Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Geochronology of Xujiawan Monzogranite in the Eastern Part of North Huaiyang and Their Geological Significance
-
摘要: 徐家湾二长花岗岩体位于北淮阳构造带内桐柏-桐城与郯城-庐江两大断裂的交汇处,岩体呈岩株状侵入新元古界老变质岩层中。本文利用原子吸收光谱和ICP-MS法测定了岩体主量和微量元素的含量,表明岩体具SiO2和Al2O3较高、富碱、过铝质、Mg#小等特征。大离子亲石元素(LILE)Rb、Ba富集,Sr亏损;高场强元素(HFSE)Y、Th、Nb、Hf、U富集,Ta、P、Ti亏损;岩体整体亏损HFSE,富集LILE;LaN/YbN与LREEs/HREEs值均较大,具较弱的δCe负异常,显示该岩体为过铝质A型花岗。LA-ICP-MS锆石U-Pb定年获得徐家湾二长花岗岩侵位年龄在128.0±0.9~129.6±1.4 Ma之间,是早白垩世岩浆活动的产物。研究认为徐家湾二长花岗岩体形成于造山后的伸展环境,形成岩体的岩浆源于岩石圈地幔,并受到地壳物质的混染。
-
关键词:
- 北淮阳构造带 /
- 二长花岗岩 /
- 地球化学 /
- LA-ICP-MS锆石U-Pb定年 /
- 早白垩世
Abstract: The Xujiawan monzogranitic intrusion is located at the junction of the Tongbai-Tongcheng fault and the Tancheng-Lujiang fault in North Huaiyang tectonic belt. The rocks intruded into the Neoproterozoic metamorphic rocks as stocks. In this study, major and trace element contents of the rocks are determined by Atomic Absorption Spectrometer and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Results show that these rocks have high contents of SiO2 and Al2O3 and are alkali-rich and peraluminous with low Mg# values. They are rich in large ion lithophile elements such as Rb and Ba, but are poor in Sr. They are rich in high field strength elements such as Y, Th, Nb, Hf, U, but are poor in Ta, P, Ti. In general, these rocks are deplete in HFSE but enriched in LILE. They have high LaN/YbN and LREE/HREE ratios and have weak Ce anomalies. Major and trace elements indicate that these rocks belong to peraluminous A-type granite. LA-ICP-MS Zircon U-Pb dating of Xujiawan monzogranite yield ages of 128.0 0.9 Ma to 129.6 1.4 Ma, indicating that these intrusions were produced by the early Cretaceous magmatism. Xujiawan monzogranite may have formed in a post-collisional extensional setting. The magma may be derived from the mantle and contaminated by the continental crust. -
-
图 2 徐家湾二长花岗岩稀土元素球粒陨石标准化及微量元素原始地幔标准化图解(球粒陨石和原始地幔标准化数据据Sun等[16])
Figure 2.
图 3 徐家湾二长花岗岩的构造背景判别图解(据Pearce等[45])
Figure 3.
