Determination of Antimony and 14 Trace Elements in Antimony Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation
-
摘要:
锑矿石分析通常分别采用酸分解系统和碱熔系统, 萃取分离后应用容量法、原子吸收光谱法、原子荧光光谱法等分析手段进行单项测定, 样品处理繁琐、操作复杂, 分析过程常因熔矿不完全而导致结果偏低或失真, 难以满足地质测试的需要。本文建立了玻璃熔融制样, 波长色散X射线荧光光谱测定锑矿石中的锑及14种次量元素与伴生元素(Cu、Pb、Zn、As、Co、Ni、W、Ba、S、SiO2、Al2O3、TFe、CaO、MgO)的快速分析方法。用国家标准物质和人工合成标准参考物质拟合校准曲线, 对熔融条件进行了研究。确定样品与四硼酸锂-偏硼酸锂-氟化锂复合熔剂的熔融稀释比例为1:20, 以硝酸铵为氧化剂, 碳酸锂为保护剂, 700℃预氧化, 在1050℃温度下熔融完全, 有效地防止了As、S的挥发损失, 解决了化学法测试样品处理复杂、不能同时测定多元素、测试元素偏少的问题。一些元素的检出限为Sb 0.14%, Cu 0.0027%, Pb 0.0025%, Zn 0.0046%, As 0.0028%, S 0.021%;方法精密度(RSD, n=12) 小于5%;选用合成标准物质和实际生产锑矿试样进行验证, 测定结果与参考值或化学值一致性良好。本法大部分元素检出限都要稍高于粉末压片法, 但操作简单, 测试范围更宽, 适用于实验室对不同锑矿矿种批量样品中多元素快速、准确检测的需要。
Abstract:The analysis of antimony ores usually uses acid decomposition and an alkali fusion system, followed by the volumetric method after solvent extraction. Each component employs various analytical methods such as capacity, Atomic Absorption Spectrometry and Atomic Fluorescence Spectrometry. These methods not only have complicated operations with long time consuming, but also obtain low or become distorted due to incomplete digestion or serious interferences, which subsequently make it difficult to meet the needs of geological analysis. The glass fusion preparation technique and establishing the rapid analysis method by using wavelength dispersion X-ray Fluorescence Spectrometry (XRF) are discussed and presented in this paper to determine antimony and 14 kinds of trace and associated elements (Cu, Pb, Zn, As, Co, Ni, W, Ba, S, SiO2, Al2O3, TFe, CaO and MgO) in antimony ores. The calibration cure was calibrated by using the national standard material and synthetic standard reference material, in order to study melting conditions. The sample and lithium teraborate-lithium metaborate-lithium fluoride were melted with dilution ratio of 1:20 with ammonium nitrate as oxidant and lithium carbonate as protective agent. The sample was preoxidated at 700℃, and was melted completely at 1050℃, which effectively prevented the volatilization of arsenic and sulfur to solve the problems of complex procedure, the inability to simultaneous determine elements and insufficient test elements by chemical methods. The method detection limits are lower than previous methods (Sb: 0.14%, Cu: 0.0027%, Pb: 0.0025%, Zn: 0.0046%, As: 0.0028% and S: 0.021%) and the method precision degree (RSD, n=12) is lower than 5.0%. Verified by synthetic standard material and the actual production of an antimony ore sample, the results show good consistency with the reference value obtained by the chemical method. Although the detection limits are higher than those for the powder pellet method, the operation if this method was simple, rapid and accurate making it applicable to lab analysis requirements of varied and batch antimony ores samples.
