Research Progress on the Application of Functionalized Celluloses in Mineral Flotation
-
摘要:
传统燃料油副产物及化学合成类浮选药剂会对环境造成潜在污染,而纤维素基浮选药剂凭借来源广、成本低、可降解及易功能化等优势,成为矿物分选绿色药剂的现实选择之一。详细归纳了纤维素基抑制剂和捕收剂的种类、作用机理、应用矿物类型及发展趋势。纤维素基抑制剂(如羧甲基纤维素CMC、羟乙基纤维素等)通过表面羟基与矿物形成氢键降低矿物表面电位,羧基与矿物表面Mg2+/Ca2+反应增强矿物亲水性,常被用作白云石、方解石、蛇纹石等钙镁硅酸盐矿物的浮选抑制剂,具有环境友好、成本低廉等优势。纤维素基捕收剂(如胺烷基、硅烷化改性纳米纤维素等)通过静电作用提高矿物表面疏水性,促进颗粒−气泡黏附,实现矿物浮选,兼具环保性和高效性。未来,结合工艺创新与结构设计,开发低成本、高效能的纤维素基药剂,对于推动绿色浮选药剂的发展,降低化学合成类浮选药剂耗量、减少对环境的潜在危害具有重要的实践意义。
Abstract:Traditional fuel oil by−products and chemically synthesized flotation reagents pose significant environmental pollution risks. In contrast, cellulose−based flotation reagents are considered a promising environment friendly alternative for mineral flotation, offering advantages such as widespread availability, low cost, biodegradability, and functionality. This paper provides a comprehensive review of the types, mechanisms, applications, and development trends of cellulose−based depressants and collectors. Cellulose−based depressants, such as carboxymethyl cellulose (CMC) and hydroxyethyl cellulose, have been used to inhibit the flotation of calcium−magnesium silicate minerals, including dolomite, calcite, and serpentine. These depressants function by forming hydrogen bonds through the reaction of their −OH groups with mineral surfaces, thereby reducing the surface potential of the minerals. Furthermore, the Mg2+/Ca2+ ions on the mineral surfaces interact with the −COOH groups of the cellulose molecules, enhancing the hydrophilicity of the mineral surfaces. Cellulose−based collectors, such as amino−alkyl or silanized modified nanocellulose, enhance the hydrophobicity of the mineral surface via electrostatic interactions, thereby promoting particle−bubble adhesion and improving mineral flotation efficiency. These collectors offer the dual advantages of environmental sustainability and high performance. In the future, the integration of process innovation with structural design will be crucial to the development of low−cost and high−efficiency cellulose−based reagents. This development has significant practical implications for advancing green flotation reagents, minimizing the reliance on chemically synthesized flotation reagents, and mitigating potential environmental damage.
-
Key words:
- flotation /
- cellulose /
- depressant /
- collector /
- carboxymethyl cellulose
-
-
图 2 纳米纤维素的应用[14]
Figure 2.
图 3 纳米纤维素的改性方式[6]
Figure 3.
图 4 纤维素在矿物表面的吸附取向[16]
Figure 4.
