中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素

周伟, 曾梦, 王健, 张磊, 李迎春. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113
引用本文: 周伟, 曾梦, 王健, 张磊, 李迎春. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113
Wei ZHOU, Meng ZENG, Jian WANG, Lei ZHANG, Ying-chun LI. Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113
Citation: Wei ZHOU, Meng ZENG, Jian WANG, Lei ZHANG, Ying-chun LI. Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113

熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素

  • 基金项目:
    中国地质调查局地质调查工作项目(DD20179152)
详细信息
    作者简介: 周伟, 工程师, 从事X射线荧光光谱分析和化学分析工作研究。E-mail:zhouwei@cags.ac.cn
    通讯作者: 李迎春, 高级工程师, 从事X射线荧光光谱分析方法研究。E-mail:liyingchun@cags.ac.cn
  • 中图分类号: O614.33;O657.31

Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

More Information
  • 应用熔融制样-X射线荧光光谱法(XRF)分析矿石样品具有定量准确、试剂用量少、重现性好等优点,但由于目前稀土标准物质较少,不能满足复杂稀土矿石类样品的准确定量要求。本文采用配置人工标准样品,解决了现有稀土标准物质较少的问题,加入高纯稀土氧化物La2O3、CeO2、Y2O3扩展了La、Ce、Y的线性范围,利用人工标准样品和现有稀土标准物质、碳酸盐标准物质制作工作曲线,建立了XRF测定稀土矿石、矿化样品中25种主量元素和稀土元素的分析方法。针对主量元素采用理论α系数法校准,稀土元素采用经验系数法校准,对有谱线重叠的元素进行干扰校正,使绝大多数主量元素的相对标准偏差(RSD,n=13)小于1.5%,稀土元素含量在300μg/g以上时RSD(n=13)在0.69%~6.94%之间。通过未知样品考核,主量元素、稀土元素和烧失量的加和结果为99.41%~100.63%,满足《地质矿产实验室测试质量管理规范》的一级标准。
  • 加载中
  • 表 1  仪器分析条件

    Table 1.  Working conditions of the elements by XRF

    元素及谱线 分晶体 准直器
    (μm)
    探测器 电压
    (kV)
    电流
    (mA)
    2θ(°) PHD范围
    峰值 背景1 背景2
    Si Kα PE 002 550 FL 32 100 109.14 -2.3160 1.7938 26~76
    K Kα LiF 200 150 FL 32 100 136.73 -1.1730 2.2190 26~74
    Ti Kα LiF 200 150 FL 40 90 86.215 -0.6320 0.8640 26~75
    Mn Kα LiF 200 150 DUP 55 66 62.998 -0.7190 0.7868 13~72
    Na Kα PX1 550 FL 32 100 27.895 -1.8910 2.1214 22~82
    Mg Kα PX1 550 FL 32 100 23.077 -1.8760 2.1788 20~78
    Al Kα PE 002 550 FL 32 100 144.98 2.9372 -1.2490 21~76
    P Kα Ge 111 550 FL 32 100 141.02 -1.3960 2.8040 23~78
    S Kα Ge 111 550 FL 32 100 110.74 -1.5160 1.4708 16~74
    Ca Kα LiF 200 150 FL 32 100 113.16 -0.8730 1.6258 28~70
    Fe Kα LiF 200 150 DUP 55 66 57.530 -0.7130 0.8854 16~69
    Cr Kα LiF 200 150 DUP 55 66 69.365 -0.6450 0.7386 12~73
    Ni Kα LiF 200 150 DUP 55 66 48.658 -0.5890 0.8294 18~70
    Y Kα LiF 200 150 SC 55 66 23.767 0.7668 -0.7400 23~78
    Rb Kα LiF 200 150 SC 55 66 26.581 0.7720 -0.5110 22~78
    Sr Kα LiF 200 150 SC 55 66 25.121 -0.5610 0.7542 22~78
    Zr Kα LiF 200 150 SC 55 66 22.470 -0.7750 0.8758 24~78
    Nb Kα LiF 200 150 SC 55 66 21.372 -0.5870 0.4690 24~78
    Cu Kα LiF 200 150 DUP 55 66 45.010 -0.6960 0.9256 20~69
    Zn Kα LiF 200 150 SC 55 66 41.796 -0.7050 0.6534 15~78
    Ba Kα LiF 200 150 FL 40 90 87.204 0.6376 - 33~71
    Rh Kαc LiF 200 150 SC 55 66 18.447 - - 26~78
    V Kα LiF 200 150 DUP 40 90 76.929 -0.6230 - 15~74
    Br Kα LiF 200 150 SC 55 66 29.940 -0.6830 0.9706 20~78
    La Lα LiF 200 150 FL 40 90 82.938 -0.9010 24~78
    Ce Lα LiF 200 150 DUP 40 90 79.047 -0.8740 - 26~78
    Pr Lα LiF 200 150 DUP 55 66 75.379 -0.8580 - 15~74
    Nd Lα LiF 200 150 DUP 55 66 72.141 -0.9860 - 13~74
    Sm Lα LiF 200 150 DUP 55 66 66.237 0.9598 - 15~73
    Tb Lα LiF 200 150 DUP 55 66 58.800 0.3626 - 15~72
    Dy Lα LiF 200 150 DUP 55 66 56.600 -0.8020 - 15~71
    Ho Lα LiF 200 150 DUP 55 66 54.575 -0.6550 - 16~71
    Er Lα LiF 200 150 DUP 55 66 52.605 0.7728 - 17~71
    Yb Lα LiF 200 150 DUP 55 66 49.038 0.8474 - 18~70
    Lu Lα LiF 200 150 DUP 55 66 47.417 -0.4030 - 19~70
    Ta Lα LiF 200 150 DUP 55 66 44.403 0.9066 - 20~69
    Eu Lα LiF 200 150 DUP 55 66 63.591 0.4858 - 15~73
    Gd Lα LiF 200 150 DUP 55 66 61.115 -0.8880 - 15~72
    注: FL为流气式正比计数器, SC为闪烁计数器。DUP为流气式正比计数器和封闭式正比计数器串联使用,以提高探测效率。PHD为脉冲高度分析器。
    下载: 导出CSV

