中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

混合酸比例对ICP-MS/OES测定地球化学样品中多元素的影响

罗艳, 杨侨. 混合酸比例对ICP-MS/OES测定地球化学样品中多元素的影响[J]. 岩矿测试, 2017, 36(6): 587-593. doi: 10.15898/j.cnki.11-2131/td.201704130055
引用本文: 罗艳, 杨侨. 混合酸比例对ICP-MS/OES测定地球化学样品中多元素的影响[J]. 岩矿测试, 2017, 36(6): 587-593. doi: 10.15898/j.cnki.11-2131/td.201704130055
Yan LUO, Qiao YANG. The Effect of Mixed Acid Ratio on the Determination of Multielements in Geochemical Samples by ICP-MS/OES[J]. Rock and Mineral Analysis, 2017, 36(6): 587-593. doi: 10.15898/j.cnki.11-2131/td.201704130055
Citation: Yan LUO, Qiao YANG. The Effect of Mixed Acid Ratio on the Determination of Multielements in Geochemical Samples by ICP-MS/OES[J]. Rock and Mineral Analysis, 2017, 36(6): 587-593. doi: 10.15898/j.cnki.11-2131/td.201704130055

混合酸比例对ICP-MS/OES测定地球化学样品中多元素的影响

  • 基金项目:
    青海省地质勘查基金资助项目——青海省都兰县拉浪麦金多金属矿预查(2017042097kc047)
详细信息
    作者简介: 罗艳, 工程师, 长期从事地质实验测试和方法研究工作。E-mail:343345921@qq.com
  • 中图分类号: P599;O657.31;O657.63

The Effect of Mixed Acid Ratio on the Determination of Multielements in Geochemical Samples by ICP-MS/OES

  • 应用电感耦合等离子体质谱/发射光谱仪(ICP-MS/OES)测定地球化学样品中的多元素时,通常采用混合酸(盐酸-硝酸-氢氟酸-高氯酸)分解试样,但不同比例的混合酸对试样的分解效果影响极大,导致测试结果中经常出现铬、锰、铁、铝、钛及部分稀土元素测定结果偏低、精密度不理想的情况。本文通过改变混合酸中各类酸的混合比例,采用逆王水-氢氟酸-高氯酸分解试样,逆王水提取,使上述元素获得了较为理想的分解效果,特别是这些元素含量较高的样品分解效果的改善尤为显著。实验证明:当取样量为0.100 g时,采用8 mL逆王水、6 mL氢氟酸、3 mL高氯酸分解试样,8 mL逆王水提取,用国家一级标准物质进行验证,测试结果的相对标准偏差(n=6)为0.34%~4.02%,本方法精密度和准确度均满足地质实验室质量管理规范要求,可快速、准确、批量测定地球化学样品中的多元素。
  • 加载中
  • 图 1  高氯酸用量与试样高温分解时间关系

    Figure 1. 

    表 1  电感耦合等离子体质谱仪和全谱直读等离子体发射光谱仪工作参数

    Table 1.  Working parameters of the ICP-MS and ICP-OES instruments

    ICP-MS工作参数设定值ICP-OES工作参数设定值
    射频功率1.4 kW射频功率1.3 kW
    等离子体气流量16.5 L/min冷却气(Ar)流量15 L/min
    辅助气流量2.00 L/min辅助气(Ar)流量0.2 L/min
    雾化气流量0.90 L/min雾化气(Ar)流量0.8 L/min
    护鞘气流量0.20 L/min延迟读数时间30 s
    扫描次数5积分时间2 s
    测定次数5测定方式峰面积
    每个质量通道数1溶液提升量1.5 L/min
    衰减方式None重复测量次数2次
    停留时间10 ms
    样品锥孔径0.9 mm
    截取锥孔径0.4 mm
    雾化室温度3℃
    下载: 导出CSV

    表 2  不同高氯酸用量下标准物质的测试结果

    Table 2.  Analytical results of standard materials under different dosage of perchlorate

