Determination of Major and Minor Components in High-Cr Red Mud by X-ray Fluorescence Spectrometry with Fusion Sample Preparation
-
摘要:
高铬红土型铝铁复合矿经钠盐还原焙烧-磁选-浸出后, 铬等有价金属在赤泥中富集(Cr2O3含量达到3%~30%), 属难熔复合矿物, 目前主要以化学分析方法为主, 但操作复杂, 且步骤繁琐, 分析周期长。而应用X射线荧光光谱法(XRF)分析测定, 一般采用钠盐熔剂、较高稀释比等熔融制样, 不利于钠以及低含量元素的测定。本文采用四硼酸锂-偏硼酸锂(67:33) 作混合熔剂, 硝酸铵作氧化剂, 饱和溴化锂溶液作脱模剂制备玻璃熔片, 建立了波长色散型XRF测定高铬赤泥中主次量组分(铬硅铝铁镁钙钠钾硫磷钛锰钒)的分析方法。研究表明, 熔样稀释比低于24:1时, 稀释比越低, 对铂金坩埚腐蚀越严重; 稀释比在24:1时制样方法的相对标准偏差(RSD, n=10) 最低; 熔样时间越长, 温度越高, RSD越低。由此确定熔样最优条件为稀释比24:1, 熔样时间15 min, 熔样温度1100℃。分析中采用铬铁矿、铝土矿、黏土、铁矿石国家标准物质及人工标准样品校准, 基本参数法进行基体校正, 方法精密度(RSD, n=10) 为0.3%~3.9%。与国内外其他含铬矿物的XRF分析方法相比, 本方法采用不添加钠盐、一次熔片、常规熔样温度(1100℃)、低稀释比(24:1) 等进行制样, 制样方法的精密度和分析精密度均低, 解决了高铬赤泥的XRF分析方法问题, 还可扩展到高铬、铝、硅、铁等复合矿原矿及其钠盐处理焙烧矿、精矿及尾矿的XRF分析。
-
关键词:
- 赤泥 /
- 高铬 /
- 玻璃熔融制样 /
- 四硼酸锂-偏硼酸锂熔剂(67:33) /
- X射线荧光光谱法
Abstract:Cr and other valuable metals are enriched in red mud (Cr2O3: 3%-30%) after high-Cr red clay type Al-Fe composite ores are comprehensively utilized by sodium reduction roasting-magnetic separation-leaching. High-Cr red mud belongs to refractory ore whose analysis methods are dominated by chemical analysis, which is a well-established but complicated procedure. High-Cr red mud can also be analyzed by X-ray Fluorescence Spectrometry (XRF). However, a use of sodium flux and a high dilution ratio are not conducive to sodium and low content elements. In this paper, a method of XRF analysis is developed for the determination of the major and minor components (Cr, Si, Al, Fe, Mg, Ca, Na, K, S, P, Ti, Mn and V) in high-Cr red mud by fused bead preparation with Li2B4O7-LiBO2 (67:33) flux, NH4NO3 oxidizer and saturated LiBr solution parting medium. When the dilution ratio of the melting sample is lower than 24:1, the lower dilution ratio, the more serious is the corrosion on the Pt-Au crucible; the RSD (n=10) of the sample preparation method is at a minimum when the dilution ratio is 24:1; the longer the melting time and the higher the melting temperature, the RSD becomes lower. The optimization conditions of fused bead are obtained when the dilution ratio is 24:1, the melting temperature is 1100℃ and the melting time is 15 min. The working curve was established by chromite, bauxite, clay, ferrous standards and manual preparation standard materials. The matrix effect and spectrum line overlap interference were corrected by a fundamental parameter method and standard regression. The results are consistent with certified values and the RSD (n=10) range from 0.3% to 3.9%. Compared with domestic and foreign XRF methods for chromium containing minerals, this method uses no sodium salt, a fuse piece, conventional sample melting temperature (1100℃), low dilution ratio (24:1) for sample preparation, and the sampling precision and analysis precision are low. The problem with XRF analysis of high-Cr red mud has been solved by this method, which can be used to analyze Cr, Al, Si and Fe in roasting, concentrates and tailings and other ores processed by sodium.