-
-
表 1 元素测量条件
Table 1. Measurement conditions of the elements
分析线 分光晶体 准直器 探测器 衰减器 PHA 电压
(kV)电流
(mA)2θ(°) t(s) 峰值 背景 峰值 背景 Sb Kα LiF1 S2 SC 1/10 100~300 60 60 13.440 14.780 20 10 Cu Kα LiF1 S8 SC 1/1 100~330 60 60 45.014 46.500 20 10 Pb Lα LiF1 S8 SC 1/1 100~300 60 60 33.918 34.880 30 15 Zn Kα LiF1 S8 SC 1/1 100~300 60 60 41.784 42.500 20 10 As Kα LiF1 S8 SC 1/1 100~310 60 60 33.985 34.880 20 10 Co Kα LiF1 S8 SC 1/1 100~300 60 60 52.782 54.020 30 15 Ni Kα LiF1 S8 SC 1/1 100~300 60 60 48.656 50.420 20 10 W Lα LiF1 S8 SC 1/1 100~320 60 60 43.020 44.340 30 15 Ba Lα LiF1 S8 SC 1/1 100~350 60 60 87.164 88.560 20 10 S Kα Ge S8 F-PC 1/1 120~300 60 60 110.818 113.800 40 10 Si Kα PET S4 F-PC 1/1 100~310 40 90 109.184 110.700 20 10 Al Kα PET S4 F-PC 1/1 100~300 40 90 144.894 147.050 20 10 Fe Kα LiF1 S2 SC 1/1 100~290 60 60 57.514 56.220 20 10 Ca Kα LiF1 S4 F-PC 1/1 100~300 40 90 113.154 114.800 30 15 Mg Kα RX25 S4 F-PC 1/1 100~310 40 90 38.010 39.400 30 15 Rh Kαc LiF1 S2 SC 1/1 100~300 50 50 18.360 - 10 - 注:PHA为脉冲高度分析器。 表 2 校准样品中分析元素的含量范围
Table 2. Concentration ranges for elements in calibration samples
元素 含量
(%)元素 含量
(%)Sb 0.25~83.52 Ba 0.010~17.90 Cu 0.0010~2.00 S 0.28~19.87 Pb 0.010~1.86 SiO2 1.03~75.26 Zn 0.016~1.74 Al2O3 0.30~19.62 As 0.0080~3.55 TFe2O3 0.15~6.36 Co 0.0005~1.50 CaO 0.12~12.50 Ni 0.0010~1.42 MgO 0.070~4.77 W 0.0050~1.59 表 3 重叠谱线和影响元素
Table 3. Concentration ranges for elements in calibration samples
元素 内标线 干扰重叠线 基体影响元素 Sb Rh Kαc - Si, Al, Fe Cu Rh Kαc Zn Kα Sb, Si, Fe, Ca Pb Rh Kαc As Kα Fe, Ca Zn Rh Kαc Cu Kβ Sb, Si, Fe, Ca As Rh Kαc Cu Kα, Pb Lα Si Co Rh Kαc Fe Kα, Ni Kα Sb, Si Ni Rh Kαc Co Kβ Sb, Fe, Ca W Rh Kαc NiKα, Zn Kα Si, Fe Ba - - Sb, Fe S - - Sb, Si, Al, Fe Si - - Sb, Fe, Ca, Mg Al - - Sb, Si, Fe Fe - - Sb, Si, Ca, Mg Ca - Ni Kβ1 Si, Fe, Mg Mg - As Lα Si, Fe, Ca 表 4 硝酸铵-碳酸锂加入量试验
Table 4. The experiment on dosage of NH4NO3-Li2CO3
试样 元素及含量 0.2 g碳酸锂保持不变时,
硝酸铵加入量(g)2.0 g硝酸铵保持不变时,
碳酸锂加入量(g)1.0 2.0 3.0 0.1 0.2 0.3 0.4 Sb-1 As(1.51%) 403.253 442.762 442.584 410.613 442.762 442.507 436.988 S(5.02%) 35.241 38.727 38.725 38.244 38.727 38.726 38.519 Sb-5 As(0.076%) 49.996 50.073 50.075 50.081 50.073 50.047 50.002 S(0.29%) 3.373 3.384 3.382 3.386 3.381 3.379 3.326 表 5 熔融温度试验
