Effect of Carbon Chain Structure on the Quantum Chemical Properties of Xanthate Collector Molecules
-
摘要:
黄药是硫化矿浮选常用的捕收剂,其碳链长度和结构影响其捕收性能。基于密度泛函理论(DFT)计算了C1~C5碳链长度的正构和异构黄药的极性官能团−OCSS−的键结构特征、前线轨道能量,并计算了S原子的轨道系数、Mulliken电荷和亲电亲核性。结果表明,碳链长度对捕收剂官能团键结构特征影响并不显著,碳链上的H原子与极性基S原子会发生较弱的氢键作用,且随着碳链的增长而增强,造成了官能团键结构的细微差异。黄原酸根离子极性官能团中的两个S原子电荷相近,均是亲核的,但S原子的亲核性存在差异,导致在矿物表面具有不同的吸附能力。除丁基和异丁基黄原酸根离子外,异构体黄原酸根离子的最高占据分子轨道(HOMO)与黄铁矿的最低空轨道(LUMO)的能量差,低于正构体黄原酸根离子的能量差,这说明异构体有利于增强捕收剂的捕收能力,这与Fe2+离子和黄原酸根离子的结合能计算结果一致,其中,异丙基和异丁基黄原酸根离子与Fe2+离子的结合能较大。
Abstract:Xanthates are commonly used as flotation collectors for sulfide ores, and the length and structure of the carbon chain will affect their capture performance. Based on density functional theory (DFT), the bond structure characteristics and frontier orbital energies of polar functional groups −OCSS− of normal and isomeric xanthate ions with C1 to C5 carbon chain lengths were calculated, the orbital coefficient, Mulliken charge, electrophilicity and nucleophilicity of the S atoms were also calculated. The results show that the length of the carbon chain has no significant effect on the structural characteristics of the functional group bonds of the collector, the H atoms on the carbon chain have weak hydrogen bonding with the polar group S atoms, which increase with the growth of the carbon chain, resulting in subtle differences in the functional group bond structure. The two S atoms in the polar functional groups of xanthate ions have similar charges and are both nucleophilic, but the nucleophilicity of the S atoms varies, resulting in different adsorption abilities on mineral surfaces. Except for butyl and isobutyl xanthate ions, the energy difference between the highest occupied molecular orbital (HOMO) of isomeric xanthate ions and the lowest unoccupied orbital (LUMO) of pyrite is lower than that of the normal xanthate ions. This indicates that isomers are beneficial for enhancing the collection ability of collectors, which is consistent with the calculated binding energy of xanthate ions and Fe2+. Among them, isopropyl and isobutyl xanthate ions have higher binding energies with Fe2+.
-
Key words:
- xanthate ions /
- density functional theory /
- frontier orbital /
- reactivity
-
-
表 1 乙黄药官能团(−OCSS−)在不同泛函和基组下几何结构优化后的结构参数
Table 1. Structures of ethyl xanthate in different functionals and basis sets after the geometric optimization
基组 泛函 键长/Å(1 Å= 0.1 nm) 键角
(∠S1−C−S2)/(°)R(C−O) R(C−S1) R(C=S2) DNP3.5 LDA VWN 1.380 1.672 1.687 126.7 LDA PWC 1.382 1.673 1.687 126.7 GGA PW91 1.385 1.725 1.705 125.2 GGA PBE 1.380 1.726 1.703 126.4 GGA BLYP 1.377 1.727 1.722 126.8 GGA RPBE 1.383 1.725 1.713 125.7 B3LYP 1.386 1.724 1.710 127.3 DND3.5 LDA VWN 1.378 1.671 1.686 126.6 LDA PWC 1.378 1.669 1.686 126.6 GGA PW91 1.381 1.667 1.703 126.6 GGA PBE 1.383 1.723 1.702 126.2 GGA BLYP 1.377 1.725 1.721 127.2 GGA RPBE 1.385 1.724 1.713 125.5 B3LYP 1.322 1.727 1.710 127.3 DNP+ LDA VWN 1.321 1.666 1.680 125.9 LDA PWC 1.321 1.668 1.681 125.9 GGA PW91 1.377 1.668 1.697 125.9 GGA PBE 1.377 1.670 1.704 125.9 GGA BLYP 1.378 1.724 1.714 126.2 GGA RPBE 1.381 1.725 1.705 125.1 实验值 1.350 1.700 1.670 124.0 表 2 黄原酸根离子结构