表 1 徐家湾二长花岗岩全岩主量(%)和微量(×10-6)数据
Table 1. Chemical compositions (%),REE and trace element (×10-6) compositions of the Xujiawan monzogranite
主微量元素 采样点位TW13 采样点位TW15 h56 h57 h58 h59 h60 h66 h67 h68 h69 h70 SiO2 68.91 69.23 68.90 68.39 68.39 69.28 69.47 69.65 69.81 69.50 TiO2 0.48 0.44 0.51 0.48 0.51 0.46 0.46 0.47 0.49 0.46 Al2O3 15.30 14.84 14.78 15.32 15.01 14.94 15.00 14.43 14.79 14.85 Fe2O3 2.09 1.84 1.79 0.78 1.82 1.37 1.54 1.27 1.49 1.54 FeO 0.80 0.98 1.18 1.91 1.21 1.38 1.15 1.47 1.30 1.18 MnO 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06 MgO 0.98 0.96 1.02 1.04 1.11 1.04 1.00 1.01 1.05 1.05 CaO 1.49 1.71 1.82 1.87 1.93 1.93 1.72 1.75 1.86 1.94 Na2O 4.00 3.87 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 K2O 4.84 4.59 4.58 4.74 4.59 4.76 4.80 4.70 4.67 4.77 P2O5 0.19 0.17 0.20 0.20 0.21 0.17 0.16 0.17 0.17 0.17 H2O+ 0.22 0.22 0.62 0.66 0.62 0.44 0.60 0.50 0.44 0.66 LOI 0.65 0.63 0.73 0.89 0.88 0.69 0.69 0.74 0.63 0.73 Total 100.02 99.55 99.98 100.11 100.11 100.30 100.41 100.00 100.54 100.69 Mg# 0.50 0.49 0.48 0.45 0.50 0.49 0.50 0.47 0.49 0.50 DI 86.09 85.37 84.56 83.45 83.68 84.33 85.32 85.27 84.71 84.62 SI 7.77 7.88 8.29 8.51 8.86 8.48 8.20 8.24 8.53 8.52 A/NCK 1.05 1.02 1.02 1.04 1.02 1.00 1.03 0.99 1.01 1.00 A/NK 1.29 1.31 1.32 1.35 1.34 1.31 1.31 1.28 1.31 1.30 La 67.02 78.90 76.54 60.49 64.17 67.61 69.23 81.43 81.27 73.58 Ce 119.88 133.54 153.87 115.22 126.76 126.13 123.16 152.81 149.11 137.67 Pr 13.01 14.03 15.89 12.94 14.66 13.60 13.38 15.71 15.24 14.38 Nd 47.59 49.93 57.24 47.28 53.15 48.80 47.15 55.46 54.15 51.67 Sm 7.09 7.34 8.30 7.11 8.05 7.35 6.95 7.99 7.92 7.65 Eu 1.39 1.43 1.55 1.46 1.55 1.36 1.31 1.39 1.38 1.37 Gd 6.25 6.54 7.34 6.24 6.96 6.42 6.08 7.16 6.90 6.68 Tb 0.84 0.85 0.95 0.82 0.92 0.84 0.81 0.93 0.89 0.89 Dy 4.25 4.39 5.01 4.27 4.86 4.32 4.13 4.79 4.68 4.57 Ho 0.82 0.84 0.95 0.82 0.93 0.84 0.80 0.90 0.89 0.87 Er 2.37 2.43 2.80 2.41 2.72 2.42 2.36 2.70 2.62 2.53 Tm 0.37 0.39 0.44 0.38 0.43 0.39 0.38 0.42 0.41 0.41 Yb 2.46 2.54 2.96 2.49 2.82 2.56 2.44 2.77 2.67 2.68 Lu 0.38 0.39 0.44 0.37 0.42 0.39 0.39 0.42 0.41 0.42 Y 23.41 24.03 26.86 23.27 26.17 23.73 22.85 25.57 25.52 25.04 ΣREEs 273.72 303.53 334.29 262.28 288.40 283.02 278.57 334.89 328.54 305.36 LREEs 255.99 285.17 313.40 244.49 268.34 264.85 261.19 314.80 309.06 286.32 HREEs 17.74 18.36 20.89 17.79 20.06 18.18 17.38 20.09 19.48 19.04 LREEs/HREEs 14.43 15.53 15.00 13.75 13.38 14.57 15.03 15.67 15.86 15.04 LaN/YbN 19.57 22.31 18.54 17.42 16.31 18.94 20.37 21.07 21.81 19.68 δEu 0.63 0.62 0.60 0.65 0.62 0.59 0.60 0.55 