The Effect of Mixed Acid Ratio on the Determination of Multielements in Geochemical Samples by ICP-MS/OES
-
摘要: 应用电感耦合等离子体质谱/发射光谱仪(ICP-MS/OES)测定地球化学样品中的多元素时,通常采用混合酸(盐酸-硝酸-氢氟酸-高氯酸)分解试样,但不同比例的混合酸对试样的分解效果影响极大,导致测试结果中经常出现铬、锰、铁、铝、钛及部分稀土元素测定结果偏低、精密度不理想的情况。本文通过改变混合酸中各类酸的混合比例,采用逆王水-氢氟酸-高氯酸分解试样,逆王水提取,使上述元素获得了较为理想的分解效果,特别是这些元素含量较高的样品分解效果的改善尤为显著。实验证明:当取样量为0.100 g时,采用8 mL逆王水、6 mL氢氟酸、3 mL高氯酸分解试样,8 mL逆王水提取,用国家一级标准物质进行验证,测试结果的相对标准偏差(n=6)为0.34%~4.02%,本方法精密度和准确度均满足地质实验室质量管理规范要求,可快速、准确、批量测定地球化学样品中的多元素。Abstract: When determining elements in geochemical samples, the sample is usually decomposed by mixed acid (hydrochloric acid-hydrofluoric acid-perchloric acid) by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). However, the different proportions of mixed acid have a great influence on sample decomposition, resulting in lower analytical results of chromium, manganese, iron, aluminum, titanium and parts of rare earth elements, and bad analytical precision. In this study, samples are digested by mixed solution of inverse aqua regia, hydrofluoric acid, and perchloric acid, and then extracted by inverse aqua regia. This improves the decomposition of the above elements, especially for samples with high contents of these elements. Results show that the relative standard deviation (n=6) ranges from 0.34% to 4.02% for repeated determination of national level standard materials when 0.1 g sample was digested by 8 mL inverse aqua regia, 6 mL hydrofluoric acid, and 3 mL perchloric acid, and then extracted by 8 mL inverse aqua regia. The accuracy and precision of this method can satisfy the quality control standard requirements of the geology laboratory. This method establishes a fast and accurate approach to batch determination of multielements in geochemical samples.
-
-
表 1 电感耦合等离子体质谱仪和全谱直读等离子体发射光谱仪工作参数
Table 1. Working parameters of the ICP-MS and ICP-OES instruments
ICP-MS工作参数 设定值 ICP-OES工作参数 设定值 射频功率 1.4 kW 射频功率 1.3 kW 等离子体气流量 16.5 L/min 冷却气(Ar)流量 15 L/min 辅助气流量 2.00 L/min 辅助气(Ar)流量 0.2 L/min 雾化气流量 0.90 L/min 雾化气(Ar)流量 0.8 L/min 护鞘气流量 0.20 L/min 延迟读数时间 30 s 扫描次数 5 积分时间 2 s 测定次数 5 测定方式 峰面积 每个质量通道数 1 溶液提升量 1.5 L/min 衰减方式 None 重复测量次数 2次 停留时间 10 ms 样品锥孔径 0.9 mm 截取锥孔径 0.4 mm 雾化室温度 3℃ 表 2 不同高氯酸用量下标准物质的测试结果
Table 2. Analytical results of standard materials under different dosage of perchlorate
标准物质编号 测定
元素标准值
(μg/g)不同高氯酸用量6次实测值的平均值(μg/g) 相对误差(%) 0.5 mL 1.0 mL 2.0 mL 3.0 mL 4.0 mL 0.5 mL 1.0 mL 2.0 mL 3.0 mL 4.0 mL GBW07104
(安山岩)TFe2O3 4.90±0.06 4.25 4.54 4.74 4.91 5.00 -13.0 -7.3 -3.3 0.2 2.0 Al2O3 16.17±0.12 14.71 15.18 15.46 16.16 16.25 -9.0 -6.1 -4.4 -0.1 0.5 Mn 604±18 488 502 568 610 621 -19.0 -17.0 -6.0 0.1 2.8 Cr 32±3 22 24 27 31 33 -31.0 -25.0 -16.0 -3.1 3.1 Ti 3090±90 2100 2435 2806 3100 3000 -32.0 -21.0 -9.2 0.3 -2.9 GBW07106
(石英砂岩)TFe2O3 3.22±0.07 2.78 2.96 3.10 3.21 3.30 -14.0 -8.1 -3.7 -0.3 2.5 Al2O3 3.52±0.09 3.00 3.17 3.40 3.50 3.51 -15.0 -9.9 -3.4 -0.6 0.3 Mn 155±7 119 132 141 156 157 -23.0 -15.0 -9.0 0.6 1.3 Cr 20±3 13 16 19 20 20 -35.0 -20.0 -5.0 0.0 0.0 Ti 1580±80 1315 1413 1500 1600 1640 -17.0 -11.0 -5.1 1.3 3.8 GBW07306