Table 2. Ionic structure of xanthate collectors
结构式 名称 疏水基 甲基黄药 −CH3 乙基黄药 −C2H5 丙基黄药 −C3H7 异丙基黄药 −C3H7 丁基黄药 −C4H9 异丁基黄药 −C4H9 戊基黄药 −C5H11 异戊基黄药 −C5H11 表 3 捕收剂离子官能团的键长和键角
Table 3. Bond length and bond angle of functional group of the collectors
疏水基 名称 键长/Å 键角 R(C−O) R(C−S1) R(C=S2) (∠S1−C−S2)/(°) −CH3 甲基黄药 1.394 1.717 1.713 127.0 −C2H5 乙基黄药 1.377 1.727 1.722 126.8 −C3H7 丙基黄药 1.393 1.719 1.716 126.1 异丙基黄药 1.402 1.718 1.710 125.4 −C4H9 丁基黄药 1.395 1.727 1.710 125.8 异丁基黄药 1.395 1.723 1.712 126.1 −C5H11 戊基黄药 1.390 1.720 1.718 126.5 异戊基黄药 1.394 1.718 1.715 126.4 表 4 黄原酸根离子中的S1原子与碳链上H原子之间的距离
Table 4. The distance between the S atom and the hydrogen in the carbon chain of different xanthate ions
疏水基 名称 距离/Å D(S1−H1) D(S1−H2) −CH3 甲基黄药 2.541 3.504 −C2H5 乙基黄药 2.927 3.061 −C3H7 丙基黄药 2.896 3.375 异丙基黄药 3.345 —— −C4H9 丁基黄药 2.880 3.301 异丁基黄药 2.848 3.351 −C5H11 戊基黄药 2.827 3.253 异戊基黄药 2.789 3.246 表 5 捕收剂与黄铁矿前线轨道能量
Table 5. Collector with pyrite frontier orbital energy
疏水基 名称 前线轨道能量/eV E1=|EHOMO−X−ELUMO−pyrite|
E2=|EHOMO− pyrite −ELUMO−X|
HOMO LUMO −CH3 甲基黄药 −3.991 −1.398 0.171 3.815 −C2H5 乙基黄药 −3.953 −1.191 0.134 4.022 −C3H7 丙基黄药 −3.955 −1.338 0.136 3.875 异丙基黄药 −3.853 −1.595 0.034 3.618 −C4H9 丁基黄药 −3.957 −1.293 0.138 3.920 异丁基黄药 −3.962 −1.367 0.143 3.846 −C5H11 戊基黄药 −3.974 −1.319 0.155 3.894 异戊基黄药 −3.968 −1.386 0.149 3.827 黄铁矿 −5.213 −3.819 表 6 官能团中原子的前线轨道系数
Table 6. Frontier orbital coefficients of atoms in functional groups
疏水基 名称 HOMO LUMO S1 3p S2 3p C 2p O 2p S1 3p S2 3p C 2p O 2p −CH3 甲基黄药 0.573 0.632 0.023 0.133 0.558 0.559 0.854 0.324 −C2H5 乙基黄药 0.524 0.708 0.025 0.102 0.550 0.523 0.863 0.405 −C3H7 丙基黄药 0.509 0.683 0.025 0.129 0.556 0.538 0.854 0.341 异丙基黄药 0.677 0.533 0.019 0.253 0.520 0.521 0.752 0.209 −C4H9 丁基黄药 0.630 0.563 0.021 0.084 0.497 0.537 0.817 0.392 异丁基黄药 0.556 0.641 0.020 0.082 0.440 0.419 0.684 0.327 −C5H11 戊基黄药 0.535 0.656 0.034 0.121 0.547 0.541 0.853 0.358 异戊基黄药 0.508 0.668 0.038 0.132 0.545 0.554 0.839 0.324 表 7 S原子的Mulliken电荷值
Table 7. Mulliken charge value of the S atom
疏水基 名称 S1/e S2/e −CH3 甲基黄药 −0.663 −0.674 −C2H5 乙基黄药 −0.681 −0.701 −C3H7 丙基黄药 −0.671 −0.683 异丙基黄药 −0.663 −0.649 −C4H9 丁基黄药 −0.691 −0.667 异丁基黄药 −0.667 −0.683 −C5H11 戊基黄药 −0.673 −0.686 异戊基黄药 −0.668 −0.678 表 8 S原子的亲电亲核指数
Table 8. Electrophilic and nucleophilic index of S atom
疏水基 名称 亲电攻击指数f − 亲核攻击指数f + f 2(r) S1 S2 S1 S2 S1 S2 −CH3 甲基黄药 0.420 0.469 0.359 0.371 −0.061 −0.098 −C2H5 乙基黄药 0.418 0.477 0.358 0.362 −0.060 −0.115 −C3H7 丙基黄药 0.418 0.474 0.359 0.367 −0.059 −0.107 异丙基黄药 0.435 0.447 0.375 0.374 −0.060 −0.073 −C4H9 丁基黄药 0.483 0.409 0.363 0.360 −0.120 −0.049 异丁基黄药 0.412 0.479 0.361 0.368 −0.051 −0.111 −C5H11 戊基黄药 0.422 0.468 0.358 0.366 −0.064 −0.102 异戊基黄药 0.421 0.468 0.358 0.370 −0.063 −0.098 表 9 药剂与2价铁离子作用结果