0.56 0.57 δCe 0.93 0.91 1.03 0.96 0.97 0.96 0.93 0.98 0.97 0.97 Rb 155.95 151.21 156.61 146.94 147.98 169.69 175.19 179.84 164.48 179.74 Ba 1604.42 1452.62 1542.51 1839.10 1669.08 1500.75 1482.74 1308.65 1371.58 1326.25 Th 22.36 33.51 31.21 13.50 13.75 40.64 37.46 37.32 40.16 39.07 U 3.44 4.99 5.77 4.88 5.43 8.97 7.66 7.75 7.60 7.92 Ta 1.67 1.71 1.65 1.37 1.69 1.91 1.87 1.87 2.00 1.99 Nb 20.89 20.85 22.54 19.52 22.87 22.38 22.02 22.21 24.48 24.50 Sr 522.93 440.96 564.15 537.87 501.39 531.56 501.39 481.61 415.79 495.28 Zr 228.16 228.80 260.80 225.60 265.04 234.16 254.88 227.92 281.20 254.80 Hf 7.22 7.15 7.85 6.98 7.97 7.65 8.13 7.48 8.76 8.42 注:A/CNK=Al2O3/(CaO+Na2O+K2O);A/NK= Al2O3/(Na2O+K2O);Mg#=MgO/(MgO+FeO+Fe2O3)。 表 2 徐家湾二长花岗岩LA-ICP-MS 锆石 U-Pb分析结果
Table 2. LA-ICP-MS zircon U-Pb dating results of Xujiawan monzogranite
分析点 Th(×10-6) U (×10-6) Th/U 同位素比值 U-Pb同位素年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW13-1 254.73 212.68 1.20 0.05068 0.00252 0.13545 0.00844 0.01994 0.00029 226 106 129 8 127 2 TW13-2 242.58 219.72 1.10 0.09406 0.00572 0.25730 0.01964 0.02014 0.00036 1509 106 232 16 129 2 TW13-3 377.69 232.10 1.63 0.06012 0.00315 0.16765 0.01107 0.02068 0.00032 608 105 157 10 132 2 TW13-5 352.79 345.10 1.02 0.07102 0.00300 0.19906 0.01071 0.02037 0.00027 958 85 184 9 130 2 TW13-6 278.38 235.81 1.18 0.09814 0.00428 0.27780 0.01554 0.02033 0.00029 1589 80 249 12 130 2 TW13-8 383.94 366.22 1.05 0.04832 0.00221 0.13166 0.00751 0.01983 0.00026 115 99 126 7 127 2 TW13-9 387.59 298.68 1.30 0.05374 0.00223 0.15151 0.00809 0.02091 0.00029 360 88 143 7 133 2 TW13-10 374.05 297.85 1.26 0.05357 0.00243 0.14821 0.00846 0.02024 0.00027 353 97 140 7 129 2 TW13-11 237.45 216.71 1.10 0.05874 0.00377 0.16699 0.01315 0.02113 0.00035 558 132 157 11 135 2 TW13-12 465.71 361.73 1.29 0.05115 0.00262 0.13586 0.00892 0.01964 0.00033 248 127 129 8 125 2 TW13-13 421.13 377.90 1.11 0.04639 0.00198 0.12424 0.00666 0.01934 0.00024 18 97 119 6 123 2 TW13-15 376.79 388.55 0.97 0.04707 0.00183 0.13155 0.00659 0.02006 0.00026 53 76 125 6 128 2 TW13-16 234.80 229.64 1.02 0.04710 0.00249 0.13602 0.00890 0.02122 0.00030 54 103 129 8 135 2 TW13-17 354.26 255.58 1.39 0.06026 0.00259 0.16119 0.00892 0.02010 0.00029 613 87 152 8 128 2 TW13-18 380.09 294.50 1.29 0.05304 0.00227 0.14200 0.00782 0.01941 0.00027 331 91 135 7 124 2 TW13-19 415.00 433.25 0.96 0.04946 0.00211 0.13867 0.00805 0.02054 0.00037 170 92 132 7 131 2 TW13-20 212.82 159.96 1.33 0.04291 0.00256 0.12228 0.00893 0.02139 0.00032 -128 126 117 8 136 2 TW13-21 261.62 237.07 1.10 0.07079 0.00380 