超声波处理聚丙烯酰胺对辉钼矿浮选的影响及机理研究

祁梦瑶, 沙津汀, 罗振恺, 彭伟军, 曹亦俊, 王伟, 张龙玉, 黄宇坤. 超声波处理聚丙烯酰胺对辉钼矿浮选的影响及机理研究[J]. 矿产保护与利用, 2025, 45(2): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2025.02.007
引用本文: 祁梦瑶, 沙津汀, 罗振恺, 彭伟军, 曹亦俊, 王伟, 张龙玉, 黄宇坤. 超声波处理聚丙烯酰胺对辉钼矿浮选的影响及机理研究[J]. 矿产保护与利用, 2025, 45(2): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2025.02.007
QI Mengyao, SHA Jinting, LUO zhenkai, PENG Weijun, CAO Yijun, WANG Wei, ZHANG Longyu, HUANG Yukun. Effect and Mechanism of Ultrasonic Treatment of Polyacrylamide on Molybdenite Flotation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2025.02.007
Citation: QI Mengyao, SHA Jinting, LUO zhenkai, PENG Weijun, CAO Yijun, WANG Wei, ZHANG Longyu, HUANG Yukun. Effect and Mechanism of Ultrasonic Treatment of Polyacrylamide on Molybdenite Flotation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2025.02.007

超声波处理聚丙烯酰胺对辉钼矿浮选的影响及机理研究

  • 基金项目: 2024年河南省自然科学基金面上项目(242300420002);郑州大学青年教师培育基金(JC23563033);中原关键金属实验室“高峰”攀登科技项目(GJJSGFYQ202334)
详细信息
    作者简介: 祁梦瑶(2000—),男,博士研究生,主要从事战略性矿产资源高效分选等方面的研究工作,E−mail:hgqmy@gs.zzu.edu.cn
    通讯作者: 彭伟军(1986—),男,教授,博士,博士生导师,主要从事战略性矿产资源高效分选与选冶固废资源化利用等方面的研究工作,E-mail:pwj@zzu.edu.cn
  • 中图分类号: TD923

Effect and Mechanism of Ultrasonic Treatment of Polyacrylamide on Molybdenite Flotation

More Information
  • 钼矿浮选过程中会产生大量的选矿废水,为使选矿废水满足回用要求,通常添加絮凝剂——聚丙烯酰胺(PAM)加速微细粒矿泥沉降,使上层清水回用。然而,随着选矿废水回用次数增加,废水中累积的PAM严重抑制辉钼矿浮选,降低其回收率。考察了PAM对辉钼矿浮选行为的影响,探究经超声波处理后含PAM选矿回水对辉钼矿浮选行为的影响规律与机制。结果表明,PAM的存在大幅降低了辉钼矿的表面疏水性,抑制了辉钼矿浮选,其抑制作用随PAM质量浓度增大而增强。经超声波处理后,辉钼矿可浮性回升。5 mg/L PAM溶液在600 W功率下超声波处理9 min后,辉钼矿的浮选回收率达到68.63%。进一步研究表明,溶液中的微气核空化泡在超声波作用下振动,在一定声压下生长和崩溃,并伴随着自由基的产生,可以击碎和氧化降解PAM,使PAM分子链断裂,相对分子质量迅速下降。采用超声波处理含PAM废水,可提高钼矿选矿废水回用率和辉钼矿浮选回收率,同时增加水资源循环利用效率。

  • 加载中
  • 图 1  5 mg/L PAM溶液中的相对分子质量分布

    Figure 1. 

    图 2  浮选工艺流程

    Figure 2. 

    图 3  PAM质量浓度对辉钼矿浮选回收率的影响

    Figure 3. 

    图 4  乳化煤油用量对辉钼矿浮选回收率的影响

    Figure 4. 

    图 5  不同功率超声处理过后的PAM对辉钼矿浮选回收率的影响

    Figure 5. 

    图 6  不同时间超声波处理后的PAM对辉钼矿浮选回收率的影响

    Figure 6. 

    图 7  乳化煤油用量对辉钼矿浮选回收率的影响

    Figure 7. 

    图 9  400 W功率下不同质量浓度PAM的紫外光谱图变化(a—5 mg/L;b—7.5 mg/L;c—10 mg/L)

    Figure 9. 

    图 8  200 W功率下不同质量浓度PAM的紫外光谱图变化(a—5 mg/L;b—7.5 mg/L;c—10 mg/L)

    Figure 8. 