表 1 纤维素抑制剂研究进展
Table 1. Research progress of cellulose inhibitors
抑制剂 矿石类型 作用效果 估算价格
/(元·kg−1)羧甲基纤维素CMC 辉石 降低矿物表面的接触角,在矿物表面形成亲水膜[23] 低分子量
(<100 000Da):
4.6~6.3
中等分子量
(100000 ~
500 000Da): 9~11.5
高分子量
(>500 000Da): 18~25闪矿石 含炭铅锌硫矿石 改善铅锌硫的优先浮选[24] 铜钼 抑钼浮铜[25-26] 石膏 与石膏表面的Ca2+反应生成了亲水性的羧甲基纤维素钙盐,使石膏保持分散亲水状态[27] 氢氧化锌 CMC对Zn(OH)2沉淀产生高分子桥联作用使Zn(OH)2絮凝到适合浮选的粒级 蛇纹石、黄铁矿 (1)通过调整表面电性而起到分散作用,减少蛇纹石与黄铁矿的异向凝聚;(2)改变蛇纹石的表面电性,使蛇纹石与黄铁矿之间相互作用能从吸引变为排斥,分散二者的
人工混合矿[28]滑石 通过羟基和羧基与硫化矿表面作用[29] 石墨 煤浮选过程中脉石的抑制剂[36] 磁铁矿 抑制磁铁矿的上浮[35] 高岭石和石英 降低分选过程中的细泥夹带[37] 蛇纹石 抑制蛇纹石上浮,实现蛇纹石和硼镁石的分选[38] 磷灰石和白云石 实现白云石与磷灰石的高效分离[39] 甲基纤维素 滑石 温度较低时,矿物表面亲水性增强,抑制滑石浮选[30] 55~60 滑石和黄铜矿 低用量的甲基纤维素可以抑制滑石浮选,但对黄铜矿的浮选抑制作用很弱,可以实现二者的分离[34] 羟乙基纤维素 铜硫 铜硫分离中黄铁矿的抑制剂,较好地实现铜、硫分离[31] 30~40 CMC、十二烷基苯磺酸、羧甲基纤维素和羟乙基纤维素 方解石萤石 对方解石抑制作用强于萤石,抑制效果顺序为:CMC>十二烷基苯磺酸-羧甲基纤维素>羟乙基纤维素[32] —— 木浆半纤维 高黏土铜钼
混合矿提高铜的浮选回收率,降低钼的浮选回收率[33] 15~20 注:有工业应用是工业价格,没有工业应用的是按照制备方法所用试剂价格估算。 胺烷基纳米纤维素 简称 接触角/ (°) 甲基胺化纤维素 MAC 78.2±2.77 乙基胺化纤维素 EAC 64.0±3.40 正丙基胺化纤维素 PRAC 85.5±4.47 正丁基胺化纤维素 BAC 88.5±3.37 正戊基胺化纤维素 PEAC 101.6±2.16 正己基胺化纤维素 HAC 109.2±2.64 表 3 纤维素捕收剂研究进展
Table 3. Research progress of cellulose collectors
捕收剂 矿石类型 浮选效果 原料 功能化药剂 估算价格/(元·kg−1) 改性纤维素纳米纤(NFC)−(两亲型)胺烷基纤维素 石英 两亲型纳米纤维素可以用作石英的捕收剂,其捕收性能和石英的商用捕收剂相当[40] 纤维素纸浆 高碘酸钠、氯化锂、已丁胺盐酸盐、正丁胺盐酸盐、叔丁胺盐酸盐 60~80 改性纤维素纳米纤(NFC)−
(亲水型)二羧酸纳米纤维素赤铁矿 亲水型纳米纤维素对赤铁矿的抑制作用较强[40] 纤维素纸浆 高硼酸盐、偏碘酸钠、亚氯酸钠、醋酸 20~25 胺烷基纤维素 氧化铝和石英混合矿 烷基链足够长的胺烷基纳米纤维素可以有效地实现氧化铝和石英混合矿的浮选分离[41−42] 纤维素纸浆 高碘酸钠、氯化锂、伯胺开链胺盐酸盐
(甲基胺盐酸盐、乙基胺盐酸盐、正丙基胺盐酸盐、正戍基胺盐酸盐、正丁基胺盐酸盐、正己胺盐酸盐)70~80 胺烷基类纤维素纳米晶 石英 己基胺纤维素纳米晶对石英的可浮性最好[43];甲基胺纤维素纳米晶更多的是充当矿物抑制剂;胺烷基纤维素表面烷基的链长越长,越有利于矿物的
浮选硬木纸浆 甲胺盐酸盐、丁胺盐酸盐、己胺盐酸盐 45~50 纳米纤维素使用条件是在偏碱性条件,在此条件下,由于矿物表面电荷的减少,纤维素在矿物表面会沿着矿物表面
吸附[16]氯化锂、2−吡啶硼烷、高碘酸钠、甲胺盐酸盐、正丁胺盐酸盐、正己胺盐酸盐、2−吡啶硼烷 80~90 硅烷化纤维素 石英 硅烷化后纤维素的接触角可以达到135°,功能化的同时还影响了纤维素的表面电位,使得纤维素捕收石英的效果下降[44] 商业CNC材料 氨基丙基三乙氧基硅烷、正丙基三乙氧基硅烷、己基三乙氧基硅烷和三乙氧基正辛基硅烷 65~72 丁胺基纤维素、己胺基纤维素 石英、赤铁矿 己胺纤维素纳米晶存在时石英颗粒−气泡的附着发生在几十微米距离级别内,纤维素作用的石英浮选回收率可以达到90%以上[45,49] 硬木纸浆 氯化锂、高碘酸钠、2−吡啶硼烷、正丁胺盐酸盐、正己胺
盐酸盐65~80 N−烷基甲壳素纤维素 孔雀石 可以作为孔雀石的一种潜在捕收剂[50] 甲壳素粉 己醛、辛醛、葵醛、吡啶硼烷络合物 60~70 丁基胺化纤维素纳米晶 混合硫化矿(黄铜矿、闪锌矿和毒砂的混合矿)的浮选 较多地作用于黄铜矿表面,而与闪锌矿、毒砂作用的极少,经一次浮选可将黄铜矿富集五倍,回收率达到60%以上[51] 牛皮桦木浆 高碘酸钠、氯化锂、2−吡啶硼烷、醛基胺盐酸盐 80~95 黄铜矿 在中性条件下,使用丁基胺纤维素作为捕收剂时,黄铜矿的浮选回收率较高 纤维素纳米晶 单一和混合二氧化硅和二氧化钛矿物 二氧化硅和二氧化钛矿物分离的合适pH范围在2~3之间,在此条件下,二氧化硅与二氧化钛矿物具有相反的电荷[52] 针叶木浆 无水葡萄糖、辛醇 15~25 注:有工业应用是工业价格,没有工业应用的是按照制备方法所用试剂价格估算。 -
