Application of Electron Microprobe Chemical Dating to Datian Uraninite in Panzhihua and Its Significance
-
摘要: 晶质铀矿和沥青铀矿是热液铀矿床的主要工业铀矿物,在研究热液铀矿床成因及成矿规律方面具有重要的意义。攀枝花大田地区是我国混合岩型热液铀矿分布区,已发现粗粒特富铀矿滚石(铀含量>10%)及较富基岩矿石(铀含量为0.1%~2%),主要铀矿物为晶质铀矿,对两种晶质铀矿成分及形成时代的研究对该区混合岩型热液铀矿成矿规律研究具有重要的价值。本文通过对大田地区滚石中的晶质铀矿和基岩矿石中的晶质铀矿进行矿物学及电子探针分析,研究了晶质铀矿的成分及形成时代。结果表明:①大田地区滚石和基岩矿石中的晶质铀矿除铅之外化学成分较为相似,两类矿石晶质铀矿中UO2含量为77.36%~84.04%,ThO2含量为0.98%~5.59%,PbO含量为1.79%~8.8%,其中滚石晶质铀矿中的铅含量低于基岩晶质铀矿,钍含量高于基岩晶质铀矿;②电子探针化学定年结果表明,基岩矿石晶质铀矿的形成时代为774.9~785.5 Ma,滚石晶质铀矿的形成时代为783.7 Ma,与传统同位素测年结果(775~777.6 Ma)非常一致,一方面说明滚石晶质铀矿和基岩晶质铀矿为同一时代的产物,另一方面说明电子探针原位测年方法是可靠的;③在后期的热液蚀变中,晶质铀矿先后发生了硅化、碳酸盐化及赤铁矿化,蚀变发生的时间分别为730.6 Ma、699.8 Ma和664.0 Ma。此结论对研究攀枝花大田地区热液铀矿成矿时代及成矿作用过程提供了依据。Abstract: As the main industrial uranium minerals in hydrothermal uranium deposits, uraninite and pitchblende are of great significance in the study of ore genesis and metallogenic regularity of hydrothermal uranium deposits. The Datian area in Panzhihua is one of the important areas of migmatite type hydrothermal uranium deposit in China. There is ultra-rich-uranium ore (U>10%) in rolling stone and the richer uranium-rich bedrock ore (U=0.1%-2%) where uraninite is the main uranium mineral. The study of the composition and forming age of two types of uraninite has important significance for metallogenic regularity of mixed rock type hydrothermal uranium deposits in the Datian area. In this study, mineralogical and Electron Microprobe analyses of uraninite in rolling stone and bedrock from the Datian area were carried out to determine the composition and age. Results show that the chemical compositions of uraninite in rolling stone and bedrock are similar except Pb contents with UO2 contents of 77.36%-84.04%, ThO2 contents of 0.98%-5.59%, and PbO contents of 1.79%-8.8%. Lead contents of uraninite in rolling stone are lower than those of uraninite in the bedrock, but thorium contents are contrary. Electron Microprobe chemical dating indicates that the uraninite in bedrock ore has ages of 774.9-785.5 Ma, whereas the uraninite in rolling stones has an age of 783.7 Ma. The dating results are consistent with traditional isotopic dating (775-777.6 Ma). The indicates that the uraninite in rolling stones and bedrock formed at the same time and the electronic probe in situ dating method is credible. In the late hydrothermal alteration, the uraninite experienced silicification, carbonization, and hematitization at 730.6 Ma, 699.8 Ma, and 664.0 Ma, respectively. This study provides evidences for the metallogenic epoch and mineralization process of the hydrothermal uranium deposits.
-
Key words:
- uraninite /
- Electron Microprobe dating /
- migmatite type uranium deposits /
- metallogenic epoch /
- Datian
-
-
图 1 大田地区地质图(据姚建等,2012修改)[14]
Figure 1.