    图 11  800 W功率下不同质量浓度PAM的紫外光谱图变化(a—5 mg/L;b—7.5 mg/L;c—10 mg/L)

    Figure 11. 

    图 10  600 W功率下不同质量浓度PAM的紫外光谱图变化(a—5 mg/L;b—7.5 mg/L;c—10 mg/L)

    Figure 10. 

    图 12  5 mg/L PAM经600 W功率的超声波处理9 min后的相对分子质量分布

    Figure 12. 

    图 13  PAM、超声波处理后的PAM、辉钼矿、辉钼矿+PAM、辉钼矿+超声波处理后的PAM在不同pH下的Zeta电位

    Figure 13. 

    图 14  不同条件下辉钼矿的接触角

    Figure 14. 

  • [1]

    陈振国. 铅锌选矿废水处理及回用试验研究[J]. 湖南有色金属, 2024, 40(1): 106−109.

    CHEN Z G. Experimental study on wastewater treatment and reuse of a lead zinc mineral processing enterprise[J]. Hunan Nonferrous Metals, 2024, 40(1): 106−109.

    [2]

    赵宇航. 淀粉对黄铜矿和辉钼矿浮选行为的影响及机理研究[D]. 昆明: 昆明理工大学, 2023: 1−3.

    ZHAO Y H, Effect of starch on flotation behavior of chalcopyrite and molybdenite and its mechanism[D]. Kunming: Kunming University of Science and Technology, 2023: 1−3.

    [3]

    郑永兴, 黄宇松, 吕晋芳, 等. 有色金属选矿废水处理研究现状与进展[J]. 矿产综合利用, 2023(2): 177−183+190. doi: 10.3969/j.issn.1000-6532.2023.02.027

    ZHENG Y X, HUANG Y S, LV J F, et. al. Research status and development of non−ferrous metal beneficiation wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2023(2): 177−183+190. doi: 10.3969/j.issn.1000-6532.2023.02.027

    [4]

    宛鹤, 何廷树. 选钼废水性质及回用现状[J]. 中国钼业, 2016, 40(5): 11−15.

    WAN H, HE T S. Properties of molybdenum beneficiation wastewater and its reuse[J]. China Molybdenum Industry, 2016, 40(5): 11−15.

    [5]

    吕帅, 彭伟军, 苗毅恒, 等. 聚丙烯酰胺类絮凝剂在矿业领域的研究进展[J]. 矿产保护与利用, 2021, 41(1): 79−84.

    LV S, PENG W J, MIAO Y H, et. al. Advances of polyacrylamide flocculants in mining industry[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 79−84.

    [6]

    CASTRO S, LASKOWSKI J S. Depressing effect of flocculants on molybdenite flotation[J]. Minerals Engineering, 2015, 74: 13−19. doi: 10.1016/j.mineng.2014.12.027

    [7]

    ESTRADA D, ECHEVERRY L, RAMIREZ A, et al. Molybdenite flotation in the presence of a polyacrylamide of low anionicity subjected to different conditions of mechanical shearing[J]. Minerals, 2020, 10(10): 895. doi: 10.3390/min10100895

    [8]

    王珊珊, 尚保亚, 宋博溢, 等. 含聚丙烯酰胺污水处理技术的研究进展[J]. 生物加工过程, 2024, 22(2): 166−172. doi: 10.3969/j.issn.1672-3678.2024.02.006

    WANG S S, SHANG B Y, SONG B Y, et al. Recent advances of treating polyacrylamide−containing sewage[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(2): 166−172. doi: 10.3969/j.issn.1672-3678.2024.02.006

    [9]

    WEN Q X, ZHANG H C, CHEN Z Q, et al. Bioaugmentation for polyacrylamide degradation in a sequencing batch reactor and contact oxidation reactor[J]. Journal of Environmental Science & Health, 2012, 47(3): 358−365.

    [10]

    詹亚力, 杜娜, 郭绍辉. 聚丙烯酰胺水溶液的氧化降解作用研究[J]. 石油大学学报(自然科学版), 2005(2): 108−111+120.

    ZHAN Y L, DU N, GUO S H. Oxidative degradation of partially hydrolyzed polyacrylamide in aqueous solution[J]. Journal of China University of Petroleum(Edition of Natural Science), 2005(2): 108−111+120.

    [11]

    孙鼎承, 李志励. Fenton法氧化降解油田污水中聚丙烯酰胺的研究[J]. 化学工程师, 2014, 28(6): 66−69.

    SUN D C, LI Z L. Study on the oxidative degradation of HPAM in oilfiled sewage by Fenton's peroxidation[J]. Chemical Engineer, 2014, 28(6): 66−69.