    表 2  人工标准样品的配制

    Table 2.  Preparation of artificial standard samples

    人工标准样品编号 La2O3加入量
    (g)
    CeO2加入量
    (g)
    Y2O3加入量
    (g)
    国家标准物质编号 标准物质称样量
    (g)
    HC-XT-1 0.0400 0.0500 - GBW07159 0.5600
    HC-XT-2 0.0300 0.0400 - GBW07160 0.5800
    HC-XT-3 0.0200 0.0300 - GBW07187 0.6000
    HC-XT-4 0.0100 0.0200 - GBW07158 0.6200
    HC-XT-5 - 0.0100 - GBW07188 0.6400
    HC-XT-6 - - - GBW07187 0.3250
    HC-XT-7 - - 0.0200 GBW07188 0.3250
    HC-XT-8 0.0050 0.0050 - GBW07161 0.6300
    GBW07188 0.6400
    下载: 导出CSV

    表 3  各元素工作曲线浓度范围

    Table 3.  Working range of elements concentration

    主量元素 含量范围(%) 稀土元素 含量范围(μg/g)
    SiO2 0.3~74.55 Pr6O11 5.43~890
    Al2O3 0.1~19.04 Sm2O3 13.53~2000
    TFe2O3 0.07~3.49 Eu2O3 0.31~75
    FeO 0.007~0.49 Gd2O3 27.91~2500
    TiO2 0.003~0.537 Tb4O7 5.15~550
    CaO 0.0224~55.49 Dy2O3 26.04~3700
    Na2O 0.014~0.66 Tm2O3 2.29~310
    MnO 0.004~0.1 Yb2O3 13.45~2100
    P2O5 0.0022~0.124 La2O3* 0.002~6.16
    MgO 0.066~20.15 CeO2* 0.0022~7.69
    K2O 0.01~5.52 Y2O3* 0.017~3.2
    Nd2O3* 0.0024~0.4
    Lu2O3 1.91~300
    Ho2O3 5.44~640
    Er2O3 15.26~2000
    Σ RExOy* 0.085~13.92
    注:标记“*”的元素含量单位为%。
    下载: 导出CSV

    表 4  稀土元素的重叠谱线和影响元素

    Table 4.  Overlapping spectral lines and influencing elements of rare earth elements

