中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义

徐争启, 欧阳鑫东, 张成江, 姚建, 汤曼. 电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义[J]. 岩矿测试, 2017, 36(6): 641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071
引用本文: 徐争启, 欧阳鑫东, 张成江, 姚建, 汤曼. 电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义[J]. 岩矿测试, 2017, 36(6): 641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071
Zheng-qi XU, Xin-dong OUYANG, Cheng-jiang ZHANG, Jian YAO, Man TANG. Application of Electron Microprobe Chemical Dating to Datian Uraninite in Panzhihua and Its Significance[J]. Rock and Mineral Analysis, 2017, 36(6): 641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071
Citation: Zheng-qi XU, Xin-dong OUYANG, Cheng-jiang ZHANG, Jian YAO, Man TANG. Application of Electron Microprobe Chemical Dating to Datian Uraninite in Panzhihua and Its Significance[J]. Rock and Mineral Analysis, 2017, 36(6): 641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071

电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义

  • 基金项目:
    中国核工业地质局科研项目(201637,201638)
详细信息
    作者简介: 徐争启, 教授, 博士生导师, 从事铀矿地质及地球化学教学和科研工作。E-mail:547510779@qq.com
  • 中图分类号: P575.1;P597.3;P619.14

Application of Electron Microprobe Chemical Dating to Datian Uraninite in Panzhihua and Its Significance

  • 晶质铀矿和沥青铀矿是热液铀矿床的主要工业铀矿物,在研究热液铀矿床成因及成矿规律方面具有重要的意义。攀枝花大田地区是我国混合岩型热液铀矿分布区,已发现粗粒特富铀矿滚石(铀含量>10%)及较富基岩矿石(铀含量为0.1%~2%),主要铀矿物为晶质铀矿,对两种晶质铀矿成分及形成时代的研究对该区混合岩型热液铀矿成矿规律研究具有重要的价值。本文通过对大田地区滚石中的晶质铀矿和基岩矿石中的晶质铀矿进行矿物学及电子探针分析,研究了晶质铀矿的成分及形成时代。结果表明:①大田地区滚石和基岩矿石中的晶质铀矿除铅之外化学成分较为相似,两类矿石晶质铀矿中UO2含量为77.36%~84.04%,ThO2含量为0.98%~5.59%,PbO含量为1.79%~8.8%,其中滚石晶质铀矿中的铅含量低于基岩晶质铀矿,钍含量高于基岩晶质铀矿;②电子探针化学定年结果表明,基岩矿石晶质铀矿的形成时代为774.9~785.5 Ma,滚石晶质铀矿的形成时代为783.7 Ma,与传统同位素测年结果(775~777.6 Ma)非常一致,一方面说明滚石晶质铀矿和基岩晶质铀矿为同一时代的产物,另一方面说明电子探针原位测年方法是可靠的;③在后期的热液蚀变中,晶质铀矿先后发生了硅化、碳酸盐化及赤铁矿化,蚀变发生的时间分别为730.6 Ma、699.8 Ma和664.0 Ma。此结论对研究攀枝花大田地区热液铀矿成矿时代及成矿作用过程提供了依据。
  • 加载中
  • 图 1  大田地区地质图(据姚建等,2012修改)[14]

    Figure 1. 

    图 2  晶质铀矿样品形态及镜下特征

    Figure 2. 

    图 3  晶质铀矿电子探针照片

    Figure 3. 

    图 4  样品KD16晶质铀矿结晶年龄校正及杂质阳离子年龄推算图

    Figure 4. 