(水系沉积物)TFe2O3 5.88±0.07 5.37 5.50 5.65 5.88 5.79 -8.7 -6.5 -3.9 0.0 -1.3 Al2O3 14.16±0.09 12.95 13.49 13.78 14.12 14.30 -8.5 -4.7 -2.7 -0.3 1.0 Mn 970±37 710 800 868 950 989 -27.0 -18.0 -11.0 -2.1 2.0 Cr 190±15 131 152 162 192 188 -31.0 -20.0 -15.0 0.8 -0.8 Ti 4640±120 3660 3913 4480 4700 4815 -21.0 -16.0 -3.4 1.3 3.8 GBW07402
(栗钙土)TFe2O3 3.52±0.07 2.81 3.09 3.30 3.52 3.50 -20.0 -12.0 -6.3 0.0 -0.6 Al2O3 10.31±0.10 8.97 9.66 10.08 10.27 10.38 -13.0 -6.3 -2.2 0.4 0.7 Mn 510±16 411 433 478 516 518 -19.0 -15.0 -6.3 1.2 1.6 Cr 47±4 30 36 44 48 48 -36.0 -23.0 -6.4 2.1 2.1 Ti 2710±80 2200 2376 2560 2738 2800 -19.0 -12.0 -5.5 1.1 3.3 GBW07404
(石灰岩风化土)TFe2O3 10.30±0.11 9.25 9.73 10.00 10.22 10.42 -10.0 -5.5 -2.9 -0.8 1.2 Al2O3 23.45±0.19 20.09 21.28 22.31 23.39 23.35 -14.0 -9.3 -4.9 -0.3 -0.1 Mn 1420±75 1150 1210 1300 1380 1440 -19.0 -15.0 -8.5 -2.8 1.4 Cr 370±16 260 291 321 375 378 -30.0 -21.0 -13.0 1.4 2.2 Ti 10800±310 7451 8790 10150 10875 11160 -31.0 -19.0 -6.0 0.7 2.4 注:TFe2O3、Al2O3含量的单位为%; $相对误差 = \frac{{n}{次测定的平均值 - 标准值}}{{标准值}} \ \ \ \ \ \ \ \ \ \ \ \times 100\% $ 。表 3 标准物质验证方法的准确度和精密度
Table 3. Accuracy and precision tests of the method certificated with national standard materials
标准物质编号 测定元素 标准值
(μg/g)本方法测定值
(μg/g)平均值
(μg/g)RSD
(%)GBW07104
(安山岩)TFe2O3 4.90±0.06 4.96 4.89 4.96 4.92 4.84 4.88 4.91 0.97 Al2O3 16.17±0.12 16.20 16.20 16.17 16.27 16.04 16.06 16.16 0.55 Mn 604±18 608 616 606 619 598 611 610 1.23 Cr 32±3 31 32 32 30 32 31 31 2.61 Ti 3090±90 3070 3130 3000 3150 3190 3060 3100 2.23 GBW07106
(石英砂岩)TFe2O3 3.22±0.07 3.16 3.17 3.25 3.28 3.23 3.15 3.21 1.68 Al2O3 3.52±0.09 3.51 3.46 3.58 3.43 3.53 3.47 3.50 1.55 Mn 155±7 150 157 162 155 159 150 156 3.12 Cr 20±3 21 20 21 20 19 21 20 4.02 Ti 1580±80 1560 1640 1530 1620 1660 1590 1600 3.09 GBW07306
(水系沉积物)TFe2O3 5.88±0.07 5.88 5.81 5.92 5.85 5.93 5.91 5.88 0.79 Al2O3 14.16±0.09 14.19 14.07 14.09 14.13 14.17 14.07 14.12 0.37 Mn 970±37 945 971 938 950 955 939 950 1.29 Cr 190±15 190 195 190 192 195 188 192 1.50 Ti 4640±120 4750 4620 4750 4720 4680 4680 4700 1.07 GBW07402
(栗钙土)TFe2O3 3.52±0.07 3.48 3.56 3.53 3.49 3.46 3.57 3.52 1.29 Al2O3 10.31±0.10 10.35 10.22 10.24 10.33 10.28 10.21 10.27 0.57 Mn 510±16 507 520 526 515 505 522 516 1.63 Cr 47±4 47 48 46 49 48 47 48 2.21 Ti 2710±80 2775 2720 2705 2770 2750 2710 2738 1.12 GBW07404
(石灰岩风化土)TFe2O3 10.30±0.11 10.28 10.21 10.23 10.19 10.24 10.19 10.22 0.34 Al2O3 23.45±0.19 23.45 23.55 23.30 23.42 23.31 23.29 23.39 0.45 Mn 1420±75 1423 1388 1352 1396 1347 1376 1380 2.06 Cr 370±16 383 380 375 360 372 381 375 2.26 Ti 10800±310 10650 10880 11090 10850 11000 10780 10875 1.44 注:TFe2O3、Al2O3含量的单位为%。 -
[1] Gray A L, Houk R S, Jarvos K E.Handbook of Inducti-vely Coupled Plasma Mass Spectrometry[M].England:Chapmananad Hall, 1992.
