中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

磷矿石化学成分分析标准物质研制

曾美云, 刘金, 邵鑫, 邹棣华. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082
引用本文: 曾美云, 刘金, 邵鑫, 邹棣华. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082
Mei-yun ZENG, Jin LIU, Xin SHAO, Di-hua ZOU. Preparation of Phosphate Ore Reference Materials for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082
Citation: Mei-yun ZENG, Jin LIU, Xin SHAO, Di-hua ZOU. Preparation of Phosphate Ore Reference Materials for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082

磷矿石化学成分分析标准物质研制

  • 基金项目:
    中国地质调查局矿评专项(12120113022200)
详细信息
    作者简介: 曾美云, 硕士, 高级工程师, 从事岩矿测试及标准化研究工作。E-mail:ld_2002@sina.com
  • 中图分类号: P578.92;TQ421.31

Preparation of Phosphate Ore Reference Materials for Chemical Composition Analysis

  • 磷矿的开发与综合利用不仅需要分析磷等主要元素,也需要准确地测定稀土元素和微量元素。分析测试过程需要含量适中、定值组分全的磷矿石标准物质进行质量监控,国内外现有的磷矿石标准物质无论是从定值指标还是含量梯度范围等方面均无法满足此需求。本文研制了4个不同类型磷矿石成分分析标准物质。样品采集自河北张家口钒山磷矿、贵州织金新华磷矿、云南昆阳磷矿、湖北神农架火炼坡磷矿4个典型矿区,其中张家口钒山磷矿和织金新华磷矿为含稀土的磷矿。检验结果表明样品的均匀性、稳定性良好;通过11家实验室协作定值,定值元素包括造岩主量元素、稀土元素和痕量元素共37项,其中3个组分为参考值,其余均给出标准值和不确定度。4个磷矿石标准物质形成了一个从边界品位、工业品位到磷精矿较为完整的含量系列,P2O5的含量分别为10.57%、18.91%、27.78%、39.40%,稀土元素总量分别为0.16%、0.11%、0.032%、0.0083%,可满足磷矿勘查、评价和综合利用开发中对标准物质的需求。
  • 加载中
  • 表 1  样品矿物组成和结构特征

    Table 1.  Mineral composition and structural characteristics of the samples

    样品编号采样地点岩性描述矿物组成P2O5品位
    G-1河北矾山磷矿区深灰色条纹状超基性-碱性岩
    (岩浆岩型)
    磷灰石50%,金属矿物30%,角闪石10%,黑云母5%,榍石1%,绿泥石少量(金属矿物有:磁铁矿、黄铁矿、磁黄铁矿、黄铜矿、褐铁矿)10%~11%
    (四级品)
    G-2贵州织金新华
    磷矿区
    浅灰色块状海相沉积磷块岩
    (沉积型)
    胶磷矿50%,白云石35%,方解石10%,褐铁矿2%,石英3%,白云母少量18%~20%
    (三级品)
    G-3云南昆阳磷矿区深灰色层状海相沉积磷块岩
    (沉积型)
    胶磷矿30%,白云石50%,褐铁矿5%,石英5%,方解石5%,白云母2%27%~28%
    (二级品)
    G-4湖北神农架火炼坡
    磷矿区
    乳白色层状海相沉积磷块岩
    (沉积型)
    胶磷矿75%,方解石15%,白云石5%,石英3%,白云母2%39%~40%
    (一级品)
    下载: 导出CSV

