EPMA Study on Characteristics of Uranium Minerals in Uranium-bearing and Uranium-barren Granites in Northern Guangdong and Its Prospecting Significance
-
摘要: 晶质铀矿的含量、形貌、成分、铀矿物类型、与铀矿物共存的矿物组合等特征可以作为产铀与不产铀岩体的判别标志,为花岗岩型铀矿找矿工作提供了一种新的技术手段。长江岩体和九峰岩体是粤北地区典型的产铀与不产铀花岗岩体,本文利用电子探针测试了九峰岩体的铀矿物并与长江岩体进行对比研究。结果表明九峰岩体的铀矿物主要为晶质铀矿,其化学年龄可分为两组,分别为~160 Ma、~105 Ma,与长江岩体的两组晶质铀矿年龄基本一致;其中第一组年龄代表岩体的成岩年龄,第二组年龄与粤北地区~105 Ma的基性岩脉侵入时代相对应;但九峰岩体缺少长江岩体中~74 Ma的成矿年龄。相比于长江岩体,九峰岩体的铀矿物受到后期热液事件的影响较小,铀没有发生明显的活化、转移,因而未能富集成矿,没有形成具有工业价值的铀矿床。Abstract: The content, morphology and composition of uraninite, types of uranium minerals, and mineral assemblages coexisting with uranium minerals can be used as the distinguishing marks of uranium-bearing and uranium-barren granites, which provides a new technique for prospecting granite-hosted deposits. Changjiang and Jiufeng granitic intrusions are typical uranium-bearing and uranium-barren granites in northern Guangdong. Uranium minerals from these two granitic intrusions were studied by Electron Microprobe. Results show that the main uranium mineral of Jiufeng granite is uraninite, and its age dated by Electron Microprobe can be divided into two groups, 160 Ma and 105 Ma, which are consistent with those of uraninite in Changjiang granite. The first group age represents the formation age, and the second group corresponds to the invasion age of mafic dikes at 103 Ma. But the age of 74 Ma was not found for Jiufeng granite. Compared with Changjiang granite, uranium minerals of Jiufeng granite are less affected by the late hydrothermal events and U is not activated and migrated, so that no economic uranium deposits occur in Jiufeng granite.
-
Key words:
- uranium minerals /
- electron microprobe /
- distinguishing marks /
- Changjiang granite /
- Jiufeng granite
-
-
图 1 诸广山岩体地质简图(据朱捌,2010[13])
Figure 1.
表 1 九峰岩体铀矿物的电子探针分析结果及化学年龄
Table 1. EPMA data of the main elements in Jiufeng granite and their chemical ages
样品编号 含量(%) 含量(%) 年龄(Ma) UO2 ThO2 PbO SiO2 CaO FeO Y2O3 Ce2O3 Nd2O3 总量 U Th Pb JF-1-1-1 79.43 6.46 1.64 - 0.17 0.08 5.40 0.38 0.30 93.86 70.02 5.68 1.52 159 JF-1-1-2 79.22 4.21 1.04 0.08 0.16 0.38 5.23 0.42 0.29 91.03 69.83 3.70 0.97 103 JF-1-1-3 87.76 2.27 1.01 0.04 - 0.25 1.91 0.49 0.43 94.15 77.36 1.99 0.94 91 JF-1-1-4 81.07 5.48 1.37 - 0.14 0.11 4.84 0.41 0.30 93.72 71.46 4.82 1.27 131 JF-3B-1-1 81.18 7.05 1.73 - 0.12 0.02 4.23 0.56 0.50 95.37 71.56 6.20 1.60 164 JF-3B-1-2 81.37 4.99 1.20 0.03 0.14 - 4.39 0.43 0.30 92.85 71.73 4.39 1.11 115 JF-3B-1-3 81.60 4.88 1.19 0.03 0.08 - 3.92 0.47 0.37 92.55 71.93 4.29 1.11 114 JF-3B-1-4 84.00 4.37 1.09 - 