Study on Analytical Method for Pore Size Distribution of the Lower Cambrian Niutitang Formation Shale in Southeastern Chongqing
-
摘要: 低温氮气吸附法已普遍用于评价页岩的孔隙结构,但是文献中报道的脱气温度和脱气时间等测试条件不尽相同,此外测试结果中经常出现滞后环不闭合的情况,严重影响了孔径分布等结构参数测试的准确性。为了评价和探索有效的页岩孔径分布测试方法,本文选取渝科1井下寒武统牛蹄塘组黑色页岩,重点研究应用低温氮气吸附法分析其孔径分布的测试条件,系统探讨了样品质量、脱气温度、升温速率和脱气时间对测试结果的影响,通过进一步优化参数建立了可靠的孔径分布测试方法,并成功用于测定其他页岩样品。结果表明:吸附-脱附等温线呈反C型,属于Brunauer等提出的BDDT等温吸附曲线分类中的V型,滞后环完全闭合,属于IUPAC分类中的H4型,对应狭窄的狭缝型孔隙,说明此类页岩中除了含有峰值孔径主要集中在3.5~4.5 nm的中孔和一定数量的大孔外,还存在大量微孔。研究认为脱气温度是影响测试结果的主要因素。该研究是页岩孔径分布测试方法的一项补充,为我国页岩气的深入研究提供了关键参数支持。Abstract:
BACKGROUND The low-temperature nitrogen (N2) adsorption-desorption method has been widely used to evaluate the pore structure of shale, however, the different analytical conditions such as degassing temperature and degassing time were reported in the literature. In addition, closure of the hysteresis loop often occurs in the test results, which seriously affects the accuracy of the structural parameters such as pore size distribution. BAOBJECTIVES To evaluate and explore an effective method for measuring pore size distribution in shale, using the black shales from the Department of Chongqing 1 well Lower Cambrian Niutitang Formation. METHODS Measurement conditions using low-temperature N2 adsorption method to analyze the shale pore size distribution. The effects of sample weight, degassing temperature, heating rate, and degassing time on the analytical results were systematically discussed. A reliable measurement method of pore size distribution is established by further optimizing the parameters, which has been successfully used in the determination of other shale samples. RESULTS The results show that the isothermal adsorption-desorption curves of the samples are inverse C type, which belong to the V type of BDDT isotherm adsorption curve proposed by Brunauer et al. The hysteresis loops belong to the H4 type in the IUPAC classification, which corresponds to the narrow slit-like pores, indicating that there are a large number of micropores in the shale, in addition to the mesopores with a peak pore size concentrating at 3.5-4.5 nm and a certain number of macropores. CONCLUSIONS Degassing temperature is the main factor affecting the analytical results. This study complements the exploration on the testing method of pore size distribution in shale and provides the key parameters for further study of shale gas in China. -
-
表 1 正交试验设计方案
Table 1. Scheme of orthogonal experimental design
实验编号 单因素 样品质量
(g)脱气温度
(℃)升温速率
(℃/min)脱气时间
(h)ZJ-1 0.6 200 5 6 ZJ-2 1.2 250 10 6 ZJ-3 2.4 300 15 6 ZJ-4 2.4 200 10 12 ZJ-5 0.6 250 15 12 ZJ-6 1.2 300 5 12 ZJ-7 1.2 200 15 24 ZJ-8 2.4 250 5 24 ZJ-9 0.6 300 10 24 表 2 不同单因素条件下页岩样品孔隙结构参数
Table 2. Pore structure parameters of shale samples under different single factor condition
实验编号 比表面积
(m2/g)孔体积
(cm3/g)平均孔径