    表 2  磷矿石样品粒度分布

    Table 2.  Grain distribution of phosphate rock samples

    样品粒径
    (μm)
    G-1G-2G-3G-4

    区间百分
    含量(%)
    累积百分
    含量(%)
    区间百分
    含量(%)
    累积百分
    含量(%)
    区间百分
    含量(%)
    累积百分
    含量(%)
    区间百分
    含量(%)
    累积百分
    含量(%)
    1.00~1.3023.4223.4222.5122.5119.0519.0524.1224.12
    1.30~2.5014.6738.0912.9635.4712.5931.6413.9938.11
    2.50~5.0017.9956.0813.8449.3113.4545.0912.7850.89
    5.00~6.507.4063.485.7255.035.7150.85.0055.89
    6.50~10.0011.4774.959.1264.1510.2261.028.0963.98
    10.00~13.006.1781.125.6169.767.2068.225.2569.23
    13.00~18.006.6587.777.3477.19.2377.456.5775.8
    18.00~20.001.7089.472.3979.492.9980.442.0477.84
    20.00~23.001.7591.223.1082.593.9484.382.5580.39
    23.00~28.001.7592.974.2886.875.3289.73.3783.76
    28.00~32.001.1894.152.9589.823.3093.02.2986.05
    32.00~38.001.8996.043.8093.623.3996.393.0589.1
    38.00~45.002.0098.043.3396.952.2198.63.1692.26
    45.00~53.001.2199.251.9298.870.9499.542.9495.2
    53.00~63.000.5799.820.8699.730.3899.922.6097.8
    63.00~75.000.1599.970.2399.960.081001.4999.29
    下载: 导出CSV

    表 3  均匀性检验结果

    Table 3.  Analytical results of the homogeneity test

    元素G-1G-2G-3G-4
    含量测定
    平均值
    RSD
    (%)
    F含量测定
    平均值
    RSD
    (%)
    F含量测定
    平均值
    RSD
    (%)
    F含量测定
    平均值
    RSD
    (%)
    F
    P2O5*10.50.641.0318.60.671.0027.50.621.0139.50.771.00
    SiO2*29.70.841.012.951.211.0111.11.001.021.622.541.15
    TFe2O3*15.30.931.160.6762.021.060.5251.841.190.1952.111.34
    CaO*24.30.631.0840.60.701.0043.40.451.0054.00.691.03
    MgO*6.781.121.0810.11.081.003.411.091.040.4441.091.10
    TiO2*1.800.731.340.0224.771.500.0402.581.420.0801.691.35
    MnO*0.1511.211.120.0661.971.330.0351.571.150.0023.771.12
    K2O*2.521.011.060.0961.711.030.4881.751.110.1651.081.51
    Na2O*0.4351.531.190.0961.651.830.2792.221.030.1001.571.57
    SrO*0.2531.361.090.0543.231.190.0951.221.250.0541.471.21
    S*0.4721.521.270.0452.481.460.1302.571.390.0474.021.26
    F*0.5572.161.011.831.991.092.592.081.083.091.661.14
    U2.004.661.2011.83.261.0215.42.021.046.161.571.02
    La2242.981.031922.041.0049.02.511.0016.63.361.01
    Ce5182.741.011022.101.0239.93.971.0013.23.761.00
    Pr72.92.551.0131.32.591.008.122.941.012.574.111.01
    Nd3351.541.031362.151.0432.72.771.0111.54.131.01
    Sm59.64.081.0225.53.301.035.963.931.032.102.911.02
    Gd41.24.791.0227.14.061.017.133.850.802.112.201.02
    Dy18.93.681.1126.43.791.037.323.651.071.933.431.01
    Y65.94.021.012982.841.0290.52.071.0115.03.061.01
    注:表中带“*”成分的测定平均值单位为10-2,其他成分的测定平均值单位为10-6
    下载: 导出CSV