[1] 谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2001.
XIE G Y. Mineral processing[M]. Xuzhou: China University of Mining and Technology Press, 2001.
[2] LEGAWIEC K J, POLOWCZYK I. Evolution of ideas towards the implementation of nanoparticles as flotation reagents[J]. Physicochemical Problems of Mineral Processing, 2020, 56(6): 280−289.
[3] 朱婷婷. 环境友好型生物表面活性剂对浮选气泡动力学的影响研究[D]. 西安: 长安大学, 2012.
ZHU T T. Study on effects of environment−friendly biosurfactant on bubble hydrodynamics in flotation column[D]. Xi'an: Chang'an University, 2012.
[4] 马海珠, 周天文, 薛国新, 等. 超低浓度酸水解制备纤维素纳米纤丝的初步研究[J]. 中国造纸, 2020, 39(1): 17−25.
MA H Z, ZHOU T W, XUE G X, et al. Preparation of cellulose nanofibrils by ultra−low acid hydrolysis[J]. China Pulp & Paper, 2020, 39(1): 17−25.
[5] 詹颖菲. 纳米纤维材料构建及其油水分离和重金属吸附性能[D]. 武汉: 武汉大学, 2014.
ZHAN Y F. Nanofiber based functional materials and their oil/ water separation and heavy metal adsorption performance[D]. Wuhan: Wuhan University, 2014.
[6] 张恒, 高洪坤, 王哲, 等. 疏水化改性纳米纤维素的制备及应用研究进展[J]. 生物化学工程, 2019, 51(3): 12−15.
ZHANG H, GAO H K, WANG Z, et al. Progress in preparation and application of hydrophobized modified nanocellulose[J]. Biomass Chemical Engineering, 2019, 51(3): 12–15.
[7] GILBERTO S, JULIEN B, ALAIN D. Cellulosic bionanocomposites: A review of preparation, properties and applications[J]. Polymers, 2010, 2(4): 728−765.
[8] 王井, 武文斌, 朱浩东, 等. 纳米纤维素的制备及其在复合材料中的应用[J]. 化工新型材料, 2024, 52(7): 239−244.
WANG J, WU W B, ZHU H D, et al. Preparation of nanocellulose and its application in composites[J]. New Chemical Materials, 2024, 52(7): 239−244.
[9] 阳辰峰, 林海涛, 凌新龙, 等. 纤维素的改性研究进展[J]. 应用化工, 2022, 51(5): 1408−1412.
YANG C F, LIN H T, LING X L, et al. Research progress on modification of cellulose[J]. Applied ChemicalIndustry, 2022, 51(5): 1408−1412.
[10] ZHOU L, HE H, LI M, et al. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property[J]. Carbohydrate Polymers, 2018, 189: 331−341.
[11] 何耀良, 廖小新, 黄科林, 等. 微晶纤维素的研究进展[J]. 化工技术与开发, 2010, 39(1): 12−16.
HE Y L, LIAO X X, HUANG K L, et al. Study process of microcrystalline cellulose[J]. Technology& Development of Chemical Industry, 2010, 39(1): 12−16.
