Determination of Niobium, Tantalum and Associated Elements in Niobium-Tantalum Ore by Inductively Coupled Plasma-Optical Emission Spectrometry with Open Acid Dissolution
-
摘要: 稀有多金属矿各类选矿样品中同一元素的含量相差较大,且同一样品中各元素的含量也有较大差异,如铌钽锂铍在尾矿和原矿中的含量只有几十至几百μg/g,而在精矿中的含量达到百分之几至百分之几十,伴生元素如钾、钠在不同样品中也有较大差异。应用敞口酸熔-电感耦合等离子体发射光谱法(ICP-OES)测定铌钽锂铍等元素通常采用三酸或四酸分解样品,多是测定尾矿、原矿及部分中矿样品中较低含量的铌钽锂铍,且同一测定体系中只测定了一种或两种元素。本文采用氢氟酸-硝酸-盐酸-高氯酸-硫酸分解样品,以3~4滴氢氟酸+5%硫酸+5%过氧化氢提取体系替代常规的有机酸(酒石酸等)提取体系,实现了应用ICP-OES同时测定稀有金属矿选矿试验各阶段产品中不同含量的铌钽锂铍钾钠铷铁钛等元素。各元素的谱线强度在0~500 μg/mL浓度范围内呈良好的线性关系,相对标准偏差为0.37%~4.77%(n=6)。该方法提高了选矿全流程样品中各类元素的分析效率,已在选冶试验流程样品分析中得到了应用。
-
关键词:
- 铌钽多金属矿 /
- 伴生元素 /
- 敞口酸溶 /
- 电感耦合等离子体发射光谱法
Abstract: The content of the same element in separate rare polymetallic ore processing samples is different, and the content of each element in the same sample is also different. For example, the content of niobium, tantalum, lithium, and beryllium in tailings and ore is only a few tens to several hundred μg/g, but in the concentrate these elements have contents of several percent to several percent and associated elements such as potassium and sodium in different samples are also quite different. Determination of niobium, tantalum, lithium, and beryllium by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) commonly involves three acid or four acid decomposition of samples. This method was mostly used to determine the lower content of niobium, tantalum, lithium, and beryllium in tailings, ore and some of ore samples, and the same determination system only analyzes one or two elements. The niobium-tantalum polymetallic ore was dissolved with HF-HCl-HNO3-HClO3-H2SO4 and extracted by 3-4 drops of mixed hydrofluoric acid, 5% sulfuric acid, and 5% hydrogen peroxide, instead of conventional organic acids (tartaric acid, etc) extraction system, which makes it possible that simultaneous ICP-OES determination of niobium, tantalum, lithium, beryllium, potassium, sodium, rubidium, iron, titanium and other elements in different stages of rare metal ore beneficiation test products is possible. The spectral line intensity shows a good linear relationship when the concentration of elements is 0-500 μg/mL. The relative standard deviation is 0.37%-4.77% (n=6). The method has improved the efficiency of the analysis of various elements in the whole process sample and has been applied in the sample analysis of the smelting process. -
-
表 1 所测各元素检出限
Table 1. Detection limits of the method
元素检出限
(μg/mL)Li 0.0020 Be 0.0002 Nb 0.0050 Ta 0.0300 Na 0.0200 Fe 0.002 K 0.060 Ti 0.003 Al 0.010 P 0.050 表 2 方法准确度和精密度
Table 2. Accuracy and precision tests of the method
元素GBW07153 GBW07155 GBW07185 平均值
(%)标准值
(%)RSD
(%)平均值
(%)标准值
(%)RSD
(%)平均值
(%)标准值
(%)RSD
(%)Be* 260.5 260 2.59 330.3 330 2.15 12.25 12.5 1.84 Li 2.27 2.29 2.62 0.78 0.779 0.91 104* 106 2.38 Nb* 61.7 61.1 4.77 423.4 430 1.06 5162 5200 1.03 Ta 121* 120 2.96 697* 700 0.85 1.022 1.02 0.50 Rb 0.735 0.735 0.68 0.241 0.241 1.03 242 244 1.08 Al 19.11 19.12 0.61 14.23 14.25 0.37 14.52 14.58 0.42 Fe 0.301 0.301 2.24 0.376 0.377 1.28 0.678 0.68 2.54 K 0.251 0.252 1.70 0.142 0.144 1.88 0.45 0.45 1.44 Na 2.34 2.33 2.73 3.62 3.68 1.13 4.39 4.40 0.83 Mn 4.78 4.8 0.92 2.0 2.01 0.95 4.09 4.11 1.06 P 0.238 0.237 0.95 0.34 0.348 1.99 0.037 0.04 3.66 Ti 0.028 0.028 3.49 0.031 0.032 2.66 0.038 0.039 2.60 注:标注“*”的元素含量单位为μg/g。 表 3 实际样品分析