    待测元素 重叠谱线 校正基体元素
    Y Rb Kβ1 Al,Si,Ba,Sr,Ni,Cr,Fe,Ca
    La Cs Lβ1 Si,Fe,Nd
    Nd Ce Lβ1 La,Sm,Al
    Ce Ba Lβ2 -
    Sm Ce Lβ2 -
    Tb Sm Lβ1 La,Ce
    Ho Gd Lβ1 Er,Yb
    Er Tb Lβ1,Co Kα La,Ce,Fe
    Yb Ni Kα Y
    Lu Dy Lβ2,Ni Kβ1 La
    Pr La Lβ1 La,Ce
    Eu - La,Ce
    Gd Ce Lγ1 La,Nd,Dy
    P Y Lβ1 -
    下载: 导出CSV

    表 5  分析元素的检出限

    Table 5.  Detection limits of elements

    元素 方法检出限
    (μg/g)
    Na2O 56.44
    MgO 44.34
    Al2O3 15.82
    SiO2 96.03
    P2O5 18.59
    K2O 25.36
    CaO 30.37
    TiO2 20.04
    MnO 8.32
    Fe2O3 6.69
    Y2O3 4.52
    La2O3 42.6
    Nd2O3 52.85
    Sm2O3 42.74
    CeO2 38.11
    Tb4O7 44.83
    Dy2O3 39.23
    Ho2O3 8.86
    Er2O3 27.19
    Yb2O3 30.10
    Lu2O3 13.41
    Pr6O11 58.19
    Eu2O3 6.14
    Gd2O3 29.25
    下载: 导出CSV

    表 6  方法准确度和精密度

    Table 6.  Accuracy and precision tests of the method

    元素 GBW07188 HC-XT-8
    测定平均值
    (%)
    标准值
    (%)
    相对误差
    (%)
    RSD
    (%)
    测定平均值
    (%)
    标准值
    (%)
    相对误差
    (%)
    RSD
    (%)
    Na2O 0.62 0.66 5.30 2.35 0.121 0.156 3.54 5.45
    MgO 0.13 0.11 11.82 4.07 0.074 0.076 25.0 4.37
    Al2O3 13.8 14.26 2.52 0.27 14.51 14.47 2.14 0.213
    SiO2 66.8 66.9 0.01 0.19 73.5 73.4 0.15 0.17
    K2O 5.56 5.52 1.09 0.32 4.861 4.9 0.86 0.27
    CaO 0.29 0.29 0.69 1.40 0.021 0.026 2.80 16.3
    TiO2 0.18 0.17 4.12 1.09 0.034 0.022 3.59 7.07
    MnO 0.05 0.052 7.69 1.40 0.017 0.017 7.84 2.89
    Fe2O3 2.28 2.24 2.05 0.30 1.13 1.13 1.90 0.14
    Y2O3 2.14 2.16 0.93 0.71 0.054 0.056 1.78 0.98
    La2O3 0.21 0.23 7.83 1.64 0.768 0.771 8.85 0.49
    Nd2O3 0.41 0.4 2.50 0.88 0.003 0.003 5.57 69.5
    Sm2O3* 2006 2000 0.05 2.92 30 15.5 3.40 34.7
    CeO2 0.0619 0.053 26.42 5.39 0.728 0.771 2.26 2.30
    Tb4O7* 652 550 16.55 6.94 7.93 8.07 24.17 46.2
    Dy2O3* 3645 3700 2.38 0.69 未检出 55.4 6.64 -
    Ho2O3* 655 640 5.16 2.05 10.8 11.8 7.30 26.9
    Er2O3* 1989 2000 1.95 1.94 25.45 35.8 13.71 38.8
    Lu2O3* 306 300 5.60 4.13 2.57 5.4 1.02 48.1
    Pr6O11* 863 890 8.58 5.40 99.5 6.2 18.49 55.2
    Yb2O3* 2063 2100 2.72 0.79 13.55 36 8.95 33.0
    Gd2O3* 2536 2500 0.80 1.16 111.9 31.9 7.47 13.4
    加和 99.8 - - 0.12 99.6 - - 0.14
    注:标记“*”的元素含量单位为μg/g。
    下载: 导出CSV

