
WANG X, LIU C H, WANG A J, et al. Development and utilization status and future demand forecast of molybdenum resources in China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 69−75. doi: 10.3969/j.issn.1000-6532.2024.04.010
[2] LI Z, WU Q, ZHANG B, et al. On the current situation and resource situation of molybdenum mining development and utilization in China[J]. Science & Technology Review, 2024, 42(5): 47−52.
[3] 朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172−178.
ZHU X R. Analysis of supply and demand situation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 172−178.
[4] 王蕾, 周明智. 国内外钼资源供需形势及未来发展趋势分析[J]. 中国钼业, 2019, 43(5): 57−60.
WANG L, ZHOU M Z. Analysis of supply and demand situation and future development trend of molybdenum resources at home and abroad[J]. China Molybdenum Industry, 2019, 43(5): 57−60.
[5] FENG H K, CAI Z Y, LI Y G, et al. Domestic and overseas research status on molybdenum resources and its use[J]. Research in Materials and Manufacturing Technologies, 2014, 834/835/836: 401−406.
[6] YI G S, MACHA E, VAN DYKE J, et al. Recent progress on research of molybdenite flotation: A review[J]. Advances in Colloid and Interface Science, 2021, 295: 102466. doi: 10.1016/j.cis.2021.102466
[7] HENCKENS M, DRIESSEN P, WORRELL E. Molybdenum resources: Their depletion and safeguarding for future generations[J]. Resources Conservation and Recycling, 2018, 134: 61−69. doi: 10.1016/j.resconrec.2018.03.002
[8] WU J, YANG B, MARTIN R, et al. Anisotropic adsorption of xanthate species on molybdenite faces and edges and its implication on the flotation of molybdenite fines[J]. Minerals Engineering, 2024, 207: 108571. doi: 10.1016/j.mineng.2023.108571
[9] WANG Y, CAO Y, HU S, et al. Effects of solution pH and polyethylene oxide concentrations on molybdenite–molybdenite, molybdenite–kaolinite, and molybdenite–quartz interaction forces: AFM colloidal probe study[J]. Separation and Purification Technology, 2022, 280: 119926. doi: 10.1016/j.seppur.2021.119926
[10] LI S, GAO L, WANG J, et al. Polyethylene oxide assisted separation of molybdenite from quartz by flotation[J]. Minerals Engineering, 2021, 162: 106765. doi: 10.1016/j.mineng.2020.106765
[11] LIU G, YANG X, ZHONG H. Molecular design of flotation collectors: A recent progress[J]. Advances in Colloid and Interface Science, 2017, 246: 181−195. doi: 10.1016/j.cis.2017.05.008
[12] LOTTER N O, BRADSHAW D J. The formulation and use of mixed collectors in sulphide flotation[J]. Minerals Engineering, 2010, 23(11/12/13): 945−951. doi: 10.1016/j.mineng.2010.03.011
[13] LIU Z Q, NIE K K, QU X Y, et al. General bottom−up colloidal synthesis of nano−monolayer transition−metal dichalcogenides with high 1T phase purity[J]. Journal of the American Chemical Society, 2022, 144(11): 4863−4873. doi: 10.1021/jacs.1c12379
[14] HUANG H H, FAN X F, SINGH DAVID J, et al. First principles study on 2H −1T transition in MoS2 with copper[J]. Physical Chemistry Chemical Physics, 2018, 20(42): 26986−26994. doi: 10.1039/C8CP05445B
[15] WANG S, DI Z, LI B, et al. Ultrastable in− plane 1T − 2H MoS2 heterostructures for enhanced hydrogen evolution reaction[J]. Advanced Energy Materials, 2018, 8(25): 1801345. doi: 10.1002/aenm.201801345