Table 5. Melting temperature tests of the method
元素 荧光强度(kcps) 1000℃ 1050℃ 1100℃ As 100.135 103.454 100.381 S 13.282 15.324 12.697 表 6 方法检出限与测定范围
Table 6. Detection limits and measurement range of the method
元素 检出限
(%)测定范围
(%)元素 检出限
(%)测定范围
(%)Sb 0.14 0.50~83.50 Ba 0.089 0.10~15.00 Cu 0.0027 0.0040~2.00 S 0.021 0.30~19.00 Pb 0.0025 0.012~1.50 SiO2 0.15 1.05~75.00 Zn 0.0046 0.030~1.70 Al2O3 0.077 0.50~15.00 As 0.0028 0.020~3.50 TFe2O3 0.013 0.30~5.00 Co 0.0011 0.0020~1.50 CaO 0.015 0.15~12.50 Ni 0.0036 0.0070~1.42 MgO 0.093 0.30~4.50 W 0.0070 0.0070~1.50 表 7 方法精密度
Table 7. Precision tests of the method
元
素含量(%) RSD
(%)元
素含量(%) RSD
(%)参考值 测量平均值 参考值 测量平均值 Sb 19.21 19.28 0.38 Ba 8.97 8.94 1.69 Cu 0.80 0.78 2.45 S 2.59 2.56 4.87 Pb 0.93 0.96 3.02 SiO2 36.42 36.61 0.76 Zn 0.81 0.80 0.98 Al2O3 6.70 6.67 1.73 As 0.76 0.78 4.14 TFe2O3 1.07 1.10 0.65 Co 0.71 0.70 3.52 CaO 0.78 0.78 0.50 Ni 0.71 0.69 3.66 MgO 0.65 0.62 0.82 W 0.80 0.79 4.97 表 8 分析结果对照
Table 8. Comparison of analytical results
元素 SY-1 SY-2 SY-3 2013KY637 参考值
(%)本法
(%)参考值
(%)本法
(%)参考值
(%)本法
(%)其他方法
(%)本法
(%)Sb 30.96 31.02 1.92 1.79 68.49 68.57 68.54 68.57 Cu 1.28 1.34 0.080 0.078 0.53 0.54 0.026 0.027 Pb 1.48 1.52 0.096 0.091 0.66 0.63 0.12 0.13 Zn 1.29 1.31 0.083 0.084 0.54 0.55 0.027 0.030 As 1.21 1.24 0.076 0.075 0.50 0.52 0.25 0.27 Co 1.14 1.17 0.071 0.074 0.47 0.47 0.0030 0.0026 Ni 1.11 1.09 0.072 0.073 0.38 0.40 0.0007 0.0002 W 1.27 1.31 0.081 0.086 0.53 0.56 0.0001 0.0000 Ba 14.33 14.46 0.93 0.95 5.96 5.99 - 0.012 S 4.02 4.07 0.69 0.62 1.68 1.70 12.68 12.57 SiO2 14.57 14.33 65.55 65.70 5.30 5.23 - 3.49 Al2O3 2.68 2.63 12.06 11.98 0.78 0.75 - 0.83 TFe2O3 0.33 0.34 2.03 2.06 0.50 0.49 0.80 0.77 CaO 0.25 0.23 1.47 1.51 10.09 10.27 0.35 0.35 MgO 0.44 0.41 1.59 1.63 3.17 3.20 0.20 0.19 注:其他测定方法说明:Sb采用容量法,Cu、Pb、Zn、Co、Ni、W采用电感耦合等离子体发射光谱/质谱法,As采用原子荧光光谱法,S采用燃烧法,TFe、CaO、MgO采用原子吸收光谱法 -
[1] [2] GB/T 15925—2010, 锑矿石分析方法; 硫酸铈容量法测定锑量[S].
[3] GB/T 14353—2010, 铜矿石、铅矿石、锌矿石化学分析方法[S].
[4] GB/T 6730. 67—2009, 砷含量的测定; 氢化物发生原子光谱法[S].
[5] [6] GB/T 24224—2009, 含硫量的测定; 燃烧-中和滴定法[S].
[7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] -