-
-
表 1 待测元素测量条件
Table 1. Measurement condition of elements by XRF
分析线 晶体 PHA 探测器 准直器
(L/μm)电压
(kV)电流
(mA)2 θ/(°) 测量时间
(s)峰值 背景 Cr Kα LiF 200 15~69 Flow 300 50 72 69.37 70.31 20 Si Kα PE 002 28~72 Flow 300 30 120 109.12 111.08 20 Al Kα PE 002 22~78 Flow 300 30 120 144.89 147.2 30 Fe Kα LiF 200 20~75 Scint 150 60 60 57.52 58.35 20 Mg Kα PX1 35~65 Flow 700 30 120 22.72 21.00 40 24.63 Ca Kα LiF 200 32~73 Flow 300 30 120 113.13 114.56 28 Na Kα PX1 35~65 Flow 700 30 120 27.41 25.26 50 29.64 K Kα LiF 200 31~74 Flow 300 30 120 136.74 135.85 32 S Kα Ge 111 35~65 Flow 300 30 120 110.77 112.49 20 P Kα Ge 111 35~65 Flow 300 30 120 141.10 139.72 30 Ti Kα LiF 200 11~71 Flow 150 40 90 86.17 85.23 20 Mn Kα LiF 200 15~68 Flow 300 60 60 62.99 63.79 20 V Kα LiF 200 11~67 Flow 300 60 60 76.95 76.00 20 注:Na、Mg为两点扣背景;Flow为流气计数器,Scint为闪烁计数器,PHA为脉冲高度分析器。 表 2 校准样品组分含量范围
Table 2. Concentration range for elements in standard samples
元素 含量
(%)元素 含量
(%)Cr2O3 0.13~34.44 K2O 0.021~0.79 SiO2 5.68~49.98 S 0.019~0.66 Al2O3 5.12~46.65 P 0.003~0.76 Fe2O3 4.64~36.82 TiO2 0.031~0.73 MgO 0.46~28.12 MnO 0.036~0.68 CaO 0.13~1.82 V2O5 0.008~0.76 Na2O 0.025~23.47 表 3 熔样稀释比对荧光强度重复性的影响
Table 3. Effect of melting ratio on the reproducibility of fluorescence intensity
熔样稀释比 项目 Cr2O3 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O S P TiO2 MnO V2O5 15:1 I(kcps) 532.57 9.44 32.44 43.41 18.94 8.04 0.24 1.52 0.57 0.34 11.82 7.83 2.20 RSD(%) 1.6 1.3 1.1 0.8 0.9 1.2 2.1 2.8 1.2 1.0 1.7 1.3 1.7 20:1 I(kcps) 424.32 7.395 24.93 36.01 14.48 6.47 0.22 1.35 0.56 0.28 9.54 6.73 2.00 RSD(%) 1.6 1.5 1.1 0.8 0.9 1.3 2.4 3.3 1.3 1.1 1.5 1.4 2.1 24:1 I(kcps) 370.87 6.34 21.05 31.94 12.38 5.65 0.20 1.30 0.54 0.25 8.37 6.21 1.91 RSD(%) 0.7 0.9 1.0 0.7 1.0 1.1 2.6 2.5 1.3 1.2 0.8 0.7 0.8 30:1 I(kcps) 304.94 5.17 17.18 27.15 10.04 4.77 0.19 1.13 0.50 0.21 7.03 5.53 1.79 RSD(%) 1.1 2.0 1.3 1.1 1.4 1.4 2.9 2.3 2.1 2.1 1.3 1.5 1.2 40:1 I(kcps) 234.43 4.01 13.11 21.85 7.59 3.86 0.19 1.06 0.47 0.18 5.67 4.78 1.65 RSD(%) 1.7 2.1 1.5 1.4 2.0 1.5 3.1 5.3 2.8 1.7 1.2 1.5 1.6 注:荧光强度I为10个样品测定平均值。下表同。 表 4 熔样时间对荧光强度重复性的影响
Table 4. Effect of melting time on the reproducibility of fluorescence intensity
