Quantitative Evaluation Method of HPMI Pore-throat Distribution Based on NMR Calibration
-
摘要: 孔喉分布是控制低渗-致密砂岩储层物性的关键因素,其评价依托于各种储层微观特征测试方法,需要综合多方法各自优势进行孔喉分布定量表征。本文提出基于核磁共振标定的高压压汞孔喉分布定量评价的方法,即通过核磁共振离心前后横向弛豫时间T2谱图对比,依据流体赋存状态重新划分三孔隙度组分百分比法的T2值界限T21和T22,对应将孔喉划分为束缚流体孔喉、过渡流体孔喉和可动流体孔喉,再结合T2值与孔喉半径的关系将T2值界限转化为孔喉半径界限r1和r2,最终依据高压压汞统计的不同流体赋存状态的孔喉含量S1、S2和S3进行孔喉分布定量评价。该方法综合了核磁共振有效表征孔喉流体赋存状态和高压压汞有效表征孔喉大小的优势。将此方法应用于西湖凹陷花港组低渗-致密砂岩储层孔喉分布评价,建立了T2值与孔喉半径平均转化系数C为0.0079,求取r1和r2为60 nm和160 nm,依据各类孔喉含量及其相互关系将孔喉分布划分为四类,从而为储层评价提供新的参数和思路。
-
关键词:
- 核磁共振 /
- 三孔隙度组分百分比法 /
- T2截止值 /
- 高压压汞 /
- 孔喉分布
Abstract: Pore throat distribution is an important factor controlling the physical properties of low-permeability and tight sandstone reservoirs. The evaluation of pore throat distribution is based on the analytical methods of micro features of reservoirs, and it is necessary to synthesize multiple methods to quantify the pore throat distribution. Quantitative evaluation method of High Pressure Mercury Injection (HPMI) pore throat distribution was developed based on Nuclear Magnetic Resonance (NMR) calibration. Fluid states can be identified by the comparison of transverse relaxation time T2 spectrum before and after centrifugation, which enables the redefining of T2 boundaries (T21 and T22) of three pore components of NMR. Furthermore, pore throat is divided into irreducible fluid pore throat, transition fluid pore throat and movable fluid pore throat accordingly. T2 boundaries are then converted to pore throat radius boundaries r1 and r2 by the correlativity between T2 value and pore throat radius. Finally, pore throat distribution is evaluated quantitatively by statistics of the content of various types of pore throat (S1, S2 and S3). This method combines the advantages of HPMI describing fluid states and NMR characterizing pore throat size. The method was applied to evaluate the pore throat distribution of low-permeability and tight sandstone reservoirs in the Huagang Formation of Xihu Depression. The average conversion coefficient C between T2 value and pore throat radius is 0.0079, and pore throat radius boundaries r1 and r2 are 60 nm and 160 nm, respectively. Pore throat is classified into four types according to the content of various types of pore throat, which provides new parameters and thought for further reservoirs evaluation. -
-
[1] 毕明威, 陈世悦, 周兆华, 等.鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J].天然气地球科学, 2015, 26(10):1851-1861. doi: 10.11764/j.issn.1672-1926.2015.10.1851
Bi M W, Chen S Y, Zhou Z H, et al.Characteristics and significance of microscopic pore structure in tight sandstone reservoir of the 8th Member of Lower Shihezi Formation in the Su6 area of Sulige Gasfield[J].Natural Gas Geoscience, 2015, 26(10):1851-1861. doi: 10.11764/j.issn.1672-1926.2015.10.1851
[2] 罗静兰, 刘新社, 付晓燕, 等.岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响:以鄂尔多斯盆地上古生界盒8天然气储层为例[J].地球科学——中国地质大学学报, 2014, 39(5):537-545. http://www.doc88.com/p-2445313976797.html
Luo J L, Liu X S, Fu X Y, et al.Impact of petrologic components and their diagenetic evolution on tight sandstone reservoir quality and gas yield:A case study from He 8 Gas-bearing reservoir of upper paleozoic in Northern Ordos Basin[J].Earth Science-Journal of China University of Geosciences, 2014, 39(5):537-545. http://www.doc88.com/p-2445313976797.html