0.08 0.02 3.88 0.35 0.38 94.18 74.05 3.84 1.01 101 JF-3B-1-5 80.65 7.31 1.71 0.07 0.19 0.03 3.74 0.35 0.22 94.28 71.10 6.43 1.58 163 JF-3B-1-6 82.50 4.82 1.19 - 0.06 0.05 4.13 0.26 0.23 93.24 72.73 4.23 1.11 113 JF-3B-1-7 83.83 5.52 1.01 - 0.09 0.01 3.94 0.32 0.37 95.08 73.89 4.85 0.93 93 JF-3B-1-8 80.75 5.89 1.32 0.04 0.17 - 4.25 0.37 0.26 93.04 71.18 5.18 1.23 127 JF-3B-1-9 81.58 4.70 1.13 - 0.12 0.01 4.26 0.35 0.28 92.43 71.92 4.13 1.05 108 JF-3B-1-10 83.89 7.82 1.78 0.02 0.09 0.04 3.88 0.29 0.18 97.98 73.95 6.87 1.65 163 JF-3B-1-11 81.71 4.84 1.11 - 0.09 0.04 3.70 0.37 0.50 92.35 72.02 4.25 1.03 106 JF-3B-1-12 80.68 5.09 1.23 - 0.12 0.01 4.13 0.41 0.44 92.12 71.12 4.47 1.15 119 JF-3B-1-13 81.02 4.66 1.09 - 0.09 - 3.82 0.44 0.40 91.54 71.42 4.10 1.02 105 JF-3B-1-14 81.39 7.11 1.73 - 0.14 - 4.09 0.47 0.54 95.47 71.75 6.25 1.60 164 JF-3B-1-15 82.30 4.67 1.13 - 0.03 0.08 3.58 0.30 0.35 92.44 72.55 4.10 1.05 107 JF-3B-1-16 81.18 7.05 1.73 - 0.12 0.02 4.23 0.56 0.50 95.37 71.56 6.20 1.60 164 JF-3B-1-17 81.37 4.99 1.20 0.03 0.14 - 4.39 0.43 0.30 92.85 71.73 4.39 1.11 115 JF-3B-1-18 80.95 4.73 1.17 - 0.09 0.02 4.31 0.63 0.45 92.34 71.35 4.16 1.08 112 JF-3B-1-19 81.25 4.29 1.03 0.01 0.09 0.04 3.60 0.28 0.31 90.89 71.62 3.77 0.96 99 JF-3B-1-20 81.48 4.28 1.06 - 0.18 0.02 3.53 0.47 0.41 91.42 71.82 3.76 0.98 101 JF-5-1-1 82.67 6.83 1.65 0.01 - 0.26 2.95 0.44 0.40 95.20 72.87 6.00 1.53 154 JF-5-1-2 86.12 4.75 1.18 0.25 0.01 0.50 2.98 0.60 0.52 96.92 75.92 4.18 1.09 107 JF-7B-1-1 79.82 6.63 1.60 0.01 0.07 0.15 5.75 0.25 0.19 94.45 70.36 5.83 1.49 155 JF-7B-1-2 79.42 3.66 1.08 - 0.02 0.12 6.67 0.34 0.24 91.55 70.01 3.22 1.01 107 JF-7B-1-3 80.62 3.83 1.20 0.05 - 0.13 7.44 0.21 0.20 93.67 71.07 3.36 1.11 116 JF-7B-2-1 80.18 4.88 1.09 - - 0.25 5.24 0.30 0.22 92.16 70.68 4.29 1.01 106 JF-7B-2-2 80.40 6.21 1.42 0.03 0.02 0.51 5.45 0.20 0.17 94.41 70.87 5.46 1.32 137 JF-7B-2-3 79.39 4.44 1.13 0.08 0.02 0.33 5.84 0.16 0.10 91.49 69.99 3.91 1.05 111 JF-8-1-1 91.88 4.57 1.93 0.07 - 0.16 1.24 0.14 0.10 100.09 80.99 4.02 1.79 164 JF-8-1-2 90.49 2.49 1.37 0.08 - 0.14 1.53 0.27 0.03 96.40 79.77 2.19 1.28 119 JF-8-1-3 91.13 3.05 1.93 0.48 0.06 0.13 1.59 0.26 0.10 98.73 80.33 2.68 1.79 166 JF-9-1-1 92.28 2.88 1.93 0.54 0.07 0.16 1.48 0.16 0.08 99.58 81.35 2.53 1.79 164 JF-9-1-2 91.36 3.22 1.34 0.09 - 0.24 1.54 0.26 0.17 98.20 80.53 2.83 1.24 114 JF-9-1-3 87.54 4.26 1.62 0.05 0.02 0.25 1.08 0.21 0.06 95.07 77.17 3.74 1.51 144 JF-9-1-4 92.15 4.37 1.81 0.19 0.25 0.34 1.17 0.18 0.08 100.53 81.94 3.84 1.68 152 JF-9-1-5 86.68 2.87 1.11 0.08 0.04 0.20 1.08 0.11 0.02 92.19 76.41 2.52 