0.20722 0.01382 0.02043 0.00031 951 112 191 12 130 2 TW13-22 379.95 315.50 1.20 0.05912 0.00285 0.16768 0.01005 0.02073 0.00028 572 107 157 9 132 2 TW13-23 322.62 268.86 1.20 0.04620 0.00244 0.13155 0.00853 0.02002 0.00027 8 101 125 8 128 2 TW13-24 257.50 231.09 1.11 0.04861 0.00259 0.13017 0.00866 0.01995 0.00030 129 110 124 8 127 2 TW13-25 214.70 206.13 1.04 0.07574 0.00678 0.20706 0.02226 0.02033 0.00042 1088 168 191 19 130 3 TW13-26 260.19 216.91 1.20 0.05623 0.00321 0.15526 0.01081 0.02022 0.00029 461 126 147 10 129 2 TW13-27 259.70 257.10 1.01 0.05307 0.00266 0.14763 0.00927 0.02070 0.00030 332 113 140 8 132 2 TW15-1 230.34 232.66 0.99 0.05131 0.00304 0.13601 0.00998 0.01991 0.00032 255 132 129 9 127 2 TW15-2 490.31 304.56 1.61 0.06175 0.00297 0.17327 0.01036 0.01998 0.00027 665 101 162 9 127 2 TW15-4 320.82 200.06 1.60 0.04583 0.00489 0.12089 0.01526 0.01964 0.00043 -11 200 116 14 125 3 TW15-5 187.05 161.41 1.16 0.06710 0.00532 0.18972 0.01869 0.02104 0.00046 841 166 176 16 134 3 TW15-6 287.84 236.29 1.22 0.07091 0.00743 0.19275 0.02376 0.01954 0.00041 955 220 179 20 125 3 TW15-7 585.28 249.81 2.34 0.06950 0.00364 0.19812 0.01296 0.02090 0.00031 914 106 184 11 133 2 TW15-8 185.81 237.63 0.78 0.06593 0.00366 0.17352 0.01203 0.02006 0.00032 804 115 162 10 128 2 TW15-9 257.01 255.81 1.00 0.05091 0.0028 0.14190 0.00951 0.02046 0.00028 237 122 135 8 131 2 TW15-11 291.85 254.45 1.15 0.06608 0.00453 0.18073 0.01464 0.02005 0.00028 809 143 169 13 128 2 TW15-12 356.89 294.66 1.21 0.05376 0.00293 0.14500 0.00967 0.01919 0.00027 361 120 137 9 123 2 TW15-13 423.37 366.81 1.15 0.05262 0.00257 0.14025 0.00844 0.01937 0.00025 312 108 133 8 124 2 TW15-14 249.03 219.13 1.14 0.09308 0.00517 0.25809 0.01884 0.02052 0.00041 1490 104 233 15 131 3 TW15-15 361.94 272.70 1.33 0.04851 0.00281 0.12792 0.00894 0.01986 0.00027 124 124 122 8 127 2 TW15-16 320.60 266.28 1.20 0.04920 0.00306 0.13301 0.00991 0.01974 0.00028 157 135 127 9 126 2 TW15-17 308.61 255.64 1.21 0.05373 0.00284 0.15262 0.00984 0.02074 0.00028 360 116 144 9 132 2 TW15-18 220.80 202.19 1.09 0.06699 0.00368 0.18418 0.0125 0.01993 0.00029 838 113 172 11 127 2 TW15-19 228.61 204.68 1.12 0.04721 0.00323 0.12842 0.01048 0.01995 0.00030 60 143 123 9 127 2 TW15-20 275.97 266.77 1.03 0.04972 0.00271 0.13890 0.00926 0.02015 0.00028 182 120 132 8 129 2 TW15-21 304.01 255.06 1.19 0.04465 0.00317 0.12326 0.01031 0.02041 0.00030 -37 139 118 9 130 2 TW15-23 340.46 234.82 1.45 0.09257 0.00591 0.25569 0.01997 0.02001 0.00033 1479 120 231 16 128 2 TW15-25 243.26 203.15 1.20 0.05453 0.00371 