(nm)ZL-1 0.441 0.01535 139.2 ZL-2 0.477 0.005011 41.98 ZL-3 0.810 0.005624 27.76 ZL-4 0.773 0.006160 31.89 ZL-5 0.696 0.007107 40.83 WD-1 0.641 0.006061 37.84 WD-2 0.789 0.007738 39.24 WD-3 0.881 0.006713 30.48 WD-4 0.890 0.006132 27.55 WD-5 0.973 0.006388 26.26 WD-6 1.212 0.007743 25.55 WD-7 1.549 0.006645 17.16 SR-1 1.078 0.006056 22.46 SR-2 1.092 0.006391 23.42 SR-3 1.089 0.006536 24.00 SR-4 1.014 0.006739 26.98 SR-5 1.013 0.005889 23.25 SJ-1 0.826 0.005910 28.63 SJ-2 0.804 0.008909 44.35 SJ-3 0.825 0.007739 37.53 SJ-4 0.842 0.005521 26.24 SJ-5 0.842 0.007381 35.06 表 3 正交试验吸附-脱附等温线数据
Table 3. Isotherm data of adsorption-desorption for orthogonal test
ZJ-1 ZJ-2 ZJ-3 ZJ-4 ZJ-5 ZJ-6 ZJ-7 ZJ-8 ZJ-9 相对压力
(P/P0)吸附量
(cm3/g)相对压力
(P/P0)吸附量
(cm3/g)相对压力
(P/P0)吸附量
(cm3/g)相对压力
(P/P0)吸附量
(cm3/g)相对压力
(P/P0)吸附量
(cm3/g)相对压力
(P/P0)吸附量
(cm3/g)相对压力
(P/P0)吸附量
(cm3/g)相对压力
(P/P0)吸附量
(cm3/g)相对压力
(P/P0)吸附量
(cm3/g)0.00510 0.07080 0.00504 0.11036 0.00523 0.12230 0.00505 0.09129 0.00506 0.08887 0.00515 0.12973 0.00509 0.08927 0.00506 0.1206 0.00502 0.14496 0.05758 0.12999 0.05646 0.18864 0.05732 0.20511 0.05779 0.16088 0.05748 0.15892 0.05637 0.21209 0.05666 0.15515 0.05759 0.20208 0.05713 0.23249 0.11025 0.15791 0.10967 0.22721 0.11056 0.24766 0.10893 0.19454 0.11022 0.18545 0.10952 0.25302 0.10985 0.18318 0.10878 0.23964 0.11016 0.26578 0.16246 0.17821 0.16219 0.25615 0.16137 0.27699 0.16145 0.22184 0.16265 0.20067 0.16225 0.28970 0.16233 0.20350 0.16130 0.27017 0.16248 0.29025 0.21487 0.19112 0.21446 0.28426 0.21377 0.30316 0.21404 0.24604 0.21476 0.22399 0.21396 0.31963 0.21467 0.22145 0.21381 0.29762 0.21487 0.30559 0.26704 0.20253 0.26669 0.30809 0.26580 0.33433 0.26632 0.26868 0.26717 0.22863 0.26666 0.35022 0.26688 0.23797 0.26616 0.32207 0.26709 0.32101 0.31936 0.21175 0.31921 0.33158 0.31820 0.36171 0.31834 0.28950 0.31936 0.23898 0.31916 0.37740 0.31919 0.25285 0.31835 0.34644 0.31937 0.33771 0.37179 0.21848 0.37130 0.35161 0.37047 0.38841 0.37096 0.31028 0.37161 0.24803 0.37047 0.40405 0.37143 0.26656 0.37067 0.37029 0.37151 0.36067 0.42367 0.23513 0.42366 0.37252 0.42276 0.41483 0.42296 0.33194 0.42411 0.25888 0.42871 0.52544 0.42359 0.28410 0.42283 0.39462 0.42396 0.36665 0.47597 0.24484 0.47569 0.39389 0.47664 0.44643 0.47551 0.35568 0.47610 0.27376 0.47618 0.55557 0.47588 0.30114 0.47502 0.42031 0.47620 0.37277 0.52867 0.25137 0.52831 0.41456 0.52864 0.48064 0.52743 0.37988 0.52843 0.28091 0.52796 0.58042 0.52817 0.31685 0.52760 0.44660 0.52826 0.39446 0.58063 0.25923 0.58037 0.43802 0.58105 0.51283 0.57984 0.40637 0.58052 0.30372 0.58021 0.61932 0.58197 0.41894 0.58106 0.47866 0.58059 0.40741 0.63285 0.27328 0.63234 0.46486 0.63297 0.55250 0.63404 0.43710 0.63300 0.31616 0.63193 0.65684 0.63308 0.44499 0.63309 0.51908 0.63272 0.43392 0.68530 0.28659 0.68475 0.50467 0.68531 0.59494 0.68566 0.47297 0.68483 0.35214 0.68658 0.70441 0.68535 0.47650 0.68548 0.59319 0.68485 0.46478 0.73697 0.33288 0.73793 0.55359 0.73701 0.64339 0.73865 0.51817 0.73674 0.41964 0.73877 0.76395 0.73796 0.51952 0.73759 0.63521 0.73713 0.49139 0.78951 0.37628 0.79043 0.61599 0.79034 0.71617 0.78938 0.57668 0.78910 0.46815 0.78977 0.84600 0.79037 0.55506 0.78922 