    标准物质编号测定
    元素
    标准值
    (μg/g)
    不同高氯酸用量6次实测值的平均值(μg/g)相对误差(%)
    0.5 mL1.0 mL2.0 mL3.0 mL4.0 mL0.5 mL1.0 mL2.0 mL3.0 mL4.0 mL
    GBW07104
    (安山岩)
    TFe2O34.90±0.064.254.544.744.915.00-13.0-7.3-3.30.22.0
    Al2O316.17±0.1214.7115.1815.4616.1616.25-9.0-6.1-4.4-0.10.5
    Mn604±18488502568610621-19.0-17.0-6.00.12.8
    Cr32±32224273133-31.0-25.0-16.0-3.13.1
    Ti3090±9021002435280631003000-32.0-21.0-9.20.3-2.9
    GBW07106
    (石英砂岩)
    TFe2O33.22±0.072.782.963.103.213.30-14.0-8.1-3.7-0.32.5
    Al2O33.52±0.093.003.173.403.503.51-15.0-9.9-3.4-0.60.3
    Mn155±7119132141156157-23.0-15.0-9.00.61.3
    Cr20±31316192020-35.0-20.0-5.00.00.0
    Ti1580±8013151413150016001640-17.0-11.0-5.11.33.8
    GBW07306
    (水系沉积物)
    TFe2O35.88±0.075.375.505.655.885.79-8.7-6.5-3.90.0-1.3
    Al2O314.16±0.0912.9513.4913.7814.1214.30-8.5-4.7-2.7-0.31.0
    Mn970±37710800868950989-27.0-18.0-11.0-2.12.0
    Cr190±15131152162192188-31.0-20.0-15.00.8-0.8
    Ti4640±12036603913448047004815-21.0-16.0-3.41.33.8
    GBW07402
    (栗钙土)
    TFe2O33.52±0.072.813.093.303.523.50-20.0-12.0-6.30.0-0.6
    Al2O310.31±0.108.979.6610.0810.2710.38-13.0-6.3-2.20.40.7
    Mn510±16411433478516518-19.0-15.0-6.31.21.6
    Cr47±43036444848-36.0-23.0-6.42.12.1
    Ti2710±8022002376256027382800-19.0-12.0-5.51.13.3
    GBW07404
    (石灰岩风化土)
    TFe2O310.30±0.119.259.7310.0010.2210.42-10.0-5.5-2.9-0.81.2
    Al2O323.45±0.1920.0921.2822.3123.3923.35-14.0-9.3-4.9-0.3-0.1
    Mn1420±7511501210130013801440-19.0-15.0-8.5-2.81.4
    Cr370±16260291321375378-30.0-21.0-13.01.42.2
    Ti10800±31074518790101501087511160-31.0-19.0-6.00.72.4
    注:TFe2O3、Al2O3含量的单位为%;$相对误差 = \frac{{n}{次测定的平均值 - 标准值}}{{标准值}} \ \ \ \ \ \ \ \ \ \ \ \times 100\% $
    下载: 导出CSV

    表 3  标准物质验证方法的准确度和精密度

    Table 3.  Accuracy and precision tests of the method certificated with national standard materials

    标准物质编号测定元素标准值
    (μg/g)
    本方法测定值
    (μg/g)
    平均值
    (μg/g)
    RSD
    (%)
    GBW07104
    (安山岩)
    TFe2O34.90±0.064.964.894.964.924.844.884.910.97
    Al2O316.17±0.1216.2016.2016.1716.2716.0416.0616.160.55
    Mn604±186086166066195986116101.23
    Cr32±3313232303231312.61
    Ti3090±9030703130300031503190306031002.23
    GBW07106
    (石英砂岩)
    TFe2O33.22±0.073.163.173.253.283.233.153.211.68
    Al2O33.52±0.093.513.463.583.433.533.473.501.55
    Mn155±71501571621551591501563.12
    Cr20±3212021201921204.02
    Ti1580±8015601640153016201660159016003.09
    GBW07306
    (水系沉积物)
    TFe2O35.88±0.075.885.815.925.855.935.915.880.79
    Al2O314.16±0.0914.1914.0714.0914.1314.1714.0714.120.37
    Mn970±379459719389509559399501.29
    Cr190±151901951901921951881921.50
    Ti4640±12047504620475047204680468047001.07
    GBW07402
    (栗钙土)
    TFe2O33.52±0.073.483.563.533.493.463.573.521.29
    Al2O310.31±0.1010.3510.2210.2410.3310.2810.2110.270.57
    Mn510±165075205265155055225161.63
    Cr47±4474846494847482.21
    Ti2710±8027752720270527702750271027381.12
    GBW07404
    (石灰岩风化土)
    TFe2O310.30±0.1110.2810.2110.2310.1910.2410.1910.220.34
    Al2O323.45±0.1923.4523.5523.3023.4223.3123.2923.390.45
    Mn1420±7514231388135213961347137613802.06
    Cr370±163833803753603723813752.26
    Ti10800±310106501088011090108501100010780108751.44
    注:TFe2O3、Al2O3含量的单位为%。
    下载: 导出CSV
  • [1]

    Gray A L, Houk R S, Jarvos K E.Handbook of Inducti-vely Coupled Plasma Mass Spectrometry[M].England:Chapmananad Hall, 1992.