[16] ZHANG Y C, ZHANG R J, GUO Y X, et al. A review on MoS2 structure, preparation, energy storage applications and challenges[J]. Journal of Alloys and Compounds, 2024, 998: 174916. doi: 10.1016/j.jallcom.2024.174916
[17] WU J, FENG J, YANG B, et al. The anisotropic adsorption of potassium cetyl phosphate on molybdenite surface and its implication for improving the flotation of molybdenite fines[J]. Journal of Molecular Liquids, 2023, 378: 121616. doi: 10.1016/j.molliq.2023.121616
[18] CHEN X, WANG Z, WEI Y, et al. High phase−purity 1T− MoS2 ultrathin nanosheets by a spatially confined template[J]. Angewandte Chemie (International Edition), 2019, 58(49): 17621−17624. doi: 10.1002/anie.201909879
[19] LEI D, GUI W, ZHAO X, et al. New insight into poor flotation recovery of fine molybdenite: An overlooked phase transition from 2H to 1T MoS2[J]. Separation and Purification Technology, 2023, 304: 122286. doi: 10.1016/j.seppur.2022.122286
[20] CASTRO S, LOPEZ−VALDIVIESO A, LASKOWSKI J S. Review of the flotation of molybdenite. Part I: Surface properties and floatability[J]. International Journal of Mineral Processing, 2016, 148: 48−58. doi: 10.1016/j.minpro.2016.01.003
[21] CHANDER S, FUERSTENAU D W. The effect of potassium diethyldithiophosphate on the electrochemical properties of platinum, copper and copper sulfide in aqueous solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 56(2): 217−247. doi: 10.1016/S0022-0728(74)80330-X
[22] 吕建业, 沈耀平, 张洪恩. 辉钼矿表面特性及其可浮性的研究[J]. 有色金属(选矿部分), 1992(4): 4−8.
LYU J Y, SHEN Y P, ZHANG H G. Study on surface characteristics and floatability of molybdenite[J]. Nonferrous Metals(Mineral Processing Section), 1992(4): 4−8.
[23] WANG H, CHEN L, FU J, et al. Interface thermodynamics of molybdenite floatation system[J]. Journal of Central South University of Science and Technology, 2007, 38(5): 893−899.
[24] LIN Q, GU G, WANG H, et al. Flotation mechanisms of molybdenite fines by neutral oils[J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(1): 1−10. doi: 10.1007/s12613-018-1540-8
[25] LIN Q, WU Q, DAI Z, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3): 37−41+45.
[26] LIN Q, GU G, CHEN X, et al. Flotation kinetics of molybdenite fines[J]. Journal of Central South University of Science and Technology, 2018, 49(7): 1573−1581.
[27] 刘栖巧, 车宇航, 陈伟, 等. 辉钼矿与滑石浮选药剂研究进展[J]. 金属矿山, 2024(2): 56−68.
LIU Q Q, CHE Y H, CHEN W, et al. Research progress in the flotation reagent of molybdenite and talc[J]. Metal Mine, 2024(2): 56−68.
[28] 韩树山. 辉钼矿浮选时巯基捕收剂的作用机理[J]. 国外金属矿选矿, 1974(Z1): 52−82.
HAN S S. The mechanism of action of thiol collectors in molybdenite flotation[J]. Metallic Ore Dressing Abroad, 1974(Z1): 52−82.
[29] 张艳娇, 赵平, 郭珍旭, 等. 极性捕收剂在难选辉钼矿浮选中的应用[J]. 中国矿业, 2015, 24(11): 122−125. doi: 10.3969/j.issn.1004-4051.2015.11.026
ZHANG Y J, ZHAO P, GUO Z X, et al. Application of polar collectors in flotation of refractory molybdenite[J]. China Mining, 2015, 24(11): 122−125. doi: 10.3969/j.issn.1004-4051.2015.11.026
[30] 严海. 铜钼浮选分离新型抑制剂及其机理研究[D]. 武汉: 武汉工程大学, 2022.
YAN H. Novel inhibitors for copper−molybdenum flotation separation and their mechanisms[D]. Wuhan: Wuhan University of Technology, 2022.
