Preparation of Phosphate Ore Reference Materials for Chemical Composition Analysis
-
摘要: 磷矿的开发与综合利用不仅需要分析磷等主要元素,也需要准确地测定稀土元素和微量元素。分析测试过程需要含量适中、定值组分全的磷矿石标准物质进行质量监控,国内外现有的磷矿石标准物质无论是从定值指标还是含量梯度范围等方面均无法满足此需求。本文研制了4个不同类型磷矿石成分分析标准物质。样品采集自河北张家口钒山磷矿、贵州织金新华磷矿、云南昆阳磷矿、湖北神农架火炼坡磷矿4个典型矿区,其中张家口钒山磷矿和织金新华磷矿为含稀土的磷矿。检验结果表明样品的均匀性、稳定性良好;通过11家实验室协作定值,定值元素包括造岩主量元素、稀土元素和痕量元素共37项,其中3个组分为参考值,其余均给出标准值和不确定度。4个磷矿石标准物质形成了一个从边界品位、工业品位到磷精矿较为完整的含量系列,P2O5的含量分别为10.57%、18.91%、27.78%、39.40%,稀土元素总量分别为0.16%、0.11%、0.032%、0.0083%,可满足磷矿勘查、评价和综合利用开发中对标准物质的需求。Abstract: For the development and comprehensive utilization of phosphate ore it is not only necessary to analyze the main elements such as phosphorus, but it is also necessary to determine accurately the rare earth, trace and other elements. Phosphate Ore Reference Materials (PORMs) with numbers of components and suitable contents can be used for quality control during analysis. However, available PORMs in China and abroad do no meet the requirements in terms of the element contents and the content range. Four different types of PORMs have been developed and are described in this study. The samples of phosphate ores were collected from the Zhangjiakou Fanshan phosphate mine in Hebei province, Xinhua phosphate mine in Zhijin of Guizhou Province, Kunyang phosphate mine in Yunnan Province, and Huolian phosphate mine in Shennongjia of Hubei Province. Zhangjiakou Fanshan phosphate mine and Xinhua phosphate mine are rich in rare earth elements (REEs). Four samples were homogeneous and stable. The results from 11 laboratories were combined to confirm certified values and uncertainty of 37 components, which include major elements, REEs, and trace elements. Three components were taken as reference values and the rest were characterized as certified values. The four PORMs cover a complete content series from cut-off grade, production-grade, to phosphate concentrate with P2O5 contents of 10.57%, 18.91%, 27.78% and 39.40%, respectively, and the total REEs contents of 0.16%, 0.11%, 0.032% and 0.0083%, respectively. The developed PORMs meet the requirements for exploration, evaluation, and comprehensive utilization of phosphate ores.
-
Key words:
- phosphate ore /
- reference materials /
- uniformity /
- stability /
- certified values
-
-
表 1 样品矿物组成和结构特征
Table 1. Mineral composition and structural characteristics of the samples
样品编号 采样地点 岩性描述 矿物组成 P2O5品位 G-1 河北矾山磷矿区 深灰色条纹状超基性-碱性岩
(岩浆岩型)磷灰石50%,金属矿物30%,角闪石10%,黑云母5%,榍石1%,绿泥石少量(金属矿物有:磁铁矿、黄铁矿、磁黄铁矿、黄铜矿、褐铁矿) 10%~11%