    [12]

    尚会建, 周艳丽, 赵彦, 等. 活性炭催化臭氧氧化处理低浓度氨氮废水[J]. 化工环保, 2012, 32(5): 405−408.

    SHANG H J, ZHOU Y L, ZHAO Y, et al. Treatment of low concentration ammonia nitrogen wastewater by ozone oxidation catalyzed by activated carbon[J]. Environmental Protection of Chemical Industry, 2012, 32(5): 405−408.

    [13]

    CAULFIELD M J, HAO X, QIAO G G, et al. Degradation on polyacrylamides[J]. Polymer, 2003, 44(5): 1331−1337. doi: 10.1016/S0032-3861(03)00003-X

    [14]

    赵东松. 聚丙烯酰胺废水电催化氧化处理技术研究[D]. 北京: 中国石油大学(北京), 2022: 10−12.

    ZHAO D S. Study on treatment of PAM wastewater by electrochemical oxidation[D]. Beijing: China University of Petroleum (Beijing), 2022: 10−12.

    [15]

    杨逸. 电Fenton降解聚丙烯酰胺废水研究[D]. 荆州: 长江大学, 2023: 13−15.

    YANG Y. Study on degradation of polyacrylamide wastewater by electro−Fenton process[D]. Jingzhou: Yangtze University, 2023: 13−15.

    [16]

    王泉, 祝宏平, 李洁冰, 等. 超声波降解油田含聚污水研究进展[J]. 声学技术, 2018, 37(2): 141−145.

    WANG Q, ZHU H P, LI J B, et al. Research progress in ultrasonic degradation technique of polymer−bearing oilfield wastewater[J]. Technical Acoustics, 2018, 37(2): 141−145.

    [17]

    YEN H Y, YANG M H. The ultrasonic degradation of polyacrylamide solution[J]. Polymer Testing, 2003, 22(2): 129−131. doi: 10.1016/S0142-9418(02)00054-5

    [18]

    A·布尔顿, 白秀梅, 雨田. 用聚丙烯酰胺聚合物选择性抑制黄铁矿[J]. 国外金属矿选矿, 2001(3): 36−38+31.

    A·BURTON, BAI X M, YU T. Selective inhibition of pyrite with polyacrylamide polymer[J]. Metallic Ore Dressing Abroad, 2018, 37(3): 141−145.

    [19]

    孙士强. 金堆城钼精矿浮选提纯试验研究[D]. 徐州: 中国矿业大学, 2016: 21−22.

    SUN S Q. Experimental research on flotation purification of molybdenum concentrationfrom Jinduicheng plant[D]. Xuzhou: China University of Mining and Technology, 2016: 21−22.

    [20]

    马江雅, 郑怀礼, 卢伟, 等. 紫外光引发合成阴离子聚丙烯酰胺及其表征[J]. 光谱学与光谱分析, 2012, 32(12): 3385−3389. doi: 10.3964/j.issn.1000-0593(2012)12-3385-05

    MA J Y, ZHENG H L, LU W, et al. Ultraviolet−initiated synthesis and characterization of anionic polyacrylamide[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3385−3389. doi: 10.3964/j.issn.1000-0593(2012)12-3385-05

    [21]

    张荣庆. 电化学反应器设计及用于处理含聚丙烯酰胺污水的研究[D]. 大庆: 东北石油大学, 2007: 44−45.

    ZHANG R Q. Treatment of wastewater containing HPAM using electrochemical reactor[D]. Daqing: Northeast Petroleum University, 2007: 44−45.

    [22]

    YUAN D, CADIEN K, LIU Q, et al. Separation of talc and molybdenite: challenges and opportunities[J]. Minerals Engineering, 2019, 143: 105923. doi: 10.1016/j.mineng.2019.105923

    [23]

    李晔, 彭勇军, 刘奇, 等. 多糖在硫化矿物浮选中的应用及其作用机理[J]. 武汉化工学院学报, 1998(2): 41−45.

    LI Y, PENG Y J, LIU Q, et al. Application and mechanism of polysaccharide in flotation of sulfide minerals[J]. Journal of Wuhan Institute of Technology, 1998(2): 41−45.

    [24]

    HAO J, LIU J, YU Y, et al. Depressants for separation of chalcopyrite and molybdenite: Review and prospects[J]. Minerals Engineering, 2023, 201: 108209. doi: 10.1016/j.mineng.2023.108209

  • 加载中

(14)

计量
  • 文章访问数:  36
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-08-20
刊出日期:  2025-04-15

目录