Table 9. Result of the interaction of the reagent with iron ions
疏水基 名称 键长/Å 结合能/(kJ·mol−1) Fe−S1 Fe−S2 −CH3 甲基黄药 2.311 2.296 −306.088 −C2H5 乙基黄药 2.286 2.280 −309.522 −C3H7 丙基黄药 2.290 2.282 −311.101 异丙基黄药 2.301 2.300 −311.944 −C4H9 丁基黄药 2.292 2.288 −311.216 异丁基黄药 2.299 2.294 −312.000 −C5H11 戊基黄药 2.289 2.284 −311.502 异戊基黄药 2.315 2.308 −311.303 -
[1] 汤亦婧, 罗思岗, 陆红羽. 辽宁某金矿选矿试验研究[J]. 有色金属(选矿部分), 2022(4): 105−110.
TANG Y J, LUO S G, LU H Y. Experimental research on mineral processing for a gold ore in Liaoning province[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 105−110.
[2] ZHONG C H, FENG B, CHEN Y G, et al. Flotation separation of molybdenite and talc using tragacanth gum as depressant and potassium butyl xanthate as collector[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(12): 3879−3890.
[3] 朱永谊. 黄铜矿浮选工艺及捕收剂研究进展[J]. 世界有色金属, 2020(18): 59−60.
ZHU Y Y. Research progress of chalcopyrite flotation technology and collectors[J]. World Nonferrous Metals, 2020(18): 59−60.
[4] 姜毛, 张覃, 李龙江. 黄药类捕收剂与载金黄铁矿的作用机理研究[J]. 矿冶工程, 2015, 35(3): 44−47.
JIANG M, ZHANG Q, LI L J. Interaction mechanism between xanthate collectors and gold−bearing pyrite[J]. Mining and Metallurgical Engineering, 2015, 35(3): 44−47.
[5] R 普雷西斯, 崔洪山, 李长根. 黄铁矿浮选中硫代碳酸盐捕收剂的基础理论和应用[J]. 国外金属矿选矿, 2004(8): 14−18.
R. PRESIS, CUI H S, LI C G. Basic theory and application of thiocarbonate collectors in pyrite flotation[J]. Metallic Ore Dressing Abroad, 2004(8): 14−18.
[6] 冯真真, 陶强, 车礼东. 黄原酸盐的应急处理[J]. 安全, 2011, 32(3): 51−54.
FENG Z Z, TAO Q, CHE L D. Emergency treatment of xanthate[J]. Safety & Security, 2011, 32(3): 51−54.
[7] 韩德红. 异丙基黄原酸钠的生产工艺[J]. 河北化工, 2011, 34(2): 44−45.
HAN D H. Production process of sodium isopropyl xanthate[J]. Coal and Chemical Industry, 2011, 34(2): 44−45.
[8] 张华谦. 异丙基黄药性能简介[J]. 有色金属(选矿部分), 1983(4): 56−57.
ZHANG H Q. Introduction to the properties of isopropyl xanthate[J]. Nonferrous Metals (Mineral Processing Section), 1983(4): 56−57.
[9] 朱一民. 2023年浮选药剂研究进展[J]. 有色金属(选矿部分), 2024(3): 1−22.
ZHU Y M. Progress of flotatioin reagents in 2023[J]. Nonferrous Metals (Mineral Processing Section), 2024(3): 1−22.
[10] 李双棵, 顾帼华, 邱冠周, 等. N−丙基−N′−乙氧羰基硫脲对黄铜矿和黄铁矿的浮选及其电化学行为(英文)[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1241−1247. doi: 10.1016/S1003-6326(18)64762-4
LI S K, GU G H, QIU G Z, et al. Flotation and electrochemical behaviors of chalcopyrite and pyrite in the presence of N−propyl−N′−ethoxycarbonyl thiourea[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1241−1247. doi: 10.1016/S1003-6326(18)64762-4
[11] 肖文革, 范志鸿, 李红艳, 等. 异戊基黄原酸钾合成品及粒状干制品配方的生产工艺研究[J]. 有色矿冶, 2018, 34(3): 28−30.