(四级品)G-2 贵州织金新华
磷矿区浅灰色块状海相沉积磷块岩
(沉积型)胶磷矿50%,白云石35%,方解石10%,褐铁矿2%,石英3%,白云母少量 18%~20%
(三级品)G-3 云南昆阳磷矿区 深灰色层状海相沉积磷块岩
(沉积型)胶磷矿30%,白云石50%,褐铁矿5%,石英5%,方解石5%,白云母2% 27%~28%
(二级品)G-4 湖北神农架火炼坡
磷矿区乳白色层状海相沉积磷块岩
(沉积型)胶磷矿75%,方解石15%,白云石5%,石英3%,白云母2% 39%~40%
(一级品)表 2 磷矿石样品粒度分布
Table 2. Grain distribution of phosphate rock samples
样品粒径
(μm)G-1 G-2 G-3 G-4
区间百分
含量(%)累积百分
含量(%)区间百分
含量(%)累积百分
含量(%)区间百分
含量(%)累积百分
含量(%)区间百分
含量(%)累积百分
含量(%)1.00~1.30 23.42 23.42 22.51 22.51 19.05 19.05 24.12 24.12 1.30~2.50 14.67 38.09 12.96 35.47 12.59 31.64 13.99 38.11 2.50~5.00 17.99 56.08 13.84 49.31 13.45 45.09 12.78 50.89 5.00~6.50 7.40 63.48 5.72 55.03 5.71 50.8 5.00 55.89 6.50~10.00 11.47 74.95 9.12 64.15 10.22 61.02 8.09 63.98 10.00~13.00 6.17 81.12 5.61 69.76 7.20 68.22 5.25 69.23 13.00~18.00 6.65 87.77 7.34 77.1 9.23 77.45 6.57 75.8 18.00~20.00 1.70 89.47 2.39 79.49 2.99 80.44 2.04 77.84 20.00~23.00 1.75 91.22 3.10 82.59 3.94 84.38 2.55 80.39 23.00~28.00 1.75 92.97 4.28 86.87 5.32 89.7 3.37 83.76 28.00~32.00 1.18 94.15 2.95 89.82 3.30 93.0 2.29 86.05 32.00~38.00 1.89 96.04 3.80 93.62 3.39 96.39 3.05 89.1 38.00~45.00 2.00 98.04 3.33 96.95 2.21 98.6 3.16 92.26 45.00~53.00 1.21 99.25 1.92 98.87 0.94 99.54 2.94 95.2 53.00~63.00 0.57 99.82 0.86 99.73 0.38 99.92 2.60 97.8 63.00~75.00 0.15 99.97 0.23 99.96 0.08 100 1.49 99.29 表 3 均匀性检验结果
Table 3. Analytical results of the homogeneity test
元素 G-1 G-2 G-3 G-4 含量测定
平均值RSD
(%)F 含量测定
平均值RSD
(%)F 含量测定
平均值RSD
(%)F 含量测定
平均值RSD
(%)F P2O5* 10.5 0.64 1.03 18.6 0.67 1.00 27.5 0.62 1.01 39.5 0.77 1.00 SiO2* 29.7 0.84 1.01 2.95 1.21 1.01 11.1 1.00 1.02 1.62 2.54 1.15 TFe2O3* 15.3 0.93 1.16 0.676 2.02 1.06 0.525 1.84 1.19 0.195 2.11 1.34 CaO* 24.3 0.63 1.08 40.6 0.70 1.00 43.4 0.45 1.00 54.0 0.69 1.03 MgO* 6.78 1.12 1.08 10.1 1.08 1.00 3.41 1.09 1.04 0.444 1.09 1.10 TiO2* 1.80 0.73 1.34 0.022 4.77 1.50 0.040 2.58 1.42 0.080 1.69 1.35 MnO* 0.151 1.21 1.12 0.066 1.97 1.33 0.035 1.57 1.15 0.002 3.77 1.12 K2O* 2.52 1.01 1.06 0.096 1.71 1.03 0.488 1.75 1.11 0.165 1.08 1.51 Na2O* 0.435 1.53 1.19 0.096 1.65 1.83 0.279 2.22 1.03 0.100 1.57 1.57 SrO* 0.253 1.36 1.09 0.054 3.23 1.19 0.095 1.22 1.25 0.054 1.47 1.21 S* 0.472 1.52 1.27 0.045 2.48 1.46 0.130 2.57 1.39 0.047 4.02 1.26 F* 0.557 2.16 1.01 1.83 1.99 1.09 2.59 2.08 1.08 3.09 1.66 1.14 U 2.00 4.66 1.20 11.8 3.26 1.02 15.4 2.02 1.04 6.16 1.57 1.02 La 224 2.98 1.03 192 2.04 1.00 49.0 2.51 1.00 16.6 3.36 1.01 Ce 518 2.74 1.01 102 2.10 1.02 39.9 3.97 1.00 13.2 3.76 1.00 