[3] 赖锦, 王贵文, 柴毓, 等.致密砂岩储层孔隙结构成因机理分析及定量评价——以鄂尔多斯盆地姬塬地区长8油层组为例[J].地质学报, 2014, 88(11):2119-2130. http://d.wanfangdata.com.cn/Periodical/dizhixb201411009
Lai J, Wang G W, Chai Y, et al.Mechanism analysis and quantitative assessment of pore structure for tight sandstone reservoirs:An example from Chang 8 oil layer in the Jiyuan area of Ordos Basin[J].Acta Geologica Sinica, 2014, 88(11):2119-2130. http://d.wanfangdata.com.cn/Periodical/dizhixb201411009
[4] 何文祥, 杨乐, 马超亚, 等.特低渗透储层微观孔隙结构参数对渗流行为的影响——以鄂尔多斯盆地长6储层为例[J].天然气地球科学, 2011, 22(3):477-482. http://d.wanfangdata.com.cn/Periodical/trqdqkx201103014
He W X, Yang L, Ma C Y, et al.Effect of micro-pore structure parameter on seepage characteristics in ultra-low permeability reservoir:A case from Chang 6 reservoir of Ordos Basin[J]. Natural Gas Geoscience, 2011, 22(3):477-482. http://d.wanfangdata.com.cn/Periodical/trqdqkx201103014
[5] 刘曦翔, 丁晓琪, 王嘉, 等.砂岩成分对储层孔隙结构及天然气富集程度的影响——以苏里格气田西区二叠系石盒子组8段为例[J].天然气工业, 2016, 36(7):27-32. http://d.wanfangdata.com.cn/Periodical/trqgy201607004
Liu X X, Ding X Q, Wang J, et al.Influence of sandstone composition on pore structures and gas enrichment degree:A case study on the 8th member of Permian Shihezi Fm in the Western Sulige gas field, Ordos Basin[J].Natural Gas Industry, 2016, 36(7):27-32. http://d.wanfangdata.com.cn/Periodical/trqgy201607004
[6] Sakhaee-Pour A, Bryant S L.Effect of pore structure on the producibility of tight-gas sandstones[J].AAPG Bulletin, 2014, 98(4):663-694. doi: 10.1306/08011312078
[7] 蔡芃睿, 王春连, 刘成林, 等.运用扫描电镜和压汞法研究江汉盆地古新统-白垩系砂岩储层孔喉结构及定量参数特征[J].岩矿测试, 2017, 36(2):146-155. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.008
Cai P R, Wang C L, Liu C L, et al.Study on pore structure and quantitative parameters of the Paleocene-Cretaceous sandstone reservoir in Jiangling Depression by SEM and mercury injection method[J].Rock and Mineral Analysis, 2017, 36(2):146-155. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.008
[8] 庞河清, 曾焱, 刘成川, 等.基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构[J].岩矿测试, 2017, 36(1):66-74. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.010
Pang H Q, Zeng Y, Liu C C, et al.Investigation of pore structure of a argillaceous rocks reservoir in the 5th Member of Xujiahe Formation in Western Sichuan, using NAM, NMR and AIP-FESEM[J].Rock and Mineral Analysis, 2017, 36(1):66-74. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.010
[9] Desbois G, Urai J L, Hemes S, et al.Multi-scale analysis of porosity in diagenetically altered reservoir sandstone from the Permian Rotliegend (Germany)[J].Journal of Petroleum Science & Engineering, 2016, 24(2):128-148. https://www.sciencedirect.com/science/article/pii/S0920410516300195
[10] 张冲, 张超谟, 张占松, 等.致密气储层岩心束缚水`饱和度实验对比[J].天然气地球科学, 2016, 27(2):352-358. doi: 10.11764/j.issn.16721926.2016.02.0352
Zhang C, Zhang C M, Zhang Z S, et al.Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J].Natural Gas Geoscience, 2016, 27(2):352-358. doi: 10.11764/j.issn.16721926.2016.02.0352
[11] 白松涛, 程道解, 万金彬, 等.砂岩岩石核磁共振T2谱定量表征[J].石油学报, 2016, 37(3):382-391. doi: 10.7623/syxb201603010
Bai S T, Cheng D J, Wan J B, et al.Quantitative characterization of sandstone NMR T2 spectrum[J].Acta Petrolei Sinica, 2016, 37(3):382-391. doi: 10.7623/syxb201603010