0.14805 0.01220 0.02016 0.00033 393 150 140 11 129 2 TW15-27 154.81 165.70 0.93 0.05711 0.00394 0.15774 0.01310 0.02024 0.00033 496 151 149 11 129 2 TW15-28 285.16 221.70 1.29 0.06209 0.00355 0.16854 0.01185 0.02008 0.00030 677 121 158 10 128 2 TW15-29 125.60 132.05 0.95 0.04958 0.00389 0.14565 0.01357 0.02038 0.00034 175 171 138 12 130 2 TW15-30 285.79 223.78 1.28 0.05386 0.00298 0.14342 0.00974 0.02001 0.00029 365 122 136 9 128 2 TW15-32 258.32 228.16 1.13 0.06404 0.00469 0.18696 0.01625 0.02068 0.00032 743 155 174 14 132 2 TW15-33 418.98 376.16 1.11 0.05722 0.00388 0.15508 0.01281 0.01928 0.00033 500 148 146 11 123 2 TW15-34 198.71 208.76 0.95 0.05991 0.00387 0.16553 0.01298 0.02042 0.00032 600 139 156 11 130 2 TW15-35 334.33 270.31 1.24 0.05600 0.00378 0.15774 0.01293 0.01974 0.00032 452 148 149 11 126 2 TW15-36 530.61 346.10 1.53 0.04740 0.00264 0.13081 0.00884 0.01987 0.00027 69 115 125 8 127 2 TW15-37 306.33 247.06 1.24 0.05203 0.00282 0.14585 0.00977 0.02019 0.00029 287 121 138 9 129 2 TW15-38 198.56 153.88 1.29 0.13325 0.00850 0.34771 0.02817 0.01971 0.00039 2141 110 303 21 126 2 -
[1] 徐树桐,江来利,刘贻灿,等.大别山区(安徽部分)的构造格局和演化过程[J].地质学报,1992,66(1):1-14.
Xu S T,Jiang L L,Liu Y C,et al.Tectonic Framework and Evolution of the Dabie Mountains in Anhui,Eastern China[J].Acta Geologica Sinica,1992,66(1):1-14.
[2] 周泰禧,陈江峰,张巽,等.北淮阳花岗岩-正长岩带地球化学特征及其大地构造意义[J].地质论评,1995,41(2):144-151.
Zhou T X,Chen J F,Zhang X,et al.Geochemistry of the North Huaiyang Granite-Syenite Zone and Its Tectonic Implication[J].Geological Review,1995,41(2):144-151.
[3] Xu X C,Lou J W,Xie Q Q,et al.Gochronology and Tectonic Setting of Pb-Zn-Mo Deposits and Related Igneous Rocks in the Yinshan Region,Jinzhai,Anhui Province,China[J].Ore Geology Reviews,2011,43:132-141.
[4] Chen Y J,Wang Y.Fluid Inclusion Study of the Tangjiaping Mo Deposit,Dabie Shan,Henan Province:Implications for the Nature of the Porphyry Systems of Post-collisional Tectonic Settings[J].International Geology Review,2011,53(5-6):635-655.
[5] Yang Y F,Chen Y J,Li N,et al.Fluid Inclusion and Isotope Geochemistry of the Qian’echong Giant Porphyry Mo Deposit,Dabie Shan,China:A Case of NaCl-poor,CO2-rich Fluid Systems[J].Journal of Geochemical Exploration,2013,124:1-13.
[6] 李毅,李诺,杨永飞,等.大别山北麓钼矿床地质特征和地球动力学背景[J].岩石学报,2013,29(1):95-106.
Li Y,Li N,Yang Y F,et al.Geological Features and Geodynamic Settings of the Mo Deposits in the Northern Segment of the Dabie Mountains[J].Acta Petrologica Sinica,2013,29(1):95-106.
[7] 陈红瑾,陈衍景,张静,等.安徽省金寨县沙坪沟钼矿含矿岩体锆石 U-Pb 年龄和Hf 同位素特征及其地质意义[J].岩石学报,2013,29(1):131-145.