XIAO W G, FAN Z H, LI H Y, et al. Study of the formula for production technology of potassium isoamyl xanthate synthesis and drying pellet product[J]. Non−Ferrous Mining and Metallurgy, 2018, 34(3): 28−30.
[12] CASES J. M., 郑昕. 细磨方铅矿和戊基钾黄药的反应与浮选的关系: pH、磨矿及捕收剂浓度的影响[J]. 国外金属矿选矿, 1992(9): 15−20.
CASES J. M., ZHENG X. The relationship between the reaction and flotation of finely ground galena and amyl potassium xanthate: The effects of pH, grinding and collector concentration[J]. Metallic Ore Dressing Abroad, 1992(9): 15−20.
[13] 阎赞, 王想, 王闻单, 等. 商洛某金矿石浮选正交试验研究[J]. 当代化工, 2022, 51(10): 2274−2277.
YAN Z, WANG X, WANG W D, et al. Orthogonal experimental study on flotation of a certain gold ore in Shangluo[J]. Contemporary Chemical Industry, 2022, 51(10): 2274−2277.
[14] YEKELER M, YEKELER H. A density functional study on the efficiencies of 2−mercaptobenzoxazole and its derivatives as chelating agents in flotation processes[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2006, 286(1/2/3): 121−125.
[15] 曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12): 1589−1594.
CAO F, SUN C Y, WANG H J, et al. Effect of alkyl structure on the flotation performance of xanthate collectors[J]. Chinese Journal of Engineering, 2014, 36(12): 1589−1594.
[16] 刘凤霞. 氧化铅浮选黄药分子结构与性能研究[D]. 南宁: 广西大学, 2007.
LIU F X. Study on the molecular structure and properties of xanthate from lead oxide flotation[D]. Nanning: Guangxi University, 2007.
[17] 卢绿荣, 陈建华, 李玉琼. 硫化矿浮选捕收剂分子结构与性能的电子态密度研究[J]. 中国有色金属学报, 2018, 28(7): 1482−1490.
LU L R, CHEN J H, LI Y Q. Electronic states density study of molecular structures and activity of sulfide floatation collectors[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1482−1490.
[18] CHERMETTE H. Chemical reactivity indexes in density functional theory[J]. Journal of Computational Chemistry, 1999, 20(1). DOI:10.1002/(SICI)1096-987X(19990115)20:13.0.CO;2-A.
[19] HUNG A, YAROVSKY I, P. RUSSO S. Density−functional theory studies of xanthate adsorption on the pyrite FeS2 (110) and (111) surfaces[J]. The Journal of Chemical Physics, 2003, 118(13): 6022−6029. doi: 10.1063/1.1556076
[20] GREENWOOD H H. Molecular orbital theory of reactivity in aromatic hydrocarbons[J]. The Journal of Chemical Physics, 2004, 20(10): 1653.
[21] FUKUI K. Theory of orientation and stereoselection[M]. Springer: berlin, Heidelberg, 1975.
[22] PARR R G, YANG W. Density functional approach to the frontier−electron theory of chemical reactivity[J]. Journal of The American Chemical Society, 2002, 106(14): 4049−4050.
[23] R. S. Mulliken. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities[J]. The Journal of Chemical Physics, 1934, 2(11): 782−793. doi: 10.1063/1.1749394
[24] R. K. Roy. Stockholders Charge Partitioning Technique. A Reliable Electron Population Analysis Scheme to Predict Intramolecular Reactivity Sequence[J]. The Journal of Physical Chemistry A, 2003, 107(48): 10428−10434. doi: 10.1021/jp035848z
[25] CHRISTOPHE MORELL, PAUL W, AYERS, ANDRE GRAND, et al. Rationalization of diels−alder reactions through the use of the dual reactivity descriptor Δf(r)[J]. Phys. Chem. Chem. Phys., 2008, 10: 7239−7246. doi: 10.1039/b810343g
[26] CHRISTOPHE MORELL, ANDRE GRAND, ALEJANDRO TORO−LABBE. Theoretical support for using the Δf(r) descriptor[J]. Chem. Phys. Lett., 2006, 425: 342−346. doi: 10.1016/j.cplett.2006.05.003
[27] CHRISTOPHE MORELL, ANDRE GRAND, ALEJANDRO TORO−LABBE. New dual descriptor for chemical reactivity[J]. The Journal of Physical Chemistry A, 2005, 109(1): 205−212.
-