Pr 72.9 2.55 1.01 31.3 2.59 1.00 8.12 2.94 1.01 2.57 4.11 1.01 Nd 335 1.54 1.03 136 2.15 1.04 32.7 2.77 1.01 11.5 4.13 1.01 Sm 59.6 4.08 1.02 25.5 3.30 1.03 5.96 3.93 1.03 2.10 2.91 1.02 Gd 41.2 4.79 1.02 27.1 4.06 1.01 7.13 3.85 0.80 2.11 2.20 1.02 Dy 18.9 3.68 1.11 26.4 3.79 1.03 7.32 3.65 1.07 1.93 3.43 1.01 Y 65.9 4.02 1.01 298 2.84 1.02 90.5 2.07 1.01 15.0 3.06 1.01 注:表中带“*”成分的测定平均值单位为10-2,其他成分的测定平均值单位为10-6。 表 4 长期稳定性检验结果
Table 4. Analytical results of the long-term stability test
元素 G-1 G-2 G-3 G-4 平均值 b1 t0.05×s(b1) 平均值 b1 t0.05×s(b1) 平均值 b1 t0.05×s(b1) 平均值 b1 t0.05×s(b1) P2O5* 10.6 0.0013 0.0072 18.6 0.0012 0.0013 27.5 0.0004 0.0135 39.5 0.0008 0.0110 SiO2* 29.7 -0.0038 0.0131 2.82 0.0004 0.0101 11.1 0.0001 0.0096 1.59 0.0018 0.0031 TFe2O3* 15.1 0.0031 0.0137 0.689 -0.0007 0.0012 0.559 -0.0001 0.0015 0.165 0.0002 0.0004 CaO* 24.1 -0.0030 0.0090 40.8 0.0028 0.0182 43.5 0.0001 0.0035 54.1 0.0060 0.0222 MgO* 6.61 -0.00004 0.0065 10.1 -0.0009 0.0113 3.42 0.0012 0.0030 0.447 -0.0001 0.0006 TiO2* 1.79 -0.0004 0.0017 0.022 0.0001 0.0003 0.041 0.00007 0.0004 0.081 0.00018 0.00019 MnO* 0.143 0.0001 0.0004 0.065 0.0001 0.0001 0.036 -0.00001 0.0001 0.002 -0.00002 0.00004 K2O* 2.53 -0.00001 0.0037 0.099 0.00005 0.0001 0.479 -0.0008 0.0015 0.172 0.0001 0.0002 Na2O* 0.431 0.0005 0.0010 0.093 -0.00001 0.0002 0.274 0.0003 0.0009 0.1 -0.0001 0.0003 SrO* 0.255 0.00012 0.00014 0.054 0.00001 0.0001 0.096 0.00004 0.0002 0.054 0.0001 0.0002 S* 0.454 -0.0007 0.0033 0.04 0.0002 0.0003 0.138 0.0005 0.0018 0.048 0.0002 0.0004 F* 0.58 -0.0002 0.0008 1.78 0.0023 0.0044 2.53 0.0016 0.0093 3.13 0.0051 0.0104 U 2.19 -0.0001 0.0044 11.7 0.0058 0.0336 15.6 -0.0003 0.0014 6.09 0.0001 0.0029 La 224 0.1390 0.2622 191 0.1094 0.1862 49.3 0.0900 0.1412 16.6 0.0101 0.0162 Ce 526 0.1347 0.3563 103 -0.0322 0.1004 40.2 -0.0694 0.1014 13.6 -0.0116 0.0127 Pr 73.6 0.0264 0.0514 30.4 0.0113 0.0586 8.1 -0.0022 0.0178 2.57 0.0035 0.0078 Nd 337 0.0381 0.2649 136 -0.0622 0.0880 33.3 0.0057 0.0331 11.6 0.0123 0.0296 Sm 57.3 -0.0216 0.1476 24.2 -0.0001 0.0311 6.1 0.0012 0.0137 2.09 -0.0002 0.0033 Gd 41.5 -0.0086 0.0945 28.4 -0.0243 0.0857 7.17 -0.0006 0.0238 2.02 0.0005 0.0016 Dy 19.2 -0.0125 0.0577 27.4 -0.0390 0.0618 7.49 0.0066 0.0261 1.95 0.0008 0.0059 Y 64.6 0.0486 0.1238 294 0.0354 0.1979 90.7 -0.1026 0.1669 14.7 -0.0177 0.0544 注:表中带“*”成分的测定平均值单位为10-2,其他成分的测定平均值单位为10-6。 表 5 磷矿石各元素定值分析方法
Table 5. Analytical methods of elements in phosphate rock samples