1.03 101 JF-9-2-1 92.28 1.91 1.49 0.07 - 0.10 1.21 0.22 0.07 97.36 81.34 1.68 1.38 127 JF-9-2-2 91.78 2.30 1.85 0.08 - 0.08 1.20 0.14 0.05 97.48 80.91 2.02 1.71 158 JF-9-2-3 92.47 1.57 1.26 - 0.01 0.07 1.26 0.24 0.07 96.94 81.51 1.38 1.17 107 JF-9-3-1 91.79 2.55 1.22 0.04 - 0.15 1.17 0.13 0.01 97.05 80.91 2.24 1.13 105 JF-9-3-2 93.24 2.61 1.45 0.02 - 0.13 1.25 0.16 0.13 98.98 82.19 2.29 1.34 122 JF-9-3-3 90.58 3.97 1.28 0.03 - 0.21 1.28 0.10 0.12 97.55 79.84 3.49 1.19 110 JF-9-3-4 87.44 3.56 1.67 0.14 - 0.19 1.90 0.38 0.26 95.53 77.08 3.13 1.55 149 JF-9-3-5 88.80 1.81 1.17 0.01 - 0.08 1.44 0.26 0.28 93.84 78.28 1.59 1.09 104 JF-9-3-6 88.53 3.56 1.24 0.10 - 0.17 1.43 0.14 0.08 95.24 78.04 3.13 1.15 109 JF-9-4-1 90.10 4.99 1.74 0.05 - 0.20 1.25 0.26 0.11 98.70 79.42 4.38 1.61 150 JF-9-4-2 85.93 3.56 1.17 0.62 0.12 0.14 1.26 0.15 0.09 93.02 75.74 3.13 1.09 107 JF-9-4-3 89.55 4.70 1.86 - - 0.07 1.48 0.35 0.18 98.19 78.94 4.13 1.73 162 JF-9-5-1 90.96 2.77 1.02 1.93 1.40 1.66 0.95 0.18 - 100.86 JF-9-5-2 80.99 2.20 0.77 3.63 1.74 2.26 0.77 0.07 - 92.44 JF-9-5-3 74.45 1.76 0.61 4.02 2.37 1.49 0.65 0.11 0.03 85.48 JF-9-6-1 73.70 1.42 0.84 12.20 0.29 1.66 1.02 0.05 0.01 91.19 JF-9-6-2 74.55 1.77 0.95 11.55 0.50 1.88 0.94 0.04 0.06 92.23 JF-9-6-3 85.08 1.34 0.89 7.64 1.31 1.14 0.99 0.22 0.07 98.67 -
[1] 杜乐天编著.花岗岩型铀矿文集[M].北京:原子能出版社,1982:1-99.
Du L T.On the Granite-type Uranium Deposits[M].Beijing:Atomic Energy Press,1982:1-99.
[2] 张成江.华南几个杂岩体中产铀与非产铀花岗岩的成因及其与铀成矿关系[J].成都理工学院学报,1996,23(4):31-38.
Zhang C J.The Genesis of Uranium- and Non-uranium-bearing Granites from Several Complexes South China and Their Relationship to Uranium Mineralization[J].Journal of Chengdu Institute of Technology,1996,23(4):31-38.
[3] 陈佑纬,毕献武,胡瑞忠,等.贵东复式岩体印支期产铀与非产铀花岗岩地球化学特征对比研究[J].矿物岩石,2009,29(3):106-114.
Chen Y W,Bi X W,Hu R Z,et al.Comparison of Geochemical Characteristics of Uranium- and Non-uranium-bearing Indosinian Granites in Guidong Composite Pluton[J].Journal of Mineral Petrology,2009,29(3):106-114.
[4] 陈佑纬,毕献武,胡瑞忠,等.贵东岩体黑云母成分特征及其对铀成矿的制约[J].矿物岩石地球化学通报,2010,29(3):355-363.
Chen Y W,Bi X W,Hu R Z,et al.The Geochemical Characteristics of Biotites and Their Constrains on Uranium Mineralization in Guidong Pluton[J].Bulletin of Mineralogy,Petrology and Geochemistry,2010,29(3):355-363.
[5] 章健,陈卫锋,陈培荣.华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异[J].大地构造与成矿学,2011,35(2):270-277.
Zhang J,Chen W F,Chen P R.Compositional Differences of the Biotites from the Uranium-forming and Non Uranium-forming Indosinian Granites in South China[J].Geotectonica et Metalbgenia,2011,35(2):270-277.