[12] 王海莹, 李大纲. PVAL/纳米纤维素复合膜的制备及丝光处理对其性能的影响[J]. 工程塑料应用, 2014, 42(3): 13−16.
WANG H Y, LI D G. Preparation of composite film of PVAL/ CNF and effect of mercerization on its properties[J]. Engineering Plastics Application, 2014, 42(3): 13−16.
[13] 吕工兵. 聚甲基丙烯酸甲酯/竹纤维复合材料的制备研究[J]. 橡塑技术与装备(塑料), 2017, 43(10): 42−47.
LV G B. Study on the preparation of PMMA / bamboo fiber composites[J]. China Rubber/ Plastics Technology and Equipment (Plastics), 2017, 43(10): 42−47.
[14] SABA N, JAWAID M. Recent advances in nanocellulose−based polymer nanocomposites[J]. Cellulose−Reinforced Nanofibre Composites, 2017: 89−112.
[15] 张雪霞, 余雁, 李万菊, 等. 溶剂及高频超声对竹浆纤维润胀效果评价[J]. 竹子学报, 2016, 35(2): 6−9.
ZHANG X X, YU Y, LI W J, et al. The fiber swelling effect of solvent and high frequency ultrasound[J]. Journal of Bamboo Research, 2016, 35(2): 6−9.
[16] HARTMANN R, SIRVIÖ A J, SLIZ R, et al. Interactions between aminated cellulose nanocrystals and quartz: Adsorption and wettability studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489: 207−215.
[17] 王帅. 改性纤维素基疏水功能材料制备及其油水分离应用[D]. 西安: 长安大学, 2019.
WANG S. Preparation of modified cellulose−based hydrophobic functional materials and application of oil−water[D]. Xi'an: Chang’an University, 2019.
[18] 曲萍, 王璇, 白浩龙, 等. 纳米纤维素表面烷基化特性的研究[J]. 北京林业大学学报, 2014, 36(1): 121−125.
QU P, WANG X, BAI H L, et al. Study on surface alkylation characteristics of nanocellulose[J], Journa of Beijing Forestry University, 2014, 36(1): 121−125.
[19] 刘贵言, 陈松雪, 李凯, 等. 应用硅烷偶联剂改性纸浆纤维与天然橡胶制备的复合材料性能[J]. 东北林业大学学报, 2022, 50(11): 106−111+118.
LIU G Y, CHEN S X, LI K, et al. Enhancing properties of natural rubber by surface modification of pulp from silane coupling agent[J]. Journal of Northeast Forestry University, 2022, 50(11): 106−111+118.
[20] 孙浩炯, 尚蒙娅, 贾冬晴, 等. PMMA/棉花纤维素复合薄膜的制备及性能[J]. 工程塑料应用, 2021, 49(1): 34−39.
SUN H J, SHANG M Y, JIA D Q, et al. Preparation and Properties of PMMA/ cotton cellulose composite films[J]. Engineering Plastics Application, 2021, 49(1): 34−39.
[21] 余成华. 纳米纤维素基超疏水材料的制备及其应用研究[D]. 广州: 华南理工大学, 2017.
YU C H. Preparation and application of nanocellulose−based superhydrophobic materials[D]. Guangzhou: South China University of Technology, 2017.
[22] 英瑜, 肖秀娟, 陈媛, 等. 羧甲基纤维素的研究进展[J]. 广州化工, 2024, 52(22): 31−34.
YING Y, XIAO X J, CHEN Y, et al. Research progress on carboxymethyl cellulose[J]. Guangzhou Chemical Industry, 2024, 52(22): 31−34.
[23] 苏仲平. 1号纤维素在浮选过程中对辉石闪石等的抑制作用[J]. 有色金属(冶炼部分), 1965(6): 20−25.
SU Z P. The inhibitory effect of No. 1 cellulose on pyroxene amphibole in flotation process[J]. Nonferrous Metals(Extractive Metallurgy). 1965(6): 20–25.
[24] 容而谦. 用羧甲基纤维素和丁铵黑药改善含碳铅锌硫矿石浮选的研究[J]. 矿产综合利用, 1981(4): 1−7.
RONG E Q. Study on improving the flotation of carbon−bearing lead−zinc−sulfur ores with carboxymethyl cellulose and butyl ammonium black[J]. Multipurpose Utilization of Mineral Resources, 1981(4): 1−7.