元素 分析方法 La ICP-MS Ce ICP-MS Pr ICP-MS Nd ICP-MS Sm ICP-MS Eu ICP-MS Gd ICP-MS Tb ICP-MS Dy ICP-MS Ho ICP-MS Er ICP-MS Tm ICP-MS Yb ICP-MS Lu ICP-MS Y ICP-MS I ICP-MS, COL As AFS Cr ICP-MS,ICP-OES S COV,GR,CS SiO2 GR,COV,COL,ICP-OES Al2O3 COV,COL,ICP-OES TFe2O3 COV,COL,ICP-OES,FAAS MgO COV,ICP-OES,FAAS CaO COV,ICP-OES Na2O ICP-OES,FAAS K2O ICP-OES,FAAS TiO2 ICP-OES,COL MnO ICP-MS,ICP-OES,FAAS P2O5 GR,COV,COL,ICP-OES SrO ICP-MS,ICP-OES BaO ICP-MS,ICP-OES V ICP-MS,ICP-OES Cd ICP-MS,GAAS Pb ICP-MS,ICP-OES U ICP-MS,ICP-OES F ISE,IC CO2 COV,CS 注:ICP-MS—电感耦合等离子体质谱法;ICP-OES—电感耦合等离子体发射光谱法;FAAS—火焰原子吸收光谱法;GAAS—石墨炉原子吸收光谱法;AFS—原子荧光光谱法;XRF—X射线荧光光谱法;CS—高频红外吸收光谱法;COL—比色法;COV—容量法;GR—重量法;ISE—离子选择电极法;IC—离子色谱法。 表 6 磷矿石标准物质的标准值及扩展不确定度
Table 6. Certified values and expanded uncertainty of the phosphate rock standard samples
元素 标准值与扩展不确定度 G-1 G-2 G-3 G-4 P2O5* 10.57±0.12 18.91±0.10 27.78±0.16 39.40±0.22 SiO2* 29.70±0.20 2.92±0.13 10.64±0.20 1.55±0.07 TFe2O3* 15.32±0.18 0.705±0.015 0.548±0.019 0.180±0.01 CaO* 24.13±0.2 41.41±0.28 43.50±0.05 53.27±0.40 MgO* 6.68±0.1 10.10±0.14 3.49±0.07 0.437±0.009 Al2O3* 5.58±0.14 0.293±0.005 1.33±0.04 0.685±0.015 K2O* 2.49±0.05 0.099±0.003 0.513±0.017 0.156±0.007 Na2O* 0.427±0.016 0.096±0.006 0.283±0.011 0.111±0.006 TiO2* 1.79±0.03 0.022±0.004 0.042±0.005 0.079±0.004 MnO* 0.148±0.005 0.069±0.003 0.034±0.002 0.002±0.001 F* 0.569±0.018 1.78±0.07 2.64±0.13 3.24±0.19 S* 0.438±0.040 -0.043 0.150±0.024 0.046±0.008 CO2* 0.717±0.040 23.42±0.40 8.48±0.11 -1.53 SrO* 0.252±0.005 0.055±0.002 0.091±0.003 0.056±0.002 As 0.58±0.06 12.2±0.5 12.4±0.5 1.72±0.15 Cr 28.5±1.3 7.50±0.80 23.7±0.9 20.4±1.6 I 0.27±0.02 1.80±0.22 22.1±0.8 0.94±0.16 BaO 1024±9 979±10 951±13 29.7±1.2 V 331±12 7.83±0.29 17.4±0.5 16.2±0.4 Cd 0.29±0.03 0.28±0.03 0.13±0.01 -0.023 Pb 37.5±1.7 283±9 58.3±1.9 6.48±0.50 U 2.17±0.13 12.3±0.4 16.3±0.5 6.51±0.18 La 224±6 189±3 49.7±1.9 16.3±0.6 Ce 511±10 106±2 43.2±1.5 13.4±0.5 Pr 72.8±1.0 31.9±0.7 7.75±0.23 2.55±0.10 Nd 333±5 139±3 33.6±1.0 11.3±0.5 Sm 59.6±2.0 24.8±0.7 5.89±0.19 2.15±0.06 Eu 14.6±0.7 5.69±0.14 1.30±0.07 0.93±0.04 Gd 41.3±1.5 27.3±1.2 7.10±0.40 2.13±0.03 Tb 4.72±0.27 4.50±0.22 1.16±0.07 0.35±0.02 Dy 19.3±1.1 26.6±1.3 7.35±0.40 1.94±0.10 Ho 2.67±0.14 5.60±0.22 1.71±0.10 0.39±0.03 Er 5.97±0.04 15.0±0.6 4.79±0.20 1.02±0.06 Tm 0.64±0.04 1.92±0.08 0.63±0.03 0.15±0.01 Yb 3.35±0.12 9.36±0.40 3.13±0.15 0.74±0.05 Lu 0.43±0.03 1.13±0.06 0.40±0.02 0.094±0.007 Y 67.1±2.0 297±7 94.2±2.0 15.5±0.7 -
[1] 温婧. 中国磷矿资源类型和潜力分析[D]. 北京: 中国地质大学(北京), 2011.