[6] 陈振宇.黑云母矿物化学能否作为产铀和不产铀岩体的判别标志?[C]//2013年全国岩石学与地球动力学研讨会论文集.北京:中国地质学会,2013.
Chen Z Y.Whether the Chemistry of Biotites Can be Used as the Distinguishing Mark of Uranium-bearing and Non-uranium-bearing Granites?[C]//The Proceedings of 2013 Petrology and Geodynamics Symposium.Beijing:Geological Society of China,2013.
[7] 张成江.贵东岩体花岗岩中晶质铀矿的特征及其找矿意义[J].成都地质学院学报,1990,17(3):10-17.
Zhang C J.The Features of Uraninite in Guidong Granite Complex and Its Significance to Search for Uranium Deposit[J].Journal of Chengdu College of Geology,1990,17(3):10-17.
[8] 戎嘉树,冯明月,欧振武,等.花岗岩中晶质铀矿及其找矿意义[J].东华理工学院学报(自然科学版),1980(2):173-183.
Rong J S,Feng M Y,Ou Z W,et al.Uraninite in Granite and Its Prospecting Significance[J].Journal of East China Institute of Technology (Natural Science Edition),1980(2):173-183.
[9] 张龙,陈振宇,田泽瑾,等.电子探针测年方法应用于粤北长江岩体的铀矿研究[J].岩矿测试,2016,35(1):98-107.
Zhang L,Chen Z Y,Tian Z J,et al.The Application of Electron Microprobe Dating Method on Uranium Minerals in Changjiang Granite,Northern Guangdong[J].Rock and Mineral Analysis,2016,35(1):98-107.
[10] 邓平,任纪舜,凌洪飞,等.诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J].地质论评,2011,57(6):881-888.
Deng P,Ren J S,Ling H F,et al.Yanshanian Granite Batholiths of Southern Zhuguang Mountian:SHRIMP Zircon U-Pb Dating and Tectonic Implications[J].Geological Review,2011,57(6):881-888.
[11] 邓平,任纪舜,凌洪飞,等.诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义[J].科学通报,2012,57(14):1231-1241.
Deng P,Ren J S,Ling H F,et al.Indosinian Granite Batholiths of Southern Zhuguang Mountian:SHRIMP Zircon U-Pb Dating and Tectonic Implications[J].Chinese Science Bulletin,2012,57(14):1231-1241.
[12] 黄国龙,刘鑫扬,孙立强,等.粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因意义[J].地质学报,2014,88(5):836-849.
Huang G L,Liu X Y,Sun L Q,et al.Zircon U-Pb Dating,Geochemical Characteristic and Genesis of the Changjiang Granite in Northern Guangdong[J].Acta Geologica Sinica,2014,88(5):836-849.
[13] 朱捌.地幔流体与铀成矿作用研究[D].成都:成都理工大学,2010.
Zhu B.The Study of Mantle Liquid and Uranium Metallogenesis[D].Chengdu:Chengdu University of Technology,2010.
[14] 葛祥坤.电子探针定年技术在铀及含铀矿物测年中的开发与研究[D].北京:核工业北京地质研究院,2013.
Ge X K.Research and Development of Electron Microprobe Dating on Uranium Minerals and U-bearing Minerals[D].Beijing:Beijing Research Institute of Uranium Geology,2013.
[15] Bowles J F W.Age Dating of Individual Grains of Uraninite in Rocks from Eletron Microprobe Analyses [J].Chemical Geology,1990,83(1-2):47-53.
[16] Kempe U.Precise Electron Microprobe Age Determina-tion in Altered Uraninite:Consequences on the Intrusion Age and the Metallogenic Significance of Kirchberg Granite (Erzgebirge,Germany)[J].Contributions to Mineralogy and Petrology,2003,145:107-118.
[17] Skacha P,Golias V,Sejkora J,et al.Hydrothermal Uranium-base Metal Mineralization of the Janska Vein,Brezove Hory,Pribram,Czech Republic:Lead Isotopes and Chemical Dating of Uraninite[J].Journal of Geosciences,2009,54(1):1-13.
[18] Votyakov S L,Ivanov K S,Khiller V V,et al.Chemical Microprobe Th-U-Pb Age Dating of Monazite and Uraninite Grains from Granites of the Yamal Crystalline Basement[J].Doklady Earth Sciences,2011,439(2):244-247.