[31] 赵开乐, 闫武, 刘飞燕, 等. 细粒嵌布硫化钼矿铜钼高效分离技术[J]. 矿产综合利用, 2021(2): 1−7. doi: 10.3969/j.issn.1000-6532.2021.02.001
ZHAO K L, YAN W, LIU F Y, et al. High−efficiency separation technology of copper and molybdenum sulfide ore with fine grains embedded in cloth[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 1−7. doi: 10.3969/j.issn.1000-6532.2021.02.001
[32] 张萌. O3、O3/H2O2和UV/O3氧化技术降解浮选药剂丁基黄药的研究[D]. 上海: 东华大学, 2011.
ZHANG M. Degradation of butyl xanthate by O3, O3/H2O2 and UV/O3 oxidation techniques[D]. Shanghai: Donghua University, 2011.
[33] 胡运祯. 超声处理铜钼混合精矿对铜钼分离浮选过程的强化作用研究[D]. 赣州: 江西理工大学, 2020.
HU Y Z. Study on the strengthening effect of ultrasonic treatment of copper−molybdenum mixed concentrate on copper−molybdenum separation and flotation process[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
[34] 陈建华, 朱阳戈, 李玉琼, 等. 有色金属硫化矿浮选配位化学[J]. 有色金属(选矿部分), 2024(8): 1−17.
CHEN J H, ZHU Y G, LI Y Q, et al. Coordination chemistry of flotation of nonferrous metal sulfide ores[J]. Nonferrous Metals (Mineral Processing Section), 2024(8): 1−17.
[35] 徐胜. NaHS与L−半胱氨酸组合抑制剂在铜钼分离浮选中的应用研究[D]. 沈阳: 东北大学, 2021.
XU S. Application of NaHS and L−cysteine combination inhibitors in copper−molybdenum separation flotation[D]. Shenyang: Northeastern University, 2021.
[36] WAN H, HE T, YANG J, et al. Experimental study on the improvement of molybdenum flotation by hydrocarbon oil collector[J]. Nonferrous Metals Engineering, 2017, 7(4): 58−63.
[37] WAN H, HE T, YANG J, et al. Influence of process water from molybdenum−tungsten flotation on molybdenite floatation for aliphatic hydrocarbon oil as collectors[J]. Nonferrous Metals Engineering, 2018, 8(1): 66−70.
[38] WAN H, HE T, YANG J, et al. Study on the improvement of molybdenite flotation effect in high calcium recycled water by composite hydrocarbon oil collector[J]. Nonferrous Metals Engineering, 2018, 8(2): 91−95.
[39] WAN H, YI P, SONG X, et al. Role of improving molybdenite flotation by using aromatic hydrocarbon collector in high−calcium water: A multiscale investigation[J]. Minerals Engineering, 2023, 191: 107984. doi: 10.1016/j.mineng.2022.107984
[40] CHAO Y, LI S, GAO L, et al. Enhanced flotation recovery of fine molybdenite particles using a coal tar−based collector[J]. Minerals, 2021, 11(12): 1439. doi: 10.3390/min11121439
[41] LI H, HE T, WAN H, et al. Insights into selection of the auxiliary collector and its applicability analysis for improving molybdenite flotation[J]. Minerals, 2021, 11(5): 528. doi: 10.3390/min11050528
[42] LI L, LI S, GAO L, et al. Influence mechanism of a compound collector from coal tar and dodecane in the flotation of fine molybdenite particles[J]. Minerals Engineering, 2023, 202: 108242. doi: 10.1016/j.mineng.2023.108242
[43] HUANG H, HUANG K, ZENG H. Influence mechanism of a compound collector from edible fatty acid−based oil and polycyclic aromatic hydrocarbons in the flotation of fine molybdenite particles[J]. Colloids and Surfaces a−Physicochemical and Engineering Aspects, 2025, 708: 135987.