表 1 晶质铀矿电子探针分析结果及化学年龄
Table 1. The electron microprobe analysis results of uraninite and their ages
样品编号 测点 含量(%) 含量(%) Ranchin
年龄(Ma)Na2O SiO2 UO2 FeO CaO Y2O3 K2O PbO ThO2 总量 U Th Pb KD16-2 1 / 0.07 82.15 / 0.17 0.29 0.09 6.80 1.13 90.74 72.41 0.99 6.31 654.8 2 0.08 0.07 84.04 / 0.14 0.38 0.14 5.15 1.08 91.17 74.08 0.95 4.78 484.9 3 / 0.06 82.84 0.09 0.1 0.31 0.10 6.37 1.49 91.51 73.02 1.31 5.91 607.4 平均值 0.03 0.07 83.01 0.03 0.14 0.33 0.11 6.11 1.23 91.14 73.17 1.08 5.67 582.4 KD16-1 1 / 0.05 77.61 / / 0.22 0.19 7.65 2.87 88.61 68.41 2.52 7.10 773.3 2 0.07 0.1 78.68 0.01 / 0.16 0.18 6.78 3.29 89.54 69.35 2.89 6.29 674.8 3 0.02 0.74 79.51 0.13 0.84 / 0.2 2.30 5.59 89.53 70.09 4.91 2.13 224.3 4 0.05 0.66 82.02 0.18 0.68 0.08 0.22 1.79 4.45 90.33 72.30 3.91 1.66 170.2 平均值 0.04 0.39 79.46 0.08 0.38 0.12 0.20 4.63 4.05 89.50 70.04 3.56 4.30 460.6 T5-2 4 0.09 0.03 79.88 / 0.07 0.65 0.10 7.36 2.28 90.72 70.41 2.00 6.83 725.0 5 / / 83.98 0.10 0.16 0.58 0.14 7.89 0.98 93.86 74.03 0.86 7.32 743.8 6 0.10 0.04 79.43 0.12 0.15 0.85 0.14 7.35 2.33 90.59 70.02 2.05 6.82 727.9 11 0.07 0.06 78.77 / / 0.66 0.17 8.6 3.71 92.34 69.43 3.26 7.98 853.4 12 0.05 0.1 80.26 / 0.12 0.67 0.15 8.46 2.74 92.7 70.75 2.41 7.85 827.8 13 0.04 0.07 81.04 0.11 0.22 0.84 0.14 8.64 3.38 94.73 71.44 2.97 8.02 835.0 平均值 0.06 0.05 80.56 0.06 0.12 0.71 0.14 8.05 2.57 92.49 71.01 2.26 7.47 785.5 T5-1 7 0.10 0.06 79.2 0.07 0.05 0.79 0.15 8.27 3.31 92.21 69.81 2.91 7.68 817.8 8 0.19 0.06 77.4 / 0.17 0.59 0.14 7.82 2.52 89.17 68.23 2.21 7.26 793.9 9 0.20 / 77.36 / 0.03 0.69 0.16 7.63 2.92 89.2 68.19 2.57 7.08 773.5 10 0.06 0.07 79.07 / 0.11 0.61 0.10 8.8 2.86 91.82 69.70 2.51 8.17 873.4 1 0.13 0.04 77.54 / 0.12 0.75 0.12 7.7 2.77 89.51 68.35 2.43 7.15 779.4 2 0.04 0.04 80.46 0.17 0.03 0.59 0.13 7.56 2.29 91.67 70.92 2.01 7.02 739.4 3 0.16 0.06 78.42 / 0.18 0.89 0.11 6.45 2.38 88.71 69.13 2.09 5.99 646.8 平均值 0.13 0.05 78.49 0.03 0.10 0.70 0.13 7.75 2.72 90.33 69.19 2.39 7.19 774.9 注:电子探针结果由核工业北京地质研究院分析测试中心分析。“/”表示未检出。 -
[1] 葛祥坤. 电子探针定年技术在铀及含铀矿物测年中的开发与研究[D]. 北京: 核工业北京地质研究院, 2013.
http://d.wanfangdata.com.cn/Thesis/D416449 Ge X K.Research and Development of Electron Microprobe Dating on Uranium Minerals and U-bearing Minerals[D].Beijing:Beijing Research Institute of Uranium Geology, 2013.
[2] 葛祥坤, 秦明宽, 范光.电子探针化学测年法在晶质铀矿-沥青铀矿定年研究中的应用现状[J].世界核地质科技, 2011, 28(1):55-62. http://www.wenkuxiazai.com/doc/8f90bca25a8102d277a22f82-2.html
Ge X K, Qin M K, Fan G.Review on the application of electron microprobe chemical dating method in the age research of uraninite/pitchblende[J].World Nuclear Geoscience, 2011, 28(1):55-62. http://www.wenkuxiazai.com/doc/8f90bca25a8102d277a22f82-2.html
[3] 郭国林, 潘家永, 刘成东, 等.电子探针化学测年技术及其在地学中的应用[J].东华理工学院学报, 2005, 28(1):39-42. http://www.cqvip.com/QK/96868X/200101/4982701.html
Guo G L, Pan J Y, Liu C D, et al.Chemical dating technique on the electron probe microanalysis and its application on earth science[J].Journal of East China Institute of Technology, 2005, 28(1):39-42. http://www.cqvip.com/QK/96868X/200101/4982701.html
[4] 李学军, 郭涛, 王庆飞.电子探针化学测年方法[J].地学前缘, 2003, 10(2):411-414. http://d.wanfangdata.com.cn/Periodical/dxqy200302019
Li X J, Guo T, Wang Q F.Electron microprobe chemical dating technique[J].Earth Science Frontiers, 2003, 10(2):411-414. http://d.wanfangdata.com.cn/Periodical/dxqy200302019
[5] Schulz B, Schüssler U.Electron-microprobe Th-U-Pb monazite dating in Early-Palaeozoic high-grade gneisses as a completion of U-Pb isotopic ages (Wilson Terrane, Antarctica)[J].Lithos, 2013(175-176):178-192. https://www.researchgate.net/profile/B_Schulz/publication/281375287_Schulz-Schuessler-Wilson-Terrane-2013/data/55e474da08aecb1a7ccb7b08/1-s20-S0024493713001692-main2.pdf