[19] Votyakov S L,Khiller V V,Shchapova Y V,et al.Composition and Chemical Microprobe Dating of U-Th-bearing Minerals.Part 2.Uraninite,Thorite,Thorianite,Coffinite,and Monazite from the Urals and Siberia[J].Geology of Ore Deposits,2013,55(7):515-524.
[20] 韦龙明,王莉,张广辉,等.广东石人嶂钨矿床中的晶质铀矿研究[J].地质学报,2014,88(4):805-813.
Wei L M,Wang L,Zhang G H,et al.Study on the Uraninite in Shirenzhang Tungten Deposit,Guangdong Province[J].Acta Geologica Sinica,2014,88(4):805-813.
[21] 赵慧博,刘亚非,阳珊,等.电子探针测年方法应用于晶质铀矿的成因类型探讨[J].岩矿测试,2014,33(1):102-109.
Zhao H B,Liu Y F,Yang S,et al.The Application of Electron Microprobe Dating Method on Genetic Type of Uraninite[J].Rock and Mineral Analysis,2014,33(1):102-109.
[22] Luo J C,Hu R Z,Shi S H.Time of Uranium Mineralization and Geological Implications of Shazijiang Granite-hosted Uranium Deposit Guangxi,South China:New Constraint from Chemical U-Pb Age[J].Journal of Earth Science,2015,26(6):911-919.
[23] Ranchin G.Contribution à L’étude De La Repartition De L’uranium L’tat De Traces Dans Les Roches Granitiques Saines Les Uranites à Teneur levée Du Massif De Saint-Sylvestre (Limousin-Massif Central Francais)[J].Science Terre,1968,13:161-205.
[24] Korzer T G, Kyser T K.O,U,and Pb Isotopic and Chemical Variations in Uraninite:Implications for Determining the Temporal and Fluid History of Ancient Terrains[J].American Mineralogist,1993,78:1262-1274.
[25] Janeczek J,Ewing R C.Mechanisms of Lead Release from Uraninite in the Natural Fission Reactions in Gabon[J].Geochimica et Cosmochica Acta,1995,59(10):1917-1931.
[26] Evins L Z,Jensen K A,Ewing R C.Uraninite Recry-stallization and Pb Loss in the Oklo and Bangombeacute Natural Fission Reactors,Gabon[J].Geochimica et Cosmochimica Acta,2005,69(6):1589-1606.
[27] 张昭明.电子探针在测定晶质铀矿年龄中的应用[J].放射性地质,1982(5):408-411.
Zhang Z M.The Application of Electron Microprobe on Dating Uraninite[J].Radioactive Geology,1982(5):408-411.
[28] 陈岳龙,杨忠芳,赵志丹编著.同位素地质年代学与地球化学[M].北京:地质出版社,2005.
Chen Y L,Yang Z F,Zhao Z D.Isotopic Geochronology and Geochemistry[M].Beijing:Geological Publishing House,2005.
[29] 李献华.万洋山—诸广山花岗岩复式岩基的岩浆活动时代与地壳运动[J].中国科学(化学),1990(7):747-755.
Li X H.Magmatic Activity Age and Crustal Movement of Granite Batholith in Wanyangshan[J].Science Sinica Chimica,1990(7):747-755.
[30] 田泽瑾.诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征研究[D].北京:中国地质大学(北京),2014.
Tian Z J.Uranium-bearing and Barren Granites from the Zhuguang Mountain:Geochronology,Element Geochemistry,Mineralogy[M].Beijing:China University of Geosciences (Beijing),2014.
[31] 李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学,1997,26(2):14-31.
Li X H,Hu R Z,Rao B.Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong,SE China[J].Geochimica,1997,26(2):14-31.
[32] 黄国龙,尹征平,凌洪飞,等.粤北302矿床沥青铀矿的形成时代、地球化学特征及其成因研究[J].矿床地质,2010,29(2):352-360.
Huang G L,Yin Z P,Ling H F,et al.Formation Age,Geochemical Characteristics and Genesis of Pitchblende from No.302 Uranium Deposit in Northern Guangdong[J].Mineral Deposits,2010,29(2):352-360.
[33] 尹征平,凌洪飞,黄国龙,等.粤北九峰岩体的地球化学特征与成因研究[J].东华理工大学学报(自然科学版),2010,33(1):15-21.
Yin Z P,Ling H F,Huang G L,et al.Research on Geochemical Characteristics and Genesis of Jiufeng Rock Mass in Northern Guangdong Province[J].Journal of East China Institute of Technology,2010,33(1):15-21.
-