    表 7  全分析加和结果

    Table 7.  Analytical results of sam additivity

    标准物质和样品编号 烧失量
    主量元素和稀土元素测定值(%) 加和
    (%)
    GBW07187 5.42 94.51 99.93
    GBW07188 5.53 94.36 99.89
    GBW07158 6.73 93.00 99.73
    GBW07159 3.70 96.39 100.09
    GBW07160 3.77 96.08 99.85
    GBW07161 6.80 92.61 99.41
    HC-XT-1 3.19 96.58 99.77
    HC-XT-2 3.36 96.18 99.55
    HC-XT-3 5.00 94.90 99.90
    HC-XT-4 6.42 93.21 99.63
    HC-XT-5 5.35 94.52 99.87
    HC-XT-6 5.43 94.70 100.13
    HC-XT-7 6.59 93.00 99.59
    HC-XT-8 3.64 95.93 99.57
    GX-TC-F2 7.48 93.15 100.63
    GX-TC-F4 5.38 94.76 100.14
    GX-DB-F1 5.85 94.27 100.12
    GX-DB-F2 6.02 94.59 100.61
    GX-DB-F3 3.55 96.55 100.10
    GX-DB-F4 3.57 96.29 99.86
    GX-DB-F5 3.65 96.53 100.18
    XF-WX-F3 7.13 93.28 100.41
    下载: 导出CSV
  • [1]

    Simandl G J.Geology and market-dependent significance of rare earth element resources[J].Mineralium Deposita, 2014, 49(8):889-904. doi: 10.1007/s00126-014-0546-z

    [2]

    Jordens A, Cheng Y P, Waters K E.A review of the beneficiation of rare earth element bearing minerals[J].Minerals Engineering, 2013, 41(1):97-114. http://www.sciencedirect.com/science/article/pii/S0892687512003597

    [3]

    Simandl G J, Fajber R, Paradis S.Portable X-ray fluore-scence in the assessment of rare earth element-enriched sedimentary phosphate deposits[J].Geochemistry Exploration Environment Analysis, 2014, 14(2):161-169. doi: 10.1144/geochem2012-180

    [4]

    Xie F, Zhang T A, Dreisinger D, et al.A critical review on solvent extraction of rare earths from aqueous solutions[J].Minerals Engineering, 2014, 56(2):10-28. http://www.sciencedirect.com/science/article/pii/S0892687513003452

    [5]

    李小莉, 张勤.粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J].冶金分析, 2013, 33(7):35-40. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yjfx201307007

    Li X L, Zhang Q.Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7):35-40. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yjfx201307007

    [6]

    张文娟, 谢玲君, 刘鸿.ICP-AES法测定氟碳铈矿中低含量稀土总量[J].有色金属科学与工程, 2016, 7(6):141-146. http://www.cnki.com.cn/Article/CJFDTOTAL-WYJK201304025.htm

    Zhang W J, Xie L J, Liu H.Determination of low content total rare earth in bastnaesite by ICP-AES[J].Nonferrous Metals Science and Engineering, 2016, 7(6):141-146. http://www.cnki.com.cn/Article/CJFDTOTAL-WYJK201304025.htm

    [7]

    罗立强, 詹秀春, 李国会.X射线荧光光谱仪[M].北京:化学工业出版社, 2008.

    Luo L Q, Zhan X C, Li G H.X-ray Fluorescence Spectrometer[M].Beijing:Chemical Industry Press, 2008.

    [8]

    Claisse F, Blanchette J S B(著). 卓尚军(译). 硼酸盐熔融的物理与化学[M]. 上海: 华东理工大学出版社, 2006.

    Claisse F, Blanchette J S B (Authors). Zhuo S J (Translator). Physics and Chemistry of Borate Melting[M]. Shanghai: East China University of Science and Technology Press, 2006.