    [2]

    Qi L, Grégoire D C.Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry[J].Geostandards Newsletter, 2000, 24:51-63. doi: 10.1111/ggr.2000.24.issue-1

    [3]

    Diegor W, Longerich H, Abrajano T, et al.Applicability of a high pressure digertion technique to the analysis of sediment and soil samples by inductively coupled plasma-mass spectrometry[J]. Analytica Chimica Acta, 2001, 431(2):195-207. doi: 10.1016/S0003-2670(00)01339-8

    [4]

    Monecke T, Bombach G, Klemm W, et al.Determination of trace elements in the quartz reference material UNS-SpS and in natural quartz samples by ICP-MS[J]. The Journal of Geostandards and Geoanalysis, 2000, 24:73-81. doi: 10.1111/ggr.2000.24.issue-1

    [5]

    李冰, 杨红霞.电感耦合等子体质谱原理和应用[M].北京:地质出版社, 2005:109-110, 116.

    Li B, Yang H X.The Principle and Application of Inductively Coupled Plasma-Mass Spectrometry[M]. Beijing:Geological Publishing House, 2005:109-110, 116.

    [6]

    贾双琳, 赵平, 杨刚, 等.混合酸敞开或高压密闭溶样-ICPMS测定地质样品中稀土元素[J].岩矿测试, 2014, 33(2):186-191. http://www.ykcs.ac.cn/article/id/b48c6aca-5c90-4b00-831e-1a788e3583c5

    Jia S L, Zhao P, Yang G, et al.Quick determination of rare earth elements in geological samples with open acid digestion or high-pressure closed digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(2):186-191. http://www.ykcs.ac.cn/article/id/b48c6aca-5c90-4b00-831e-1a788e3583c5

    [7]

    张霖琳, 梁宵, 加那儿别克·西里甫汗, 等.在土壤及底泥重金属测定中不同前处理和分析方法的比较[J].环境化学, 2013, 32(2):302-306. http://www.cqvip.com/QK/95665X/201302/44860402.html

    Zhang L L, Liang X, Xlph J, et al. Comparison of different pretreatment and analytical method of heavy metals in soil and sediment samples[J]. Environmental Chemistry, 2013, 32(2):302-306.

    [8]

    王君玉, 吴葆存, 李志伟, 等.敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J].岩矿测试, 2011, 30(4):440-445. http://www.ykcs.ac.cn/article/id/ykcs_20110409

    Wang J Y, Wu B C, Li Z W, et al.Determination of elemental content in geological samples by one-time acid dissolution and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4):440-445. http://www.ykcs.ac.cn/article/id/ykcs_20110409

    [9]

    Stewart I I, Olesik J W.The effect of nitric acid concen-tration and nebulizer gas flow rates on aerosol properties and transport rates in inductively coupled plasma sample introduction[J]. Journal of Analytical Atomic Spectrometry, 1998, 13:1249-1256. doi: 10.1039/a804966a

    [10]

    马生凤, 温宏利, 马新荣, 等.四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J].矿物岩石地球化学通报, 2011, 30(1):65-72. http://www.cqvip.com/QK/84215X/201101/37189934.html

    Ma S F, Wen H L, Ma X R, et al.Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1):65-72. http://www.cqvip.com/QK/84215X/201101/37189934.html

    [11]

    岩石矿物分析编委会.岩石矿物分析(第四版第一分册)[M].北京:地质出版社, 2011:201-208.

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (The Fourth Edition, The First Volume)[M]. Beijing:Geological Publishing House, 2011:201-208.

    [12]

    何红蓼, 李冰, 韩丽荣, 等.封闭压力酸溶ICP-MS法分析地质样品中47个元素的评价[J].分析试验室, 2002, 21(5):8-12. http://mall.cnki.net/magazine/Article/FXSY200205003.htm

    He H L, Li B, Han L R, et al.Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICPMS[J].Chinese Journal of Analysis Laboratory, 2002, 21(5):8-12. http://mall.cnki.net/magazine/Article/FXSY200205003.htm

    [13]

    Yokoyama T, Makishima A, Nakamura E.Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion[J]. Chemical Geology, 1999, 157:175-187. doi: 10.1016/S0009-2541(98)00206-X

    [14]

    李清彩, 赵庆令, 孙宁, 等.电感耦合等离子体发射光谱测定区域地球化学样品中Cu、Mo、Pb、Sn、W、Zn元素[J].分析试验室, 2008, 27(增刊):317-319. https://www.cnki.com.cn/qikan-FXSY2008S2095.html

    Li Q C, Zhao Q L, Sun N, et al.Determination of Cu, Mo, Pb, Sn, W and Zn in geochemical samples by inductively coupled plasma-atomic emission spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(Supplement):317-319. https://www.cnki.com.cn/qikan-FXSY2008S2095.html

  • 加载中

(1)

(3)

计量
  • 文章访问数:  4500
  • PDF下载数:  76
  • 施引文献:  0
出版历程
收稿日期:  2017-04-13
修回日期:  2017-07-24
录用日期:  2017-08-15

目录