熔样时间(min) 项目 Cr2O3 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O S P TiO2 MnO V2O5 12 I(kcps) 366.70 6.27 21.17 31.96 12.36 5.65 0.22 1.27 0.35 0.25 8.34 6.17 1.90 RSD(%) 0.7 1.0 1.2 0.7 1.0 1.2 8.0 2.5 15.7 1.2 0.9 0.8 0.8 15 I(kcps) 370.87 6.34 21.05 31.94 12.38 5.65 0.20 1.30 0.54 0.25 8.37 6.21 1.91 RSD(%) 0.7 0.9 1.0 0.7 1.0 1.1 2.6 2.5 1.3 1.2 0.8 0.7 0.8 18 I(kcps) 372.36 6.39 21.38 32.19 12.51 5.74 0.22 1.28 0.33 0.25 8.44 6.22 1.93 RSD(%) 0.7 1.0 1.0 0.6 0.9 1.1 7.8 2.5 15.2 1.2 0.8 0.7 0.7 表 5 熔样温度对荧光强度重复性的影响
Table 5. Effect of melting temperature on the reproducibility of fluorescence intensity
熔样温度(℃) 项目 Cr2O3 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O S P TiO2 MnO V2O5 1050 I(kcps) 369.58 6.37 21.38 32.26 12.51 5.68 0.21 1.20 0.41 0.25 8.39 6.20 1.92 RSD(%) 0.7 1.0 1.2 0.7 1.1 1.1 8.0 2.5 15.4 1.5 0.9 0.7 0.8 1100 I(kcps) 370.87 6.34 21.05 31.94 12.38 5.65 0.20 1.30 0.54 0.25 8.37 6.21 1.91 RSD(%) 0.7 0.9 1.0 0.7 1.0 1.1 2.6 2.5 1.3 1.2 0.8 0.7 0.8 1150 I(kcps) 371.08 6.32 21.06 31.92 12.37 5.67 0.21 1.28 0.29 0.25 8.41 6.17 1.90 RSD(%) 0.7 0.9 1.1 0.6 0.9 1.0 7.9 2.5 15.2 1.2 0.9 0.7 0.8 表 6 元素检出限
Table 6. The detection limits of elements
组分检出限
(μg/g)组分 检出限
(μg/g)Cr2O3 8.16 K2O 11.63 SiO2 48.94 S 9.75 Al2O3 29.11 P 3.75 Fe2O3 12.71 TiO2 4.23 MgO 29.93 MnO 2.78 CaO 11.14 V2O5 3.81 Na2O 75.00 表 7 方法精密度试验结果
Table 7. Experiment results for precision test
组分 GCr-S1 GCr-S2 含量(%) RSD(%) 含量(%) RSD(%) Cr2O3 13.86 0.5 7.66 0.1 SiO2 11.54 0.8 14.01 0.7 Al2O3 29.68 0.8 12.59 1.0 Fe2O3 5.24 0.5 8.04 0.6 MgO 9.59 0.4 18.85 0.3 CaO 0.30 1.9 0.34 1.6 Na2O 11.99 1.1 17.23 1.8 K2O 0.43 3.9 0.021 3.9 S 0.070 1.9 0.045 3.2 P 0.059 1.8 0.022 3.1 TiO2 0.5 0.8 0.37 1.2 MnO 0.044 1.5 0.63 0.6 V2O5 0.029 2.0 0.024 1.1 表 8 方法准确度试验结果
Table 8. Experiment results for accuracy test
组分 GCr-S3 GCr-S4 标准值(%) 测定值(%) 标准值(%) 测定值(%) Cr2O3 14.07 14.19 3.52 3.6 SiO2 9.79 9.78 39.01 39.13 Al2O3 9.1 9.15 5.12 5.22 Fe2O3 9.47 9.4 36.82 36.75 MgO 18.66 18.71 1.75 1.72 CaO 0.26 0.3 1.82 1.78 Na2O 11.75 11.67 5.17 5.21 K2O 0.021 0.034 0.69 0.69 S 0.023 0.033 0.060 0.062 P 0.019 0.025 0.076 0.063 TiO2 0.048 0.039 0.054 0.053 MnO 0.072 0.072 0.18 0.18 V2O5 0.035 0.028 0.18 0.13 -
[1] [2] [3] [4] [5] Li G H, Sun N, Zeng J H, Zhu Z P, Jiang T. Reduction roasting and Fe-Al separation of high iron content gibbsite-type bauxite ores[C]//Warrendale PA: TMS, 2010: 14-18.
[6] [7] [8] [9] 王彬果, 赵靖, 徐静, 商英. X射线荧光光谱法测定铬铁矿等含铬材料中多元素含量[C]//第八届(2011) 中国钢铁年会论文集. 北京: 冶金工业出版社, 2011.
[10] [11] [12] [13] [14] [15] -