    [9]

    Parra L M M, Greaves E D, Paz J L, et al.Simultaneous determination of rare earths by X-ray fluorescence spectrometry using a fundamental parameters method[J].X-Ray Spectrometry, 1993, 22(5):362-367. doi: 10.1002/(ISSN)1097-4539

    [10]

    黄肇敏, 周素莲.X射线荧光光谱法测定混合稀土氧化物中稀土分量[J].光谱学与光谱分析, 2007, 27(9):1873-1877. http://www.cqvip.com/QK/92500X/199501/1728536.html

    Huang Z M, Zhou S L.Method for determination of RE2O3 by X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2007, 27(9):1873-1877. http://www.cqvip.com/QK/92500X/199501/1728536.html

    [11]

    李可及, 肖颖.熔融制样-X射线荧光光谱法测定氟碳铈矿流程样品[J].稀土, 2016, 37(2):144-148. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKX902.009.htm

    Li K J, Xiao Y.Determination of bastnaesite process samples by fusion X-ray fluorescence spectrometry[J].Chinese Rare Earths, 2016, 37(2):144-148. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKX902.009.htm

    [12]

    Legkodymov A A, Kuper K E, Nazmov V P, et al.Applying hard X-rays to determination of the minimum detection levels of rare earth element by the XRFA-SR method[J].Bulletin of the Russian Academy of Sciences Physics, 2015, 79(1):103-108. doi: 10.3103/S1062873815010207

    [13]

    于丽丽, 汤玉河, 肖飞燕, 等.X射线荧光光谱无标定量测定稀土矿石中五氧化二磷[J].冶金分析, 2017, 37(1):57-60. http://mall.cnki.net/magazine/Article/YKCS200301008.htm

    Yu L L, Tang Y H, Xiao F Y, et al.Determination of phosphorus pentoxide in rare earth ore by X-ray fluorescence spectrometry coupled with standard-less quantitative analysis[J].Metallurgical Analysis, 2017, 37(1):57-60. http://mall.cnki.net/magazine/Article/YKCS200301008.htm

    [14]

    冯丽丽, 张庆建, 丁仕兵, 等.X射线荧光光谱法测定锆矿中10种主次成分[J].冶金分析, 2014, 34(7):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201309010.htm

    Feng L L, Zhang Q J, Ding S B, et al.Determination of ten major and minor components in zirconium ore by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2014, 34(7):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201309010.htm

    [15]

    罗学辉, 苏建芝, 汤宇磊, 等.高倍稀释熔融制样-X射线荧光光谱法测定镍矿石中主次成分[J].冶金分析, 2017, 37(9):52-56. http://mall.cnki.net/magazine/Article/YKCS201306013.htm

    Luo X H, Su J Z, Tang Y L, et al.Determination of major and minor components in nickel ore by X-ray fluorescence spectrometry with fusion sample preparation of high dilution[J].Metallurgical Analysis, 2017, 37(9):52-56. http://mall.cnki.net/magazine/Article/YKCS201306013.htm

    [16]

    李迎春, 周伟, 王健, 等.X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J].岩矿测试, 2013, 32(2):249-253. http://www.ykcs.ac.cn/article/id/f412011b-a4d7-44cf-9fbd-966d4bfe8191

    Li Y C, Zhou W, Wang J, et al.Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2013, 32(2):249-253. http://www.ykcs.ac.cn/article/id/f412011b-a4d7-44cf-9fbd-966d4bfe8191

    [17]

    沈亚婷, 李迎春, 孙梦荷, 等.波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J].光谱学与光谱分析, 2017, 37(7):2216-2224. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract9888.shtml

    Shen Y T, Li Y C, Sun M H, et al.Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2216-2224. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract9888.shtml

    [18]

    李国会, 李小莉.X射线荧光光谱分析熔融法制样的系统研究[J].冶金分析, 2015, 35(7):1-9. http://www.cqvip.com/QK/90283X/201507

    Li G H, Li X L.Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J].Metallurgical Analysis, 2015, 35(7):1-9. http://www.cqvip.com/QK/90283X/201507

    [19]

    詹秀春, 陈永君, 郑妙子, 等.地质样品X射线荧光分析中的背景相关曲线及其应用[J].岩矿测试, 2003, 22(3):161-164. http://www.ykcs.ac.cn/article/id/ykcs_20030342

    Zhan X C, Chen Y J, Zheng M Z, et al.Background-related curve in the X-ray fluorescence spectrometric analysis of geological materials and its application[J].Rock and Mineral Analysis, 2003, 22(3):161-164. http://www.ykcs.ac.cn/article/id/ykcs_20030342

  • 加载中

(7)

计量
  • 文章访问数:  3050
  • PDF下载数:  131
  • 施引文献:  0
出版历程
收稿日期:  2017-04-10
修回日期:  2018-01-09
录用日期:  2018-05-07

目录