Wen J.The Type and Potential Analysis of Phosphorite Resources in China[D].Beijing:China University of Geosciences (Beijing), 2011.
[2] Steiner G, Geissler B, Watson I, et al.Efficiency deve-lopments in phosphate rock mining over the last three decades[J].Resources, Conservation and Recycling, 2015, 105:235-245. doi: 10.1016/j.resconrec.2015.10.004
[3] 张苏江, 夏浩东, 唐文龙, 等.中国磷矿资源现状分析及可持续发展建议[J].中国矿业, 2014, 23(2):8-13. http://d.g.wanfangdata.com.cn/Periodical_zgky2014z2003.aspx
Zhang S J, Xia H D, Tang W L, et al.Current status and sustainable development of phosphorite resources in China[J].China Mining Magazine, 2014, 23(2):8-13. http://d.g.wanfangdata.com.cn/Periodical_zgky2014z2003.aspx
[4] 韩豫川, 夏学惠, 肖荣阁, 等.中国磷矿床[M].北京:地质出版社, 2012.
Han Y C, Xia X H, Xiao R G, et al.Chinese Phosphate Deposit[M].Beijing:Geological Publishing House, 2012.
[5] 靳利飞, 周海东.中国磷矿资源开发利用形势分析及可持续发展对策研究[J].中国人口·资源与环境, 2016, 26(5):417-420. http://www.cqvip.com/QK/97796X/2016S1/90718290504849548349494848.html
Jin L F, Zhou H D.Research on exploitation and utilization and sustainable development of phosphate resources in China[J].China Population, Resources and Environment, 2016, 26(5):417-420. http://www.cqvip.com/QK/97796X/2016S1/90718290504849548349494848.html
[6] 鄢正华.我国磷矿资源开发利用综述[J].矿冶, 2011, 20(3):21-25. http://www.doc88.com/p-1744328130409.html
Yan Z H.Review of development and utilization of phosphate resources in China[J].Mining Metallugry, 2011, 20(3):21-25. http://www.doc88.com/p-1744328130409.html
[7] 李维, 高辉, 罗英杰, 等.国内外磷矿资源利用现状、趋势分析及对策建议[J].中国矿业, 2015, 24(6):6-10. http://www.docin.com/p-1595152609.html
Li W, Gao H, Luo Y J, et al.Status, trends and suggestions of phosphorus ore resources at home and abroad[J].China Mining Magazine, 2015, 24(6):6-10. http://www.docin.com/p-1595152609.html
[8] 王毅民, 王晓红, 高玉淑, 等.中国地质标准物质制备技术与方法研究进展[J]地质通报, 2010, 29(7):1090-1104. http://www.wenkuxiazai.com/doc/760d5502a8114431b90dd81f.html
Wang Y M, Wang X H, Gao Y S, et al.Advances in preparing techniques for geochemical reference materials in China[J].Geological Bulletin of China, 2010, 29(7):1090-1104. http://www.wenkuxiazai.com/doc/760d5502a8114431b90dd81f.html
[9] Jochum K P, Weis U, Schwager B, et al.Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalystical Research, 2016, 40(3):333-350. doi: 10.1111/ggr.2016.40.issue-3
[10] Weis U, Schwager B, Nohl U, et al.Geostandards and geoanalystical research bibliographic review 2015[J].Geostandards and Geoanalystical Research, 2016, 40(4):599-601. doi: 10.1111/ggr.2016.40.issue-4
[11] 张苏江, 易锦俊, 孔令湖, 等.中国磷矿资源现状及磷矿国家级实物地质资料筛选[J].无机盐工业, 2016, 48(2):1-5. http://mall.cnki.net/magazine/Article/WJYG201602001.htm
Zhang S J, Yi J J, Kong L H, et al.Current status of phosphorite-ore resources in China and screening for national-class physical geological data of phopshorite[J].Inorganic Chemicals Industry, 2016, 48(2):1-5. http://mall.cnki.net/magazine/Article/WJYG201602001.htm