    表 4  长期稳定性检验结果

    Table 4.  Analytical results of the long-term stability test

    元素G-1G-2G-3G-4
    平均值b1t0.05×s(b1)平均值b1t0.05×s(b1)平均值b1t0.05×s(b1)平均值b1t0.05×s(b1)
    P2O5*10.60.00130.007218.60.00120.001327.50.00040.013539.50.00080.0110
    SiO2*29.7-0.00380.01312.820.00040.010111.10.00010.00961.590.00180.0031
    TFe2O3*15.10.00310.01370.689-0.00070.00120.559-0.00010.00150.1650.00020.0004
    CaO*24.1-0.00300.009040.80.00280.018243.50.00010.003554.10.00600.0222
    MgO*6.61-0.000040.006510.1-0.00090.01133.420.00120.00300.447-0.00010.0006
    TiO2*1.79-0.00040.00170.0220.00010.00030.0410.000070.00040.0810.000180.00019
    MnO*0.1430.00010.00040.0650.00010.00010.036-0.000010.00010.002-0.000020.00004
    K2O*2.53-0.000010.00370.0990.000050.00010.479-0.00080.00150.1720.00010.0002
    Na2O*0.4310.00050.00100.093-0.000010.00020.2740.00030.00090.1-0.00010.0003
    SrO*0.2550.000120.000140.0540.000010.00010.0960.000040.00020.0540.00010.0002
    S*0.454-0.00070.00330.040.00020.00030.1380.00050.00180.0480.00020.0004
    F*0.58-0.00020.00081.780.00230.00442.530.00160.00933.130.00510.0104
    U2.19-0.00010.004411.70.00580.033615.6-0.00030.00146.090.00010.0029
    La2240.13900.26221910.10940.186249.30.09000.141216.60.01010.0162
    Ce5260.13470.3563103-0.03220.100440.2-0.06940.101413.6-0.01160.0127
    Pr73.60.02640.051430.40.01130.05868.1-0.00220.01782.570.00350.0078
    Nd3370.03810.2649136-0.06220.088033.30.00570.033111.60.01230.0296
    Sm57.3-0.02160.147624.2-0.00010.03116.10.00120.01372.09-0.00020.0033
    Gd41.5-0.00860.094528.4-0.02430.08577.17-0.00060.02382.020.00050.0016
    Dy19.2-0.01250.057727.4-0.03900.06187.490.00660.02611.950.00080.0059
    Y64.60.04860.12382940.03540.197990.7-0.10260.166914.7-0.01770.0544
    注:表中带“*”成分的测定平均值单位为10-2,其他成分的测定平均值单位为10-6
    下载: 导出CSV

    表 5  磷矿石各元素定值分析方法

    Table 5.  Analytical methods of elements in phosphate rock samples

    元素分析方法
    LaICP-MS
    CeICP-MS
    PrICP-MS
    NdICP-MS
    SmICP-MS
    EuICP-MS
    GdICP-MS
    TbICP-MS
    DyICP-MS
    HoICP-MS
    ErICP-MS
    TmICP-MS
    YbICP-MS
    LuICP-MS
    YICP-MS
    IICP-MS, COL
    AsAFS
    CrICP-MS,ICP-OES
    SCOV,GR,CS
    SiO2GR,COV,COL,ICP-OES
    Al2O3COV,COL,ICP-OES
    TFe2O3COV,COL,ICP-OES,FAAS
    MgOCOV,ICP-OES,FAAS
    CaOCOV,ICP-OES
    Na2OICP-OES,FAAS
    K2OICP-OES,FAAS
    TiO2ICP-OES,COL
    MnOICP-MS,ICP-OES,FAAS
    P2O5GR,COV,COL,ICP-OES
    SrOICP-MS,ICP-OES
    BaOICP-MS,ICP-OES
    VICP-MS,ICP-OES
    CdICP-MS,GAAS
    PbICP-MS,ICP-OES
    UICP-MS,ICP-OES
    FISE,IC
    CO2COV,CS
    注:ICP-MS—电感耦合等离子体质谱法;ICP-OES—电感耦合等离子体发射光谱法;FAAS—火焰原子吸收光谱法;GAAS—石墨炉原子吸收光谱法;AFS—原子荧光光谱法;XRF—X射线荧光光谱法;CS—高频红外吸收光谱法;COL—比色法;COV—容量法;GR—重量法;ISE—离子选择电极法;IC—离子色谱法。
    下载: 导出CSV