Chen H J,Chen Y J,Zhang J,et al.Ziron U-Pb Ages and Hf Isotope Characteristics of the Ore-bearing Intrusion from the Shapinggou Molybdenum Deposit,Jinzhai County,Anhui Province[J].Acta Petrologica Sinica,2013,29(1):131-145.
[8] 杨泽强,唐相伟.北大别山肖畈岩体地球化学特征和锆石LA-ICP-MS U-Pb同位素定年[J].地质学报,2015,89(4):692-700.
Yang Z Q,Tang X W.Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Isotopic Dating of the Xiaofan Rock Bodies in North Dabieshan[J].Acta Geologica Sinica,2015,89(4):692-700.
[9] 彭智.北淮阳东段基础地质评述[J].安徽地质,2004,14(3):172-176.
Peng Z.A Review on Fundamental Geology in the Eastern Segment of Northern Huaiyang Belt[J].Acta Petrologica Sinica,2013,29(1):95-176.
[10] 邱检生,王德滋,刘洪,等.大别造山带北缘后碰撞富钾火山岩:地球化学与岩石成因[J].岩石学报,2002,18(3):319-330.
Qiu J S,Wang D Z,Liu H,et al.Post-collisional Potash-rich Volcanic Rockes in the North Margin of Dabie Orogenic Belt Geochemistry and Petrogenesis[J].Acta Petrologica Sinica,2002,18(3):319-330.
[11] Zeng L S,Gao L E,Dong C Y,et al.High-pressure Melting of Metapelite and the Formation of Ca-rich Granitic Melts in the Namche Barwa Massif,Southern Tibet[J].Gondwana Research,2012,21:138-151.
[12] Yuan H L,Gao S,Liu X M,et al.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards and Geoanalytical Research,2004,28:353-370
[13] Anderson T. Correction of Common Lead in U-Pb Analyses That Do not Report 204Pb[J].Chemical Geology,2002,29:59-79.
[14] Middlemost E A K.Naming Materials in the Magma/Igneous Rock System[J].Earth-Science Review,1994,37:215-224.
[15] Ewart A.The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks with Special Reference to the Andesitic-basaltic Compositional Range[M].Andesites:Wiley,1982:25-87.
[16] Sun S S,Mc Donough W F.Chemmical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Process[M]//Sauders A D,Norry M J.Magmatism in the Ocean Basins.London Geological Society,1989:313-345.
[17] 吴元保,郑永飞.锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
Wu Y B,Zheng Y F.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age[J].Chinese Science Bulletin,2004,49(16):1589-1604.
[18] Belousova E A,Griffin W L,O’Reilly S Y,et al.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J].Contributions to Mineralogy and Petrology,2002,143:602-622.
[19] 吴锁平,王梅英,戚开静.A型花岗岩研究现状及其评述[J].岩石矿物学杂志,2007,26(1):57-66.
Wu S P,Wang M Y,Qi K J.Present Situation of Researches on A-type Granites:A Review[J].Acta Petrologica et Minralogica,2007,26(1):57-66.
[20] 苏玉平,唐红峰.A型花岗岩的徽量元素地球化学[J].矿物岩石地球化学通报,2005,24(3):245-250.
Su Y P,Tang H F.Trace Element Geochemistry of A-type Granites[J].Bulletin of Mineralogy,Petrology and Geochemistry,2005,24(3):245-250.
[21] Whalen J B.A-type Granites:Geochemical Characteris-tics,Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407-419.
[22] 周泰禧,陈江峰,李学明,等.安徽霍舒正长岩带侵入体的40Ar/39Ar法同位素地质年龄[J].安徽地质,1992,2(1):4-11.
Zhou T X,Chen J F,Li X M, et al.40Ar/39Ar Isotopic Dating of Intrusions From Huoshan-Shucheng Syenite Zone,Anhui province[J].Geology of Anhui,1992,2(1):4-11.