[2] Qi L, Grégoire D C.Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry[J].Geostandards Newsletter, 2000, 24:51-63. doi: 10.1111/ggr.2000.24.issue-1
[3] Diegor W, Longerich H, Abrajano T, et al.Applicability of a high pressure digertion technique to the analysis of sediment and soil samples by inductively coupled plasma-mass spectrometry[J]. Analytica Chimica Acta, 2001, 431(2):195-207. doi: 10.1016/S0003-2670(00)01339-8
[4] Monecke T, Bombach G, Klemm W, et al.Determination of trace elements in the quartz reference material UNS-SpS and in natural quartz samples by ICP-MS[J]. The Journal of Geostandards and Geoanalysis, 2000, 24:73-81. doi: 10.1111/ggr.2000.24.issue-1
[5] 李冰, 杨红霞.电感耦合等子体质谱原理和应用[M].北京:地质出版社, 2005:109-110, 116.
Li B, Yang H X.The Principle and Application of Inductively Coupled Plasma-Mass Spectrometry[M]. Beijing:Geological Publishing House, 2005:109-110, 116.
[6] 贾双琳, 赵平, 杨刚, 等.混合酸敞开或高压密闭溶样-ICPMS测定地质样品中稀土元素[J].岩矿测试, 2014, 33(2):186-191. http://www.ykcs.ac.cn/article/id/b48c6aca-5c90-4b00-831e-1a788e3583c5
Jia S L, Zhao P, Yang G, et al.Quick determination of rare earth elements in geological samples with open acid digestion or high-pressure closed digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(2):186-191. http://www.ykcs.ac.cn/article/id/b48c6aca-5c90-4b00-831e-1a788e3583c5
[7] 张霖琳, 梁宵, 加那儿别克·西里甫汗, 等.在土壤及底泥重金属测定中不同前处理和分析方法的比较[J].环境化学, 2013, 32(2):302-306.
http://www.cqvip.com/QK/95665X/201302/44860402.html Zhang L L, Liang X, Xlph J, et al. Comparison of different pretreatment and analytical method of heavy metals in soil and sediment samples[J]. Environmental Chemistry, 2013, 32(2):302-306.
[8] 王君玉, 吴葆存, 李志伟, 等.敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J].岩矿测试, 2011, 30(4):440-445. http://www.ykcs.ac.cn/article/id/ykcs_20110409
Wang J Y, Wu B C, Li Z W, et al.Determination of elemental content in geological samples by one-time acid dissolution and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4):440-445. http://www.ykcs.ac.cn/article/id/ykcs_20110409
[9] Stewart I I, Olesik J W.The effect of nitric acid concen-tration and nebulizer gas flow rates on aerosol properties and transport rates in inductively coupled plasma sample introduction[J]. Journal of Analytical Atomic Spectrometry, 1998, 13:1249-1256. doi: 10.1039/a804966a
[10] 马生凤, 温宏利, 马新荣, 等.四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J].矿物岩石地球化学通报, 2011, 30(1):65-72. http://www.cqvip.com/QK/84215X/201101/37189934.html
Ma S F, Wen H L, Ma X R, et al.Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1):65-72. http://www.cqvip.com/QK/84215X/201101/37189934.html
[11] 岩石矿物分析编委会.岩石矿物分析(第四版第一分册)[M].北京:地质出版社, 2011:201-208.
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (The Fourth Edition, The First Volume)[M]. Beijing:Geological Publishing House, 2011:201-208.
[12] 何红蓼, 李冰, 韩丽荣, 等.封闭压力酸溶ICP-MS法分析地质样品中47个元素的评价[J].分析试验室, 2002, 21(5):8-12. http://mall.cnki.net/magazine/Article/FXSY200205003.htm
He H L, Li B, Han L R, et al.Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICPMS[J].Chinese Journal of Analysis Laboratory, 2002, 21(5):8-12. http://mall.cnki.net/magazine/Article/FXSY200205003.htm
[13] Yokoyama T, Makishima A, Nakamura E.Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion[J]. Chemical Geology, 1999, 157:175-187. doi: 10.1016/S0009-2541(98)00206-X
[14] 李清彩, 赵庆令, 孙宁, 等.电感耦合等离子体发射光谱测定区域地球化学样品中Cu、Mo、Pb、Sn、W、Zn元素[J].分析试验室, 2008, 27(增刊):317-319. https://www.cnki.com.cn/qikan-FXSY2008S2095.html
Li Q C, Zhao Q L, Sun N, et al.Determination of Cu, Mo, Pb, Sn, W and Zn in geochemical samples by inductively coupled plasma-atomic emission spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(Supplement):317-319. https://www.cnki.com.cn/qikan-FXSY2008S2095.html
-