    表 1  晶质铀矿电子探针分析结果及化学年龄

    Table 1.  The electron microprobe analysis results of uraninite and their ages

    样品编号测点含量(%)含量(%)Ranchin
    年龄(Ma)
    Na2OSiO2UO2FeOCaOY2O3K2OPbOThO2总量UThPb
    KD16-2
    1/0.0782.15/0.170.290.096.801.1390.7472.410.996.31654.8
    20.080.0784.04/0.140.380.145.151.0891.1774.080.954.78484.9
    3/0.0682.840.090.10.310.106.371.4991.5173.021.315.91607.4
    平均值0.030.0783.010.030.140.330.116.111.2391.1473.171.085.67582.4
    KD16-11/0.0577.61//0.220.197.652.8788.6168.412.527.10773.3
    20.070.178.680.01/0.160.186.783.2989.5469.352.896.29674.8
    30.020.7479.510.130.84/0.22.305.5989.5370.094.912.13224.3
    40.050.6682.020.180.680.080.221.794.4590.3372.303.911.66170.2
    平均值0.040.3979.460.080.380.120.204.634.0589.5070.043.564.30460.6
    T5-240.090.0379.88/0.070.650.107.362.2890.7270.412.006.83725.0
    5//83.980.100.160.580.147.890.9893.8674.030.867.32743.8
    60.100.0479.430.120.150.850.147.352.3390.5970.022.056.82727.9
    110.070.0678.77//0.660.178.63.7192.3469.433.267.98853.4
    120.050.180.26/0.120.670.158.462.7492.770.752.417.85827.8
    130.040.0781.040.110.220.840.148.643.3894.7371.442.978.02835.0
    平均值0.060.0580.560.060.120.710.148.052.5792.4971.012.267.47785.5
    T5-170.100.0679.20.070.050.790.158.273.3192.2169.812.917.68817.8
    80.190.0677.4/0.170.590.147.822.5289.1768.232.217.26793.9
    90.20/77.36/0.030.690.167.632.9289.268.192.577.08773.5
    100.060.0779.07/0.110.610.108.82.8691.8269.702.518.17873.4
    10.130.0477.54/0.120.750.127.72.7789.5168.352.437.15779.4
    20.040.0480.460.170.030.590.137.562.2991.6770.922.017.02739.4
    30.160.0678.42/0.180.890.116.452.3888.7169.132.095.99646.8
    平均值0.130.0578.490.030.100.700.137.752.7290.3369.192.397.19774.9
    注:电子探针结果由核工业北京地质研究院分析测试中心分析。“/”表示未检出。
    下载: 导出CSV
  • [1]

    葛祥坤. 电子探针定年技术在铀及含铀矿物测年中的开发与研究[D]. 北京: 核工业北京地质研究院, 2013.http://d.wanfangdata.com.cn/Thesis/D416449

    Ge X K.Research and Development of Electron Microprobe Dating on Uranium Minerals and U-bearing Minerals[D].Beijing:Beijing Research Institute of Uranium Geology, 2013.

    [2]

    葛祥坤, 秦明宽, 范光.电子探针化学测年法在晶质铀矿-沥青铀矿定年研究中的应用现状[J].世界核地质科技, 2011, 28(1):55-62. http://www.wenkuxiazai.com/doc/8f90bca25a8102d277a22f82-2.html

    Ge X K, Qin M K, Fan G.Review on the application of electron microprobe chemical dating method in the age research of uraninite/pitchblende[J].World Nuclear Geoscience, 2011, 28(1):55-62. http://www.wenkuxiazai.com/doc/8f90bca25a8102d277a22f82-2.html

    [3]

    郭国林, 潘家永, 刘成东, 等.电子探针化学测年技术及其在地学中的应用[J].东华理工学院学报, 2005, 28(1):39-42. http://www.cqvip.com/QK/96868X/200101/4982701.html

    Guo G L, Pan J Y, Liu C D, et al.Chemical dating technique on the electron probe microanalysis and its application on earth science[J].Journal of East China Institute of Technology, 2005, 28(1):39-42. http://www.cqvip.com/QK/96868X/200101/4982701.html

    [4]

    李学军, 郭涛, 王庆飞.电子探针化学测年方法[J].地学前缘, 2003, 10(2):411-414. http://d.wanfangdata.com.cn/Periodical/dxqy200302019

    Li X J, Guo T, Wang Q F.Electron microprobe chemical dating technique[J].Earth Science Frontiers, 2003, 10(2):411-414. http://d.wanfangdata.com.cn/Periodical/dxqy200302019

    [5]

    Schulz B, Schüssler U.Electron-microprobe Th-U-Pb monazite dating in Early-Palaeozoic high-grade gneisses as a completion of U-Pb isotopic ages (Wilson Terrane, Antarctica)[J].Lithos, 2013(175-176):178-192. https://www.researchgate.net/profile/B_Schulz/publication/281375287_Schulz-Schuessler-Wilson-Terrane-2013/data/55e474da08aecb1a7ccb7b08/1-s20-S0024493713001692-main2.pdf

    [6]

    Kempe U.Precise electron microprobe age determination in altered uraninite:Consequences on the intrusion age and the metallogenic significance of Kirchberg Granite (Erzgebirge, Germany)[J].Contributions to Mineralogy and Petrology, 2003, 145(1):107-118. doi: 10.1007/s00410-002-0439-5

    [7]

    张龙, 陈振宇, 田泽瑾, 等.粤北产铀与不产铀花岗岩中铀矿物特征的电子探针研究及其找矿意义[J].岩矿测试, 2016, 35(3):310-319. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.015