[23] 杨祝良,沈加林,沈渭洲,等.北淮阳中生代火山-侵入岩同位素年代学研究[J].地质论评,1999,45(增刊):674-680.
Yang Z L,Shen J L,Shen W Z,et al.Isotopic Chronology of Mesozoic Volcanic-intrusive Rocks in Beihuaiyang[J].Geological Review,1999,45(Supplement):674-680.
[24] Wong J,Sun M,Xing G F,et al.Geochemical and Zircon U-Pb and Hf isotopic Study of the Baijuhuajian Metaluminous A-type Granite:Extension at 125~100Ma and Its Tectonic Significance for South China[J].Lithos,2009,112(3-4):289-305.
[25] Li H,Zhang H,Ling M X,et al.Geochemical and Zircon U-Pb Study of the Huangmeijian A-type Granite:Implications for Geological Evolution of the Lower Yangtze River Belt[J].International Geology Review,2011,53(5-6):499-525.
[26] 范裕,周涛发,袁峰,等.安徽庐江—枞阳地区 A 型花岗岩的LA-ICP-MS定年及其地质意义[J].岩石学报,2008,24(8): 1715-1724.
Fan Y,Zhou T F,Yuan F,et al.LA-ICP-MS Zircon U-Pb Ages of the A-type Granites in the Lu-Zong (Lujiang-Zongyang) Area and Their Geological Significances[J].Acta Petrologica Sinica,2008,24(8):1715-1724
[27] 胡正华,王先广,李永明,等.长江中下游九瑞矿集区宝山铜多金属矿床辉钼矿Re-Os年龄及其地质意义[J].中国地质,2015,42(2):585-596.
Hu Z H,Wang X G,Li Y M,et al.Re-Os Age of Molybdenite from the Baoshan Copper Polymetallic Deposit in the Jiurui Ore Concentration Age along the Middle Lower Yangtze River Region and Its Geological Significance[J].Geology in China,2015,42(2):585-596.
[28] 王登红,陈郑辉,陈毓川,等.我国重要矿产地成岩成矿年代学研究新数据[J].地质学报,2010,84(7):1030-1040.
Wang D H,Chen Z H,Chen Y C,et al.New Data of the Rock-forming and Ore-forming Chronology for China’s Important Mineral Resources Area[J].Acta Geologica Sinica,2010,84(7):1030-1040.
[29] 薛怀民,汪应庚,马芳,等.皖南太平-黄山复合岩体的SHRIMP年代学:由钙碱性向碱性转变对扬子克拉通东南部中生代岩石圈减薄时间的约束[J].中国科学(地球科学),2009,39(7):979-993.
Xue H M,Wang Y G,Ma F,et al.Zircon U-Pb SHRIMP Ages of the Taiping (Calc-alkaline)-Huangshan (Alkaline) Composite Intrusive:Constraints on Mesozoic Lithospheric Thinning of the Southeastern Yangtze Craton,China[J].Scientia Sinica Terrae,2009,39(7):979-993.
[30] Song G X,Qin K Z,Li G M,et al.Zircon SMS U-Pb and Molybdenite Re-Os Ages of Baizhangyan W-Mo Deposit Middle-Lower Yangtze Valley.Constraints on Tectonic Setting of Magmatism and Mineralization[J].International Geology Review,2012,69:853-868.
[31] 陈芳,杜建国,许卫.安徽青阳百丈岩钨钼矿床成矿背景与成矿模式[J].地质论评,2013,59(3):437-445.
Chen F,Du J G,Xu W.Ore-forming Setting and Metallogenetic Model of the Baizhangyan Tungsten-Molybdenum Deposit in Qingyang,Anhui Province[J].Geological Review,2013,59(3):437-445.
[32] 陈芳,王登红,杜建国,等.安徽绩溪伏岭花岗岩LA-ICP-MS锆石U-Pb年龄的精确测定及其地质意义[J].岩矿测试,2013,32(6):970-977.