[25] 李宏周, 何志权. 羧甲纤维素浮选分离铅铜混合精矿的试验[J]. 有色金属(选矿部分), 1979(6): 48−50.
LI H Z, HE Z Q. Est of separation of lead copper mixed concentrate by flotation of carboxymethyl cellulose[J]. Nonferrous Metals(Mineral Processing Section), 1979(6): 48−50.
[26] 李宏周, 李庭惠, 何志权, 等. 羧甲基纤维素钠浮选分离铜钼混合精矿[J]. 有色金属(冶炼部分), 1978(5): 21−23.
LI H Z, LI T H, HE Z Q, et al. Separation of copper−molybdenum mixed concentrate by sodium carboxymethyl cellulose flotation[J]. Nonferrous Metals(Extractive Metallurgy), 1978(5): 21−23.
[27] 起冰翠, 薛玉兰. 羧甲基纤维素(CMC)对石膏及氢氧化锌浮选性质影响的机理研究[J]. 国外金属矿选矿, 1996(5): 25−27.
QI C B, XUE Y L. Effect of carboxymethyl cellulose (CMC) on flotation properties of gypsum and zinc hydroxide[J]. Metallic Ore Dressing Abroad, 1996(5): 25–27.
[28] 冯博, 冯其明, 卢毅屏. 羧甲基纤维素在蛇纹石/黄铁矿浮选体系中的分散机理[J]. 中南大学学报(自然科学版), 2013, 44(7): 2644−2649.
FENG B, FENG Q M, LU Y P. Dispersion mechanism of CMC on flotation system of serpentine and pyrite[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2644−2649.
[29] 张锁君. 羧甲基纤维素对抑制滑石浮选的作用机理[J]. 洛阳师范学院学报, 2014, 33(5): 62−64.
ZHANG S J. Mechanism of carboxymethyl cellulose to inhibit the flotation of talcum[J]. Journal of Luoyang Normal University, 2014, 33(5): 62−64.
[30] 冯博, 朱贤文, 彭金秀. 甲基纤维素的应激反应及其对滑石浮选的影响[J]. 中国有色金属学报, 1031, 27(5): 1031−1036.
FENG B, ZHU X W, PENG J X. Stimulus response of methylcellulose and its depression effect on talc flotation[J]. The Chinese Journal of Nonferrous Metals. 2017, 27(5), 1031, 27(5): 1031−1036.
[31] 朱贤文, 冯博, 彭金秀等. 以羟乙基纤维素为抑制剂浮选分离铜硫[J]. 金属矿山, 2017(7): 97−100.
ZHU X W, FENG B, PENG J X, et al. Flotation separation of chalcopyrite and pyrite by hydroxyethyl cellulose as inhibitor[J]. Metal Mine, 2017(7): 97−100.
[32] 邬海滨. 纤维素类抑制剂在白钨矿浮选体系中的吸附行为与机理研究[D]. 赣州: 江西理工大学, 2018.
WU H B. Adsorption behavior and mechanism of cellulose inhibitors in the system of scheelite flotation[D]. Ganzhou: Jiangxi University of Science and Technology, 2018.
[33] HERNANDEZ V A, ULLOA A, GUTIERREZ L. Use of wood hemicelluloses to improve copper recovery from high clay Cu−Mo ores[J]. Minerals Engineering, 2017, 111(9): 198−200.
[34] 张文谱, 汪惠惠, 冯博, 等. 甲基纤维素作为抑制剂浮选分离黄铜矿和滑石[J]. 有色金属(选矿部分), 2020(1): 118−123.
ZHANG W P, WANG H H, FENG B, et al. The flotation separation of chalcopyrite from talc using methyl cellulose as depressant[J]. Nonferrous Metals( Mineral Processing Section), 2020(1): 118−123.
[35] YANG G Z, LIN F Y, XIAO X H, et al. Flotation separation of quartz from magnesite using carboxymethyl cellulose as depressant[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1623−1637. doi: 10.1016/S1003-6326(22)65898-9
[36] MA S, DENG J, XING D, et al. Study on the influence of graphite and sphalerite flotation separation by carboxymethyl cellulose[J]. Separation and Purification Technology, 2025, 355: 129577. doi: 10.1016/j.seppur.2024.129577
[37] 马业真, 李钰涵, 唐佩瑶, 等. 羧甲基纤维素钠对煤浮选及动力学的影响[J]. 煤炭技术, 2022, 41(7): 235−238.