    表 6  磷矿石标准物质的标准值及扩展不确定度

    Table 6.  Certified values and expanded uncertainty of the phosphate rock standard samples

    元素标准值与扩展不确定度
    G-1G-2G-3G-4
    P2O5*10.57±0.1218.91±0.1027.78±0.1639.40±0.22
    SiO2*29.70±0.202.92±0.1310.64±0.201.55±0.07
    TFe2O3*15.32±0.180.705±0.0150.548±0.0190.180±0.01
    CaO*24.13±0.241.41±0.2843.50±0.0553.27±0.40
    MgO*6.68±0.110.10±0.143.49±0.070.437±0.009
    Al2O3*5.58±0.140.293±0.0051.33±0.040.685±0.015
    K2O*2.49±0.050.099±0.0030.513±0.0170.156±0.007
    Na2O*0.427±0.0160.096±0.0060.283±0.0110.111±0.006
    TiO2*1.79±0.030.022±0.0040.042±0.0050.079±0.004
    MnO*0.148±0.0050.069±0.0030.034±0.0020.002±0.001
    F*0.569±0.0181.78±0.072.64±0.133.24±0.19
    S*0.438±0.040-0.0430.150±0.0240.046±0.008
    CO2*0.717±0.04023.42±0.408.48±0.11-1.53
    SrO*0.252±0.0050.055±0.0020.091±0.0030.056±0.002
    As0.58±0.0612.2±0.512.4±0.51.72±0.15
    Cr28.5±1.37.50±0.8023.7±0.920.4±1.6
    I0.27±0.021.80±0.2222.1±0.80.94±0.16
    BaO1024±9979±10951±1329.7±1.2
    V331±127.83±0.2917.4±0.516.2±0.4
    Cd0.29±0.030.28±0.030.13±0.01-0.023
    Pb37.5±1.7283±958.3±1.96.48±0.50
    U2.17±0.1312.3±0.416.3±0.56.51±0.18
    La224±6189±349.7±1.916.3±0.6
    Ce511±10106±243.2±1.513.4±0.5
    Pr72.8±1.031.9±0.77.75±0.232.55±0.10
    Nd333±5139±333.6±1.011.3±0.5
    Sm59.6±2.024.8±0.75.89±0.192.15±0.06
    Eu14.6±0.75.69±0.141.30±0.070.93±0.04
    Gd41.3±1.527.3±1.27.10±0.402.13±0.03
    Tb4.72±0.274.50±0.221.16±0.070.35±0.02
    Dy19.3±1.126.6±1.37.35±0.401.94±0.10
    Ho2.67±0.145.60±0.221.71±0.100.39±0.03
    Er5.97±0.0415.0±0.64.79±0.201.02±0.06
    Tm0.64±0.041.92±0.080.63±0.030.15±0.01
    Yb3.35±0.129.36±0.403.13±0.150.74±0.05
    Lu0.43±0.031.13±0.060.40±0.020.094±0.007
    Y67.1±2.0297±794.2±2.015.5±0.7
    下载: 导出CSV
  • [1]

    温婧. 中国磷矿资源类型和潜力分析[D]. 北京: 中国地质大学(北京), 2011.

    Wen J.The Type and Potential Analysis of Phosphorite Resources in China[D].Beijing:China University of Geosciences (Beijing), 2011.

    [2]

    Steiner G, Geissler B, Watson I, et al.Efficiency deve-lopments in phosphate rock mining over the last three decades[J].Resources, Conservation and Recycling, 2015, 105:235-245. doi: 10.1016/j.resconrec.2015.10.004

    [3]

    张苏江, 夏浩东, 唐文龙, 等.中国磷矿资源现状分析及可持续发展建议[J].中国矿业, 2014, 23(2):8-13. http://d.g.wanfangdata.com.cn/Periodical_zgky2014z2003.aspx

    Zhang S J, Xia H D, Tang W L, et al.Current status and sustainable development of phosphorite resources in China[J].China Mining Magazine, 2014, 23(2):8-13. http://d.g.wanfangdata.com.cn/Periodical_zgky2014z2003.aspx

    [4]

    韩豫川, 夏学惠, 肖荣阁, 等.中国磷矿床[M].北京:地质出版社, 2012.