[12] 窦文超, 刘洛夫, 吴康军, 等.基于压汞实验研究低渗储层孔隙结构及其对渗透率的影响——以鄂尔多斯盆地西南部三叠系延长组长7储层为例[J].地质论评, 2016, 62(2):502-511. http://www.doc88.com/p-2304567875854.html
Dou W C, Liu L F, Wu K J, et al.Pore structure characteristics and its effect on permeability by mercury injection measurement:An example from Triassic Chang-7 reservoir, Southwest Ordos Basin[J].Geological Review, 2016, 62(2):502-511. http://www.doc88.com/p-2304567875854.html
[13] 刘卫, 肖忠祥, 杨思玉, 等.利用核磁共振(NMR)测井资料评价储层孔隙结构方法的对比研究[J].石油地球物理勘探, 2009, 44(6):773-778. http://www.wenkuxiazai.com/doc/c3ca52c6ff00bed5b9f31de8.html
Liu W, Xiao Z X, Yang S Y, et al.Comparative studies on methods of evaluation of reservoir pore structure by using NMR (nuclear magnetic resonance) well logging data[J].Oil Geophysical Prospecting, 2009, 44(6):773-778. http://www.wenkuxiazai.com/doc/c3ca52c6ff00bed5b9f31de8.html
[14] 王振华, 陈刚, 李书恒, 等.核磁共振岩心实验分析在低孔渗储层评价中的应用[J].石油实验地质, 2014, 36(6):773-779. doi: 10.11781/sysydz201406773
Wang Z H, Chen G, Li S H, et al.Application of NMR core experimental analysis in evaluation of low-porosity and low-permeability sandstone reservoirs[J].Petroleum Geology & Experiment, 2014, 36(6):773-779. doi: 10.11781/sysydz201406773
[15] 邹才能, 朱如凯, 吴松涛, 等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报, 2012, 33(2):173-187. doi: 10.7623/syxb201202001
Zou C N, Zhu R K, Wu S T, et al.Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica, 2012, 33(2):173-187. doi: 10.7623/syxb201202001
[16] 肖亮, 肖忠祥.核磁共振测井T2cutoff确定方法及适用性分析[J].地球物理学进展, 2008, 23(1):167-171. http://www.cqvip.com/QK/98047X/200801/26825177.html
Xiao L, Xiao Z X.Analysis of methods for determining NMR T2cutoff and its applicability[J].Progress in Geophysics, 2008, 23(1):167-171. http://www.cqvip.com/QK/98047X/200801/26825177.html
[17] 何雨丹, 毛志强, 肖立志, 等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报, 2005, 48(2):373-378. https://es.scribd.com/document/265808204/I
He Y D, Mao Z Q, Xiao L Z, et al.An improved method of using NMR T2 distribution to evaluate pore size distribution[J].Chinese Journal of Geophysics, 2005, 48(2):373-378. https://es.scribd.com/document/265808204/I
[18] 李爱芬, 任晓霞, 王桂娟, 等.核磁共振研究致密砂岩孔隙结构的方法及应用[J].中国石油大学学报(自然科学版), 2015, 39(6):92-98. http://d.wanfangdata.com.cn/Periodical/sydxxb201506012
Li A F, Ren X X, Wang G J, et al.Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method[J].Journal of China University of Petroleum (Natural Science), 2015, 39(6):92-98. http://d.wanfangdata.com.cn/Periodical/sydxxb201506012
[19] 李军, 金武军, 王亮, 等.利用核磁共振技术确定有机孔与无机孔孔径分布——以四川盆地涪陵地区志留系龙马溪组页岩气储层为例[J].石油与天然气地质, 2016, 37(1):129-134. doi: 10.11743/ogg20160118
Li J, Jin W J, Wang L, et al.Quantitative evaluation of organic and inorganic pore size distribution by NMR:A case from the Silurian Longmaxi Formation gas shale in Fuling area, Sichuan Basin[J].Oil & Gas Geology, 2016, 37(1):129-134. doi: 10.11743/ogg20160118
[20] 周尚文, 刘洪林, 闫刚, 等.中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J].石油与天然气地质, 2016, 37(4):612-616. doi: 10.11743/ogg20160420
Zhou S W, Liu H L, Yan G, et al.NMR research of movable fluid and T2 cutoff of marine shale in South China[J].Oil & Gas Geology, 2016, 37(4):612-616. doi: 10.11743/ogg20160420
-