[44] MA Z, PAN W, LI S, et al. Study on the flotation mechanism of molybdenite fines by synergistic enhancement of n−dodecanethiol and kerosene[J]. Journal of China University of Mining & Technology, 2023, 52(6): 1231−1240.
[45] PAN W, LI S, ZHU Y, et al. Application of a novel auxiliary collector for molybdenite fines recovery in sustainable froth flotation production: Combining DFT calculations and experiments[J]. Colloids and Surfaces a−Physicochemical and Engineering Aspects, 2025, 704. DOI: 10.1016/j.colsurfa.2024.135570.
[46] 白阳. 组合捕收剂在白云母浮选中的协同作用及其机理研究[D]. 阜新: 辽宁工程技术大学, 2020.
BAI Y. Study on the synergistic effect and mechanism of combined collectors in muscovite flotation[D]. Fuxin: Liaoning Technical University, 2020.
[47] 徐龙华, 田佳, 巫侯琴, 等. 组合捕收剂在矿物表面的协同效应及其浮选应用综述[J]. 矿产保护与利用, 2017(2): 107−112.
XU L H, TIAN J, WU H Q, et al. Review of synergy effect of combined collectors on mineral surfaces and their flotation applications[J]. Conservation and Utilization of Mineral Resources, 2017(2): 107−112.
[48] 胡岳华, 韩海生, 田孟杰, 等. 苯甲羟肟酸铅金属有机配合物在氧化矿浮选中的作用机理及其应用[J]. 矿产保护与利用, 2018(1): 42−47.
HU Y H, HAN H S, TIAN M J, et al. The action mechanism and application of lead−metal−organic complexes of benzohydroxamic acid in oxidation ore flotation[J]. Conservation and Utilization of Mineral Resources, 2018(1): 42−47.
[49] 王林林, 朱灵燕, 刘跃龙, 等. 阴阳离子混合捕收剂用于中低品位锂云母的浮选试验研究[J]. 有色金属(选矿部分), 2019(3): 86−92.
WANG L L, ZHU L Y, LIU Y L, et al. Flotation test of mixed anion and cation collectors for medium and low grade lithium mica[J]. Nonferrous Metals (Mineral Processing), 2019(3): 86−92.
[50] SUN W, WANG J, HAN H, et al. Advances in flotation reagent interfacial assembly technology[J]. Journal of China University of Mining & Technology, 2022, 51(3): 544−553.
[51] ZHANG X, GUO D, WANG L, et al. Autogenous−carrier flotation of coal slime[J]. Journal of China Coal Society, 2018, 43(4): 1127−1133.
[52] KANG W, WANG H, KONG X, et al. Study of flotation performance of kerosene after ultrasonic emulsified[J]. Journal of China Coal Society, 2008, 33(1): 89−93.
[53] 宛鹤, 何廷树, 杨剑波, 等. 辉钼矿捕收剂的应用现状和发展趋势[J]. 矿山机械, 2016, 44(12): 1−6.
WAN H, HE T S, YANG J B, et al. Application status and development trend of molybdenite collectors[J]. Mining Machinery, 2016, 44(12): 1−6.
[54] SIDDIQUI S W, NORTON I T. Oil−in−water emulsification using confined impinging jets[J]. Journal of Colloid and Interface Science, 2012, 377: 213−221. doi: 10.1016/j.jcis.2012.03.062
[55] 王志远. 水包油型乳化柴油制备及其强化辉钼矿浮选的机理研究[D]. 西安: 西安建筑科技大学, 2022.
WANG Z Y. Preparation of oil−in−water emulsified diesel and its mechanism for strengthening molybdenite flotation[D]. Xi'an : Xi'an University of Architecture and Technology, 2022.
[56] 王森, 王志远, 宛鹤, 等. 水包油型乳化柴油制备及其对辉钼矿浮选的强化[J]. 金属矿山, 2023(1): 204−209.