0.69493 0.78891 0.55700 0.84333 0.44848 0.84156 0.70295 0.84265 0.81286 0.84235 0.68420 0.84287 0.54837 0.84184 0.94125 0.84247 0.63203 0.84236 0.79320 0.84279 0.63125 0.89445 0.57843 0.89432 0.86052 0.89458 0.97425 0.89353 0.83900 0.89430 0.70355 0.89435 1.11543 0.89546 0.79355 0.89411 0.92811 0.89444 0.76803 0.94704 0.92090 0.94645 1.23936 0.94845 1.37014 0.94619 1.19972 0.94640 1.03886 0.94684 1.47133 0.94617 1.17104 0.94703 1.23435 0.94694 1.11099 0.99842 8.63043 0.99825 10.30235 0.99744 8.13867 0.99796 5.89653 1.00123 4.89185 0.99822 11.89341 0.99949 6.63186 0.99750 12.3956 0.99894 31.79646 0.99835 8.56781 0.99809 10.26169 1.00078 8.13194 0.99730 5.88492 0.99830 4.67749 0.99789 11.89141 0.99706 6.63153 0.99650 12.37882 1.00035 31.70020 0.94384 1.14995 0.94267 1.49753 0.94307 1.64334 0.94490 1.42962 0.94757 1.33499 0.94210 1.76752 0.94065 1.42561 0.94460 1.66995 0.93903 1.52304 0.89436 0.82310 0.89535 1.14954 0.89684 1.30388 0.89513 1.05974 0.89471 0.98192 0.89545 1.41562 0.89364 1.10685 0.89479 1.28345 0.89651 1.24871 0.84229 0.67627 0.84275 0.97152 0.84218 1.11136 0.84316 0.89018 0.84128 0.85479 0.84215 1.23163 0.84131 0.94420 0.84174 1.10554 0.84498 1.08511 0.78993 0.58929 0.78991 0.8691 0.79086 1.00354 0.79024 0.78977 0.78908 0.78255 0.78926 1.13412 0.78899 0.85041 0.79059 0.99789 0.79186 0.98633 0.73701 0.53773 0.73727 0.80090 0.73775 0.92363 0.73683 0.71826 0.73651 0.71927 0.73735 1.05576 0.73626 0.79755 0.73761 0.91386 0.73743 0.91739 0.68421 0.54986 0.68496 0.75000 0.68498 0.86383 0.68644 0.66705 0.68503 0.67198 0.68494 0.99399 0.68421 0.75046 0.68478 0.85098 0.68351 0.86679 0.63208 0.53129 0.63239 0.70638 0.63226 0.82331 0.63335 0.62278 0.63480 0.64889 0.63184 0.93688 0.63357 0.70520 0.63306 0.79747 0.63310 0.82854 0.58171 0.50953 0.58031 0.67161 0.58023 0.78111 0.58100 0.58419 0.57982 0.63831 0.57964 0.88493 0.57928 0.67141 0.58004 0.75392 0.58121 0.82452 0.52928 0.48837 0.52785 0.64918 0.52744 0.74148 0.52817 0.56110 0.52986 0.60641 0.52860 0.85399 0.52751 0.64155 0.52902 0.71859 0.52862 0.79750 0.47512 0.39432 0.47682 0.54238 0.47676 0.61047 0.47703 0.46058 0.47725 0.49540 0.47672 0.71585 0.47670 0.52594 0.47545 0.57554 0.47621 0.65009 0.42337 0.35592 0.42297 0.47339 0.42388 0.53837 0.42451 0.40596 0.42382 0.44091 0.42409 0.62686 0.42292 0.47364 0.42370 0.51232 0.42389 0.57128 0.37149 0.34266 0.37032 0.44424 0.37049 0.50311 0.37115 0.37989 0.37047 0.43382 0.37154 0.58383 0.37029 0.44111 0.37191 0.47596 0.37121 0.54043 0.31875 0.32863 0.31970 0.42013 0.31921 0.47764 0.31873 0.35644 0.31887 0.41725 0.31890 0.54461 0.31998 0.41138 0.31810 0.44343 0.31909 0.51056 0.26657 0.31301 0.26676 0.39625 0.26736 0.44988 0.26635 0.33278 0.26695 0.39354 0.26642 0.50514 0.26731 0.39003 0.26571 0.41226 0.26616 0.48297 0.21377 0.29756 0.21452 0.37110 0.21449 0.41988 0.21369 0.30842 0.21449 0.36812 0.21383 0.47206 0.21525 0.37355 0.21411 0.38516 0.21382 0.46409 0.16151 0.27705 0.16179 0.34426 0.16182 0.38772 0.16121 0.28295 0.16176 0.33747 0.16146 0.42997 0.16209 