Table 3. Analytical results of Nb and Ta in the actual samples
样品
名称Nb2O5含量(μg/g) Ta2O5含量(μg/g) BeO含量(μg/g) Li2O含量(μg/g) ICP-
OES
(本法)国家标准
方法(酸溶
比色法)相对
误差
(%)ICP-
OES
(本法)国家标准
方法(酸溶
比色法)相对
误差
(%)ICP-
OES
(本法)国家标准
方法(碱熔
比色法)相对
误差
(%)ICP-
OES
(本法)国家标准
方法(酸溶
原子吸收
光谱法)相对
误差
(%)磁选尾矿 24.5 23 6.52 20 21 -4.76 720 716 0.55 680 675 0.74 原矿 150 155 -3.23 60 59 1.69 680 683 -0.43 700 710 -1.41 磁选精矿 1600 1620 1.23 560 556 0.72 1280 1275 0.39 820 828 -0.97 铌钽精矿* 32.87 32.96 -0.27 19.84 19.98 -0.70 240 245 -2.04 200 195 2.56 注:标注“*”的样品测定元素含量单位为“%”。 -
[1] 常学东.测定稀有金属矿中锂、铍、铌、钽的方法选择[J].新疆有色金属, 2016(3):64-66. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ201711017.htm
Chang X D.Method for determination of lithium, beryllium, niobium and tantalum in rare metal ores[J].Xinjiang Nonferrous Metals, 2016(3):64-66. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYJ201711017.htm
[2] 王志国.电感耦合等离子体原子发射光谱法测定岩石矿物中铌和钽的方法[J].广东化工, 2014, 41(14):211-212. doi: 10.3969/j.issn.1007-1865.2014.14.107
Wang Z G.Determination of Nb and Ta in rock mineral by ICP-OES[J].Chemical Industry in Guangdong, 2014, 41(14):211-212. doi: 10.3969/j.issn.1007-1865.2014.14.107
[3] 闫红岭, 来新泽, 王琳, 等.常压混酸溶矿-电感耦合等离子体原子发射光谱法测定铌钽[J].世界地质, 2011, 30(3):493-496. http://www.wenkuxiazai.com/doc/a3650b28192e45361066f548.html
Yan H L, Lai X Z, Wang L, et al.Dissolution with mixed acids under normal pressure-determination of niobium and tantalum by inductively coupled plasma atomic emission spectrometry[J].Global Geology, 2011, 30(3):493-496. http://www.wenkuxiazai.com/doc/a3650b28192e45361066f548.html
[4] 高会艳.ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J].岩矿测试, 2014, 33(3):312-320. http://www.ykcs.ac.cn/article/id/ba9800ad-b710-4e6e-889a-ca64ab436357
Gao H Y.Determination systems of Nb and Ta in geochemical samples and rare earth ores by ICP-MS and ICP-AES[J].Rock and Mineral Analysis, 2014, 33(3):312-320. http://www.ykcs.ac.cn/article/id/ba9800ad-b710-4e6e-889a-ca64ab436357
[5] 郑平英.等离子体原子发射光谱法测定矿石样品中铌钽的应用[J].工业技术(科技资讯), 2014(25):73. http://doi.wanfangdata.com.cn/10.3969/j.issn.1672-3791.2014.25.048
Zheng P Y.Determination of niobium and tantalum in ore samples by inductively coupled plasma atomic emission spectrometry[J].Industrial Technology (Technical Information), 2014(25):73. http://doi.wanfangdata.com.cn/10.3969/j.issn.1672-3791.2014.25.048
[6] Song X J, Duan T C, Guo P R, et al.Determination of Nb and Ta in Nb/Ta minerals by inductively coupled plasmas optical emission spectrometry using slurry sample introduction[J].Microchemical Journal, 2006, 84:22-25. doi: 10.1016/j.microc.2006.03.010
[7] 崔爱瑞, 张弘强.ICP-AES法测定精选铌钽矿中高含量Nb2O5, ZrO2及稀土总量[J].稀土, 2009, 30(6):71-73.
Cui A R, Zhang H Q.Determination for high content Nb2O5, ZrO2, ∑REO in niobium tantalum concentrate by ICP-AES[J].Chinese Rare Earths, 2009, 30(6):71-73.