[6] Kempe U.Precise electron microprobe age determination in altered uraninite:Consequences on the intrusion age and the metallogenic significance of Kirchberg Granite (Erzgebirge, Germany)[J].Contributions to Mineralogy and Petrology, 2003, 145(1):107-118. doi: 10.1007/s00410-002-0439-5
[7] 张龙, 陈振宇, 田泽瑾, 等.粤北产铀与不产铀花岗岩中铀矿物特征的电子探针研究及其找矿意义[J].岩矿测试, 2016, 35(3):310-319. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.015
Zhang L, Chen Z Y, Tian Z J, et al.EPMA study on characteristics of uranium minerals in uranium-bearing and uranium-barren granites in Northern Guangdong and its prospecting significance[J].Rock and Mineral Analysis, 2016, 35(3):310-319. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.015
[8] 张龙, 陈振宇, 田泽瑾, 等.电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J].岩矿测试, 2016, 35(1):98-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.016
Zhang L, Chen Z Y, Tian Z J, et al.The application of electron microprobe dating method on uranium minerals in Changjiang Granite, Northern Guangdong[J].Rock and Mineral Analysis, 2016, 35(1):98-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.016
[9] 黄广文, 潘家永, 张占峰, 等.应用电子探针研究蒙其古尔铀矿床含矿砂岩岩石学特征及铀矿物分布规律[J].岩矿测试, 2017, 36(2):209-220. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.014
Huang G W, Pan J Y, Zhang Z F, et al.Study on petrological characteristics and distribution of uranium minerals of sandstones in Mengqiuer uranium deposit by electron microprobe, Xinjiang[J].Rock and Mineral Analysis, 2017, 36(2):209-220. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.014
[10] 张昭明.电子探针在测定晶质铀矿年龄中的应用[J].放射性地质, 1982(5):408-411. https://wenku.baidu.com/view/e31be788227916888586d751.html
Zhang Z M.The application of electron microprobe on dating uraninite[J].Radioactive Geology, 1982(5):408-411. https://wenku.baidu.com/view/e31be788227916888586d751.html
[11] 张成江, 陈友良, 李巨初, 等.康滇地轴巨粒晶质铀矿的发现及其地质意义[J].地质通报, 2015, 34(12):2219-2226. doi: 10.3969/j.issn.1671-2552.2015.12.008
Zhang C J, Chen Y L, Li J C, et al.The discovery of coarse-grained uraninite in Kangdian Axis and its geological significane[J].Geological Bulletin of China, 2015, 34(12):2219-2226. doi: 10.3969/j.issn.1671-2552.2015.12.008
[12] 徐争启, 张成江, 陈友良, 等.攀枝花大田含铀滚石特征及其意义[J].矿物学报, 2015(增刊):357. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2015S1257.htm
Xu Z Q, Zhang C J, Chen Y L, et al.The characteristics and significance of uranium bearing rolling stones in Panzhihua Datian[J].Acta Mineralogica Sinica, 2015(Supplement):357. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2015S1257.htm
[13] 姚建. 攀枝花市大田地区混合岩成因研究[D]. 成都: 成都理工大学, 2014.
http://d.wanfangdata.com.cn/Thesis/Y2580274 Yao J.The Origin of the Migmatite Complex in Datian Area, Panzhihua City[D].Chengdu:Chengdu University of Technology, 2014.
[14] 姚建, 李巨初, 周君, 等. 攀枝花市大田505地区混合岩成因及其与铀矿化关系初探[C]//全国铀矿大基地建设学术研讨会论文集(上). 2012: 590-598.
Yao J, Li J C, Zhou J, et al.The Genesis of Migmatite Complexes and the Relationship between Migmatite and Uranium Mineralization, Area 505 of Datian, Panzhihua City[C]//Proceedings of National Conference on Uranium Big Base Construction, 2012:590-598.
[15] Bowles J F W.Age dating of individual grains of uran-inite in rocks from electron microprobe analyses[J].Chemical Geology, 1990, 83(1-2):47-53. doi: 10.1016/0009-2541(90)90139-X
[16] 韦龙明, 王莉, 张广辉, 等.广东石人嶂钨矿床中的晶质铀矿研究[J].地质学报, 2014, 88(4):805-813. http://d.wanfangdata.com.cn/Periodical/dizhixb201404029
Wei L M, Wang L, Zhang G H, et al.Study on the uraninite in Shirenzhang tungten deposit, Guangdong Province[J]. Acta Geologica Sinica, 2014, 88(4):805-813. http://d.wanfangdata.com.cn/Periodical/dizhixb201404029
[17] Alexandre P, Kyser T K.Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits[J].Canadian Mineralogist, 2005, 43(3):1005-1017. doi: 10.2113/gscanmin.43.3.1005
-