Chen F,Wang D H,Du J G,et al.New Dating of the Fuling Granite Body with LA-ICP-MS Zircon U-Pb in Jixi,Anhui Province and Their Geological Significance[J].Rock and Mineral Analysis,2013,32(6):970-977.
[33] 陈芳,王登红,杜建国,等.安徽宁国刘村二长花岗岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报,2014,88(54):869-882.
Chen F,Wang D H,Du J G,et al.Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Geochronology of the Liucun Monzogranite in Ningguo,Anhui Province and Their Geological Significance[J].Acta Geologica Sinica,2014,88(54):869-882.
[34] Loiselle M C,Wones D R.Characteristics of Anorogenic Granites[J].Geological Society of America Abstracts with Programs,1979,11:468.
[35] Turner S P,Foden J D,Morrison R S.Derivation of Some A-type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge,South Australia[J].Lithos,1992,28(2):151-179.
[36] Smith D R,Noblett J,Wobus R A,et al.Petrology and Geochemistry of Late-stage Intrusions of the A-type,Mid-proterozoic Pikes Peak Batholith (Central Colorado,USA):Implications for Petrogenetic Models[J].Precambrian Research,1999,98(3-4):271-305.
[37] Anderson I C,Frost C D,Frost B R.Petrogenesis of the Red Mountain Pluton,Laramie Anorthosite Complex,Wyoming:Implications for the Origin of A-type Granite[J].Precambrian Research,2003,124(2-4):243-267.
[38] Collins W J,Beams S D,White A J R,et al.Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J].Contributions to Mineralogy and Petrology,1982,80(2):189-200.
[39] Clemens J D,Holloway J R,White A J R.Origin of an A-type Granite:Experimental Constraints[J].American Mineralogist,1986,71:317-324.
[40] Altherr R,Holl A,Hegner E.High-potassium,Calcalka-line I-type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany)[J].Lithos,2000,50(1-3):51-73.
[41] Lassiter J C,Depaolo D J.Plumes/Lithosphere Interact-ion in the Generation of Continental and Oceanic Flood Basalts:Chemical and Isotope Constraint[M]//Mahoney J.Large Igneous Provinces:Continental,Oceallic,and Planetary F1ood Volcanism. American Geophysical Union,1997:335-355.
[42] Ratschbacher L,Hacker B R,Webb L E,et al.Exhum-ation of the Ultrahigh-pressure Continental Crust in East Central China:Cretaceous and Cenozoic Unroofing and the Tan-Lu fault[J].Journal of Geophysical Research,2000,105 (10):13303-13338.
[43] Wong J,Sun M,Xing G F,et al.Geochemical and Zircon U-Pb and Hf Isotopic Study of the Baijuhuajian Metaluminous A-type Granite:Extension at 125~100Ma and Its Tectonic Significance for South China[J].Lithos,2009,112(3-4):289-305.
[44] Qiu J S,Hua R M.The Spatial and Temporal Distribution of Mesozoic Volcanic Rocks in East China[M]//Wang D,Ren Q.The Mesozoic Volcanic-Intrusive Complexes and Their Metallogenic Relations in East China.Beijing:Science Press,1996:6-14.
[45] Pearce J A,Harris N B W,Tindle A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology,1984,25(4):956-983.
[46] Pearce J A.Source and Settings of Granitic Rocks[J].Episodes,1996,19:120-125.
[47] 许长海,周祖翼,马昌前.大别造山带140-85Ma热窿伸展作用——年代学约束[J].中国科学(地球科学),2001,31 (11):925-937.
Xu C H,Zhou Z Y,Ma C Q.Hot Ember Extension of Dabie Orogen in 140~85Ma—Chronology Constraints[J].Scientia Sinica Terrae,2001,31(11):925-937.
[48] 马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据[J].中国科学(地球科学),2003,33(9):817-827.
Ma C Q,Yang K G,Ming H L,et al.Transition Time of Mesozoic Crust from Compression to Extension,Dabie Mountain:The Evidence from Granite\[J\].Scientia Sinica Terrae,2003,33(9):817-827.
-