[8] 杨小丽, 邵鑫, 曾美云, 等.密闭消解电感耦合等离子体质谱法测定铝土矿锂、锶、镓、铌、钽、锆和铪[J].现代科学仪器, 2010(6):133-135. http://www.doc88.com/p-9876966614319.html
Yang X L, Shao X, Zeng M Y, et al.Determination of lithium, strontium, gallium, niobium, tantalum, zirconium, hafnium in bauxite by inductively coupled plasma-mass spectrometry with pressurized acid digestion[J].Modern Scientific Instruments, 2010(6):133-135. http://www.doc88.com/p-9876966614319.html
[9] 倪文山, 张萍, 姚明星, 等.微波消解-电感耦合等离子体原子光谱法测定矿石样品中铌钽[J].冶金分析, 2010, 30(8):50-53. http://mall.cnki.net/magazine/article/YJFX201008011.htm
Ni W S, Zhang P, Yao M X, et al.Inductively coupled plasma atomic emission spectrometric determination of niobium and tantalum in ore sample after microwave digestion[J].Metallurgical Analysis, 2010, 30(8):50-53. http://mall.cnki.net/magazine/article/YJFX201008011.htm
[10] 杨萍, 陈云红.ICP-AES法测定矿石中的BeO[J].分析试验室, 2002, 21(5):16-17. http://doi.wanfangdata.com.cn/10.3969/j.issn.1000-0720.2002.05.006
Yang P, Chen Y H.Determination of BeO in ores by ICP-AES[J].Chinese Journal of Analysis Laboratory, 2002, 21(5):16-17. http://doi.wanfangdata.com.cn/10.3969/j.issn.1000-0720.2002.05.006
[11] 黄兴华, 赵继宏, 刘江斌, 等.电感耦合等离子体原子发射全谱直读光谱仪测定地质样品中的钽[J].岩矿测试, 2005, 24(2):151-153. http://www.ykcs.ac.cn/article/id/ykcs_20050242
Huang X H, Zhao J H, Liu J B, et al.Determination of tantalum in geological samples by inductively coupled plasma atomic emission spectrometry[J].Rock and Mineral Analysis, 2005, 24(2):151-153. http://www.ykcs.ac.cn/article/id/ykcs_20050242
[12] 刘卫, 栾亚兰, 仵丽萍.电感耦合等离子体光谱法测定锂辉石选矿产品中铌和钽[J].理化检验(化学分册), 2006, 42(9):715-716. http://d.wanfangdata.com.cn/Periodical/lhjy-hx200609007
Liu W, Luan Y L, Wu L P.ICP-AES determination of Nb and Ta in products of ore dressing of spodumene[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2006, 42(9):715-716. http://d.wanfangdata.com.cn/Periodical/lhjy-hx200609007
[13] 杜桂荣, 赵杰, 丁红芳, 等.电感耦合等离子体原子发射光谱法(ICP-OES)测定铍铀伴生矿石中的铍[J].中国无机分析化学, 2015, 5(2):30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYI201004027.htm
Du G R, Zhao J, Ding H F, et al.Determination of beryllium in beryllium associated uranium ore by inductively coupled plasma optical emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2):30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYI201004027.htm
[14] 李韶梅, 王国增, 赵军, 等.电感耦合等离子体发射光谱法测定铌铁中铌和钽[J].冶金分析, 2012, 32(3):48-50. http://www.cqvip.com/QK/90283X/201203/41814911.html
Li S M, Wang G Z, Zhao J, et al.Determination of niobium and tantalum in ferroniobium by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(3):48-50. http://www.cqvip.com/QK/90283X/201203/41814911.html
[15] 王慧利.电感耦合等离子体发射光谱法测定铌钨合金中钽[J].冶金分析, 2014, 34(6):49-52. http://www.cqvip.com/QK/90283X/201406/661679226.html
Wang H L.Determination of tantalum in niobium-tungsten ally by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2014, 34(6):49-52. http://www.cqvip.com/QK/90283X/201406/661679226.html
[16] 杜梅, 许涛.电感耦合等离子体原子发射光谱法测定铌精矿中铌、锰、钛[J].理化检验(化学分册), 2014, 50(3):317-319. http://www.cqvip.com/QK/96266X/201403/76727472504849524851484952.html
Du M, Xu T.ICP-AES determination of Nb, Mn and Ti in nioium concentrates[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(3):317-319. http://www.cqvip.com/QK/96266X/201403/76727472504849524851484952.html
[17] 姚玉玲, 吴丽琨, 刘卫, 等.乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽[J].岩矿测试, 2015, 34(2):224-248. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.012
Yao Y L, Wu L K, Liu W, et al.Determination of Nb and Ta in ores and metallurgical samples by inductively coupled plasma-atomic emission spectrometry with ethanol as a sensitizer[J].Rock and Mineral Analysis, 2015, 34(2):224-248. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.012
-