    Zhang L, Chen Z Y, Tian Z J, et al.EPMA study on characteristics of uranium minerals in uranium-bearing and uranium-barren granites in Northern Guangdong and its prospecting significance[J].Rock and Mineral Analysis, 2016, 35(3):310-319. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.015

    [8]

    张龙, 陈振宇, 田泽瑾, 等.电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J].岩矿测试, 2016, 35(1):98-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.016

    Zhang L, Chen Z Y, Tian Z J, et al.The application of electron microprobe dating method on uranium minerals in Changjiang Granite, Northern Guangdong[J].Rock and Mineral Analysis, 2016, 35(1):98-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.016

    [9]

    黄广文, 潘家永, 张占峰, 等.应用电子探针研究蒙其古尔铀矿床含矿砂岩岩石学特征及铀矿物分布规律[J].岩矿测试, 2017, 36(2):209-220. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.014

    Huang G W, Pan J Y, Zhang Z F, et al.Study on petrological characteristics and distribution of uranium minerals of sandstones in Mengqiuer uranium deposit by electron microprobe, Xinjiang[J].Rock and Mineral Analysis, 2017, 36(2):209-220. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.014

    [10]

    张昭明.电子探针在测定晶质铀矿年龄中的应用[J].放射性地质, 1982(5):408-411. https://wenku.baidu.com/view/e31be788227916888586d751.html

    Zhang Z M.The application of electron microprobe on dating uraninite[J].Radioactive Geology, 1982(5):408-411. https://wenku.baidu.com/view/e31be788227916888586d751.html

    [11]

    张成江, 陈友良, 李巨初, 等.康滇地轴巨粒晶质铀矿的发现及其地质意义[J].地质通报, 2015, 34(12):2219-2226. doi: 10.3969/j.issn.1671-2552.2015.12.008

    Zhang C J, Chen Y L, Li J C, et al.The discovery of coarse-grained uraninite in Kangdian Axis and its geological significane[J].Geological Bulletin of China, 2015, 34(12):2219-2226. doi: 10.3969/j.issn.1671-2552.2015.12.008

    [12]

    徐争启, 张成江, 陈友良, 等.攀枝花大田含铀滚石特征及其意义[J].矿物学报, 2015(增刊):357. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2015S1257.htm

    Xu Z Q, Zhang C J, Chen Y L, et al.The characteristics and significance of uranium bearing rolling stones in Panzhihua Datian[J].Acta Mineralogica Sinica, 2015(Supplement):357. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2015S1257.htm

    [13]

    姚建. 攀枝花市大田地区混合岩成因研究[D]. 成都: 成都理工大学, 2014.http://d.wanfangdata.com.cn/Thesis/Y2580274

    Yao J.The Origin of the Migmatite Complex in Datian Area, Panzhihua City[D].Chengdu:Chengdu University of Technology, 2014.

    [14]

    姚建, 李巨初, 周君, 等. 攀枝花市大田505地区混合岩成因及其与铀矿化关系初探[C]//全国铀矿大基地建设学术研讨会论文集(上). 2012: 590-598.

    Yao J, Li J C, Zhou J, et al.The Genesis of Migmatite Complexes and the Relationship between Migmatite and Uranium Mineralization, Area 505 of Datian, Panzhihua City[C]//Proceedings of National Conference on Uranium Big Base Construction, 2012:590-598.

    [15]

    Bowles J F W.Age dating of individual grains of uran-inite in rocks from electron microprobe analyses[J].Chemical Geology, 1990, 83(1-2):47-53. doi: 10.1016/0009-2541(90)90139-X

    [16]

    韦龙明, 王莉, 张广辉, 等.广东石人嶂钨矿床中的晶质铀矿研究[J].地质学报, 2014, 88(4):805-813. http://d.wanfangdata.com.cn/Periodical/dizhixb201404029

    Wei L M, Wang L, Zhang G H, et al.Study on the uraninite in Shirenzhang tungten deposit, Guangdong Province[J]. Acta Geologica Sinica, 2014, 88(4):805-813. http://d.wanfangdata.com.cn/Periodical/dizhixb201404029

    [17]

    Alexandre P, Kyser T K.Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits[J].Canadian Mineralogist, 2005, 43(3):1005-1017. doi: 10.2113/gscanmin.43.3.1005

  • 加载中

(4)

(1)

计量
  • 文章访问数:  2017
  • PDF下载数:  57
  • 施引文献:  0
出版历程
收稿日期:  2017-04-28
修回日期:  2017-09-05
录用日期:  2017-10-24

目录