[12] Zhang P.Comprehensive recovery and sustainable deve-lopment of phosphate resources[J].Procedia Engi-neering, 2014, 83:37-51. doi: 10.1016/j.proeng.2014.09.010
[13] Ramos S J, Dinali G S, De Carvalho T S, et al.Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America:Content, signature, and crystalline phases[J].Journal of Geochemical Exploration, 2016, 168:177-186. doi: 10.1016/j.gexplo.2016.06.009
[14] 冯安生, 曹飞, 吕振福.我国磷矿资源综合利用水平调查与评价[J].矿产保护与利用, 2017(2):13-17. http://d.wanfangdata.com.cn/Periodical/kcbhyly201702003
Feng A S, Cao F, Lü Z F.Investigation and evaluation of comprehensive utilization level of phosphate ore resources in China[J].Conservation and Utilization of Mineral Resources, 2017(2):13-17. http://d.wanfangdata.com.cn/Periodical/kcbhyly201702003
[15] 田侠.我国磷矿资源综合评价与政策建议[J].中国国土资源经济, 2016, 29(8):29-31. http://www.cqvip.com/QK/96321X/201608/669779717.html
Tian X.Comprehensive evaluation and policy recommenda-tion on mining resource of phosphorus in China[J].Natural Resource Economics of China, 2016, 29(8):29-31. http://www.cqvip.com/QK/96321X/201608/669779717.html
[16] Botha A, Ellison S, Linsinger T, et al.Outline for the re-vision of ISO Guide 35[J].Accreditation and Quality Assurance, 2013, 18:115-118. doi: 10.1007/s00769-012-0940-0
[17] 宋丽华, 郝原芳, 杨柳, 等.地质标准物质的研制方法[J].地质与资源, 2013, 22(5):419-421.
Song L H, Hao Y F, Yang L, et al.Preparation on method of geochemical reference materials[J]. Geology and Resources, 2013, 22(5):419-421.
[18] 袁建, 王亚平, 许春雪.湖泊沉积物中磷形态标准质研制[J].岩矿测试, 2014, 33(6):857-862. http://www.ykcs.ac.cn/article/id/a784bf12-0c30-4de9-aae0-25d7ec262f34
Yuan J, Wang Y P, Xu C X.Preparation of phosphorus speciation reference materials from lake sediments[J].Rock and Mineral Analysis, 2014, 33(6):857-862. http://www.ykcs.ac.cn/article/id/a784bf12-0c30-4de9-aae0-25d7ec262f34
[19] 中国实验室国家认可委员会.化学分析中不确定度的评估指南[M].北京:中国计量出版社, 2002.
China National Accreditation Board for Laboratories.Guide to Uncertainty Evaluation in Chemistry Analysis[M].Beijing:Chinese Metrology Press, 2002.
[20] 杨理勤.常量金标准物质标准值的不确定度评定方法[J].黄金, 2015, 36(9):80-82. doi: 10.11792/hj20150919
Yang L Q.Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J].Gold, 2015, 36(9):80-82. doi: 10.11792/hj20150919
[21] 郑存江.地质标准物质不确定度评估方法初探[J].岩矿测试, 2005, 24(4):284-286. http://www.ykcs.ac.cn/article/id/ykcs_20050495
Zheng C J.Primary investigation for evaluation of uncertainty of geological reference materials[J]. Rock and Mineral Analysis, 2005, 24(4):284-286. http://www.ykcs.ac.cn/article/id/ykcs_20050495
[22] 刘瑱, 马玲, 时晓露, 等.石英岩化学成分分析标准物质研制[J].岩矿测试, 2014, 33(6):849-856. http://www.ykcs.ac.cn/article/id/74ac358c-aa50-4a0a-8458-a048d0116e75
Liu Z, Ma L, Shi X L, et al.Preparation of quartzite reference materials for chemical composition analysis[J].Rock and Mineral Analysis, 2014, 33(6):849-856. http://www.ykcs.ac.cn/article/id/74ac358c-aa50-4a0a-8458-a048d0116e75
-