    Han Y C, Xia X H, Xiao R G, et al.Chinese Phosphate Deposit[M].Beijing:Geological Publishing House, 2012.

    [5]

    靳利飞, 周海东.中国磷矿资源开发利用形势分析及可持续发展对策研究[J].中国人口·资源与环境, 2016, 26(5):417-420. http://www.cqvip.com/QK/97796X/2016S1/90718290504849548349494848.html

    Jin L F, Zhou H D.Research on exploitation and utilization and sustainable development of phosphate resources in China[J].China Population, Resources and Environment, 2016, 26(5):417-420. http://www.cqvip.com/QK/97796X/2016S1/90718290504849548349494848.html

    [6]

    鄢正华.我国磷矿资源开发利用综述[J].矿冶, 2011, 20(3):21-25. http://www.doc88.com/p-1744328130409.html

    Yan Z H.Review of development and utilization of phosphate resources in China[J].Mining Metallugry, 2011, 20(3):21-25. http://www.doc88.com/p-1744328130409.html

    [7]

    李维, 高辉, 罗英杰, 等.国内外磷矿资源利用现状、趋势分析及对策建议[J].中国矿业, 2015, 24(6):6-10. http://www.docin.com/p-1595152609.html

    Li W, Gao H, Luo Y J, et al.Status, trends and suggestions of phosphorus ore resources at home and abroad[J].China Mining Magazine, 2015, 24(6):6-10. http://www.docin.com/p-1595152609.html

    [8]

    王毅民, 王晓红, 高玉淑, 等.中国地质标准物质制备技术与方法研究进展[J]地质通报, 2010, 29(7):1090-1104. http://www.wenkuxiazai.com/doc/760d5502a8114431b90dd81f.html

    Wang Y M, Wang X H, Gao Y S, et al.Advances in preparing techniques for geochemical reference materials in China[J].Geological Bulletin of China, 2010, 29(7):1090-1104. http://www.wenkuxiazai.com/doc/760d5502a8114431b90dd81f.html

    [9]

    Jochum K P, Weis U, Schwager B, et al.Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalystical Research, 2016, 40(3):333-350. doi: 10.1111/ggr.2016.40.issue-3

    [10]

    Weis U, Schwager B, Nohl U, et al.Geostandards and geoanalystical research bibliographic review 2015[J].Geostandards and Geoanalystical Research, 2016, 40(4):599-601. doi: 10.1111/ggr.2016.40.issue-4

    [11]

    张苏江, 易锦俊, 孔令湖, 等.中国磷矿资源现状及磷矿国家级实物地质资料筛选[J].无机盐工业, 2016, 48(2):1-5. http://mall.cnki.net/magazine/Article/WJYG201602001.htm

    Zhang S J, Yi J J, Kong L H, et al.Current status of phosphorite-ore resources in China and screening for national-class physical geological data of phopshorite[J].Inorganic Chemicals Industry, 2016, 48(2):1-5. http://mall.cnki.net/magazine/Article/WJYG201602001.htm

    [12]

    Zhang P.Comprehensive recovery and sustainable deve-lopment of phosphate resources[J].Procedia Engi-neering, 2014, 83:37-51. doi: 10.1016/j.proeng.2014.09.010

    [13]

    Ramos S J, Dinali G S, De Carvalho T S, et al.Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America:Content, signature, and crystalline phases[J].Journal of Geochemical Exploration, 2016, 168:177-186. doi: 10.1016/j.gexplo.2016.06.009