WANG S, WANG Z Y, WAN H, et al. Preparation of oil−in−water emulsified diesel and its enhancement for molybdenite flotation[J]. Metal Mine, 2023(1): 204−209.
[57] YOU X, LI L, LYU X. Flotation of molybdenite in the presence of microemulsified collector[J]. Physicochemical Problems of Mineral Processing, 2017, 53(1): 333−340.
[58] WU J, YANG B, SONG S, et al. The efficient recovery of molybdenite fines using a novel collector : Flotation performances, adsorption mechanism and DFT calculation[J]. Minerals Engineering, 2022, 188: 107848.
[59] WU J, LI S Y, YANG B Q, et al. Improving the flotation of molybdenite fines based on the targeted regulation of edges using a novel chelating collector[J]. Colloids and Surfaces A−Physicochemical and Engineering Aspects, 2024, 703: 135354.
[60] CHEN J, LING Y, SUN Y, et al. Molecular simulation study of quaternary ammonium salts adsorption on kaolinite surfaces[J]. Journal of China University of Mining & Technology, 2021, 50(6): 1204−1211.
[61] ZHAO L, GAO J, XU C. Molecular calculation theory method and its application in chemical engineering calculation field[J]. Computers and Applied Chemistry, 2004, 21(5): 764−772.
[62] 高倪, 范永太, 邵泽庆, 等. 计算化学的应用研究进展[J]. 山东化工, 2020, 49(6): 88−89. doi: 10.3969/j.issn.1008-021X.2020.06.032
GAO N, FAN Y T, SHAO Z Q, et al. Application research progress of computational chemistry[J]. Shandong Chemical Industry, 2020, 49(6): 88−89. doi: 10.3969/j.issn.1008-021X.2020.06.032
[63] 孙伟松, 于思荣, 孙霜青, 等. 分子动力学模拟方法应用于环氧树脂涂料的研究进展[J]. 当代化工, 2022, 51(11): 2704−2708. doi: 10.3969/j.issn.1671-0460.2022.11.038
SUN W S, YU S R, SUN S Q, et al. Research progress of molecular dynamics simulation method applied to epoxy resin coatings[J]. Contemporary Chemical Industry, 2022, 51(11): 2704−2708. doi: 10.3969/j.issn.1671-0460.2022.11.038
[64] ZHAO C, CHEN J, WU B, et al. Density functional theory study on natural hydrophobicity of sulfide surfaces[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2): 491−498. doi: 10.1016/S1003-6326(14)63087-9
[65] LIN Q, ZHAN X, ZHANG H, et al. Crystal structures and surface properties of molybdenite and pyrite[J]. Mining and Metallurgical Engineering, 2019, 39(3): 40−45.
[66] 魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3): 31−36.
WEI Z L, LI Y B. Molybdenite crystal plane anisotropy and its influence mechanism on flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 31−36.
[67] WAN H, YI P, QU J, et al. Adsorption behaviors of straight−chain alkanes on a molybdenite [001]/ [100] surface: A molecular dynamics study[J]. Minerals, 2021, 11(5): 489. doi: 10.3390/min11050489
[68] LI S, MA X, WANG J, et al. Effect of polyethylene oxide on flotation of molybdenite fines[J]. Minerals Engineering, 2020, 146: 106146. doi: 10.1016/j.mineng.2019.106146
[69] 徐芮, 孙宁, 孙伟, 等. 分子动力学模拟在矿物浮选中的研究进展[J]. 中南大学学报(自然科学版), 2024, 55(1): 1−19.
XU R, SUN N, SUN W, et al. Research progress of molecular dynamics simulation in mineral flotation[J]. Journal of Central South University(Science and Technology), 2024, 55(1): 1−19.
[70] ZHANG S, FENG Q, WEN S, et al. Flotation separation of chalcopyrite from molybdenite with sodium thioglycolate: Mechanistic insights from experiments and MD simulations[J]. Separation and Purification Technology, 2024, 342: 126958. doi: 10.1016/j.seppur.2024.126958
-