MA Y Z, LI Y H, TANG P Y, et al. Effect of sodium carboxymethyl cellulose on coal flotation and kinetics[J]. Coal Technology, 2022, 41(7): 235−238.
[38] 李治杭, 熊堃, 左可胜, 等. 羧甲基纤维素对硼镁石/蛇纹石浮选的影响及其作用机理[J]. 金属矿山, 2024(10): 107−111.
LI Z H, XIONG K, ZUO K S, et al. Effect of carboxymethyl cellulose on flotation of ascharite/ serpentine and its action mechanism[J]. Metal Mine, 2024(10): 107−111.
[39] 范宛惠, 姬志杰, 杨帆, 等. 羧甲基纤维素对磷灰石与白云石浮选分离的影响及机理研究[J]. 矿产保护与利用, 2024, 44(1): 61−66.
FAN W H, JI Z J, YANG F, et al. Effect and mechanism of carboxymethyl cellulose on flotation separation of apatite against dolomite[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 61–66.
[40] LAITINEN OSSI, KEMPPAINEN, et al. Use of chemically modified nanocelluloses in flotation of hematite and quartz[J]. Industrial& Engineering Chemistry Research, 2014, 53(52): 20092−20098.
[41] SIRVIÖ A J, VISANKO M, LAITINEN O, et al. Amino−modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination[J]. Carbohydrate Polymers, 2016, 136: 581−587.
[42] LAITINEN O, HARTMANN R, SIRVIÖ A J, et al. Alkyl aminated nanocelluloses in selective flotation of aluminium oxide and quartz[J]. Chemical Engineering Science, 2016, 144: 260− 266.
[43] KIMPIMÄKI S. The flotation response of quartz using aminated cellulose nanocrystals and commercial collectors[D]. Ou'lu: University of Ou'lu. 2016.
[44] LUDOVICI F, HARTMANN R, LIIMATAINEN H. Aqueous bifunctionalization of cellulose nanocrystals through amino and alkyl silylation: Functionalization, characterization, and performance of nanocrystals in quartz microflotation[J]. Cellulose, 2022, 30(2): 775−787. doi: 10.1007/s10570-022-04961-4
[45] HARTMANN R, KINNUNEN P, ILLIKAINEN M. Cellulose−mineral interactions based on the DLVO theory and their correlation with flotability[J]. Minerals Engineering, 2018, 122: 44− 52.
[46] HARTMANN R, SERNA−GUERRERO R. A study on the electric surface potential and hydrophobicity of quartz particles in the presence of hexyl amine cellulose nanocrystals and their correlation to flotation[J]. Frontiers in Materials, 2020, 7: 1−11. doi: 10.3389/fmats.2020.00001
[47] HARTMANN R, SERNA−GUERRERO R. Towards a quantitative analysis of the wettability of microparticles using an automated contact timer apparatus[J]. Minerals Engineering, 2020, 149: 106240.
[48] ROBERT H, TOMMI R, RODRIGO S. On the colloidal behavior of cellulose nanocrystals as a hydrophobization reagent for mineral particles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(7): 2322−2333. doi: 10.1021/acs.langmuir.0c03131
[49] HARTMANN R, RUDOLPH M, ÄMMÄLÄ A, et al. The action of cellulose−based and conventional flotation reagents under dry and wet conditions correlating inverse gas chromatography to microflotation studies[J]. Minerals Engineering, 2017, 114: 17−25.
[50] ROBERT H, MARCO B, EVA P, et al. N−Alkylated Chitin Nanocrystals as a Collector in Malachite Flotation[J]. ACS Sustainable Chemistry& Engineering, 2022, 10(32): 10570−10578.
[51] LOPÉZ R, JORDÃO H, HARTMANN R, et al. Study of butyl−amine nanocrystal cellulose in the flotation of complex sulphide ores[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123655.
[52] KRIVOSHAPKINA F E, MIKHAYLOV I V, PEROVSKIY A I, et al. The effect of cellulose nanocrystals and pH value on the flotation process for extraction of minerals[J]. Journal of Sol−Gel Science and Technology, 2019, 92(2): 319−326. doi: 10.1007/s10971-019-04983-8
-