    [14]

    冯安生, 曹飞, 吕振福.我国磷矿资源综合利用水平调查与评价[J].矿产保护与利用, 2017(2):13-17. http://d.wanfangdata.com.cn/Periodical/kcbhyly201702003

    Feng A S, Cao F, Lü Z F.Investigation and evaluation of comprehensive utilization level of phosphate ore resources in China[J].Conservation and Utilization of Mineral Resources, 2017(2):13-17. http://d.wanfangdata.com.cn/Periodical/kcbhyly201702003

    [15]

    田侠.我国磷矿资源综合评价与政策建议[J].中国国土资源经济, 2016, 29(8):29-31. http://www.cqvip.com/QK/96321X/201608/669779717.html

    Tian X.Comprehensive evaluation and policy recommenda-tion on mining resource of phosphorus in China[J].Natural Resource Economics of China, 2016, 29(8):29-31. http://www.cqvip.com/QK/96321X/201608/669779717.html

    [16]

    Botha A, Ellison S, Linsinger T, et al.Outline for the re-vision of ISO Guide 35[J].Accreditation and Quality Assurance, 2013, 18:115-118. doi: 10.1007/s00769-012-0940-0

    [17]

    宋丽华, 郝原芳, 杨柳, 等.地质标准物质的研制方法[J].地质与资源, 2013, 22(5):419-421.

    Song L H, Hao Y F, Yang L, et al.Preparation on method of geochemical reference materials[J]. Geology and Resources, 2013, 22(5):419-421.

    [18]

    袁建, 王亚平, 许春雪.湖泊沉积物中磷形态标准质研制[J].岩矿测试, 2014, 33(6):857-862. http://www.ykcs.ac.cn/article/id/a784bf12-0c30-4de9-aae0-25d7ec262f34

    Yuan J, Wang Y P, Xu C X.Preparation of phosphorus speciation reference materials from lake sediments[J].Rock and Mineral Analysis, 2014, 33(6):857-862. http://www.ykcs.ac.cn/article/id/a784bf12-0c30-4de9-aae0-25d7ec262f34

    [19]

    中国实验室国家认可委员会.化学分析中不确定度的评估指南[M].北京:中国计量出版社, 2002.

    China National Accreditation Board for Laboratories.Guide to Uncertainty Evaluation in Chemistry Analysis[M].Beijing:Chinese Metrology Press, 2002.

    [20]

    杨理勤.常量金标准物质标准值的不确定度评定方法[J].黄金, 2015, 36(9):80-82. doi: 10.11792/hj20150919

    Yang L Q.Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J].Gold, 2015, 36(9):80-82. doi: 10.11792/hj20150919

    [21]

    郑存江.地质标准物质不确定度评估方法初探[J].岩矿测试, 2005, 24(4):284-286. http://www.ykcs.ac.cn/article/id/ykcs_20050495

    Zheng C J.Primary investigation for evaluation of uncertainty of geological reference materials[J]. Rock and Mineral Analysis, 2005, 24(4):284-286. http://www.ykcs.ac.cn/article/id/ykcs_20050495

    [22]

    刘瑱, 马玲, 时晓露, 等.石英岩化学成分分析标准物质研制[J].岩矿测试, 2014, 33(6):849-856. http://www.ykcs.ac.cn/article/id/74ac358c-aa50-4a0a-8458-a048d0116e75

    Liu Z, Ma L, Shi X L, et al.Preparation of quartzite reference materials for chemical composition analysis[J].Rock and Mineral Analysis, 2014, 33(6):849-856. http://www.ykcs.ac.cn/article/id/74ac358c-aa50-4a0a-8458-a048d0116e75

  • 加载中

(6)

计量
  • 文章访问数:  4045
  • PDF下载数:  111
  • 施引文献:  0
出版历程
收稿日期:  2017-05-17
修回日期:  2017-09-08
录用日期:  2017-10-20

目录