0.33616 0.16100 0.35096 0.16301 0.43228 0.10878 0.25278 0.10895 0.31235 0.10950 0.35235 0.10877 0.25381 0.10885 0.30435 0.10876 0.38485 0.10919 0.29616 0.11001 0.31452 0.11064 0.39100 0.05653 0.22406 0.05684 0.27361 0.05732 0.30823 0.05690 0.21775 0.05691 0.26497 0.05681 0.33014 0.05689 0.24884 0.05772 0.26842 0.05782 0.33895 0.00473 0.15180 0.00480 0.18524 0.00499 0.21097 0.00496 0.14048 0.00466 0.17266 0.00492 0.22366 0.00469 0.15878 0.00485 0.17018 0.00489 0.22263 表 4 页岩样品的正交试验孔隙结构参数
Table 4. Pore structure parameters of shale samples by orthogonal test
参数 ZJ-1 ZJ-2 ZJ-3 ZJ-4 ZJ-5 ZJ-6 ZJ-7 ZJ-8 ZJ-9 比表面积(m2/g) 0.677 1.009 1.089 0.881 0.807 1.143 0.777 1.054 1.080 孔体积(cm3/g) 0.01338 0.01598 0.01261 0.009143 0.007585 0.01844 0.01028 0.01922 0.04916 平均孔径(nm) 79.12 63.35 46.32 41.49 39.04 64.52 52.92 72.95 182.0 -
[1] Yin Y, Qu Z G, Zhang J F.An analytical model for shale gas transport in kerogen nanopores coupled with real gas effect and surface diffusion[J].Fuel, 2017, 210:569-577. doi: 10.1016/j.fuel.2017.09.018
[2] Wang P, Jiang Z, Ji W, et al.Heterogeneity of intergra-nular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China:Evidence from SEM digital images and fractal and multifractal geometries[J].Marine and Petroleum Geology, 2016, 72:122-138. doi: 10.1016/j.marpetgeo.2016.01.020
[3] Tian H, Pan L, Zhang T, et al.Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China[J].Marine and Petroleum Geology, 2015, 62:28-43. doi: 10.1016/j.marpetgeo.2015.01.004
[4] Jiao K, Yao S, Liu C, et al.The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing:An example from the lower Silurian Longmaxi shale, Upper Yangtze region, China[J].International Journal of Coal Geology, 2014, 128-129:1-11. doi: 10.1016/j.coal.2014.03.004
[5] 王羽, 金婵, 汪丽华, 等.应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J].岩矿测试, 2015, 34(3):278-285. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.003
Wang Y, Jin C, Wang L H, et al.Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J].Rock and Mineral Analysis, 2015, 34(3):278-285. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.003
[6] Li A, Ding W, He J, et al.Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs:A case study of Lower Cambrian Qiongzhusi Formation in Malong block of Eastern Yunnan Province, South China[J].Marine and Petroleum Geology, 2016, 70:46-57. doi: 10.1016/j.marpetgeo.2015.11.004
[7] Liu J, Li P, Sun Z, et al.A new method for analysis of dual pore size distributions in shale using nitrogen adsorption measurements[J].Fuel, 2017, 210:446-454. doi: 10.1016/j.fuel.2017.08.067
[8] Ji W, Song Y, Rui Z, et al.Pore characterization of isolated organic matter from high matured gas shale reservoir[J].International Journal of Coal Geology, 2017, 174:31-40. doi: 10.1016/j.coal.2017.03.005
[9] Yang R, Hu Q, He S, et al.Pore structure, wettability and tracer migration in four leading shale formations in the Middle Yangtze Platform, China[J].Marine and Petroleum Geology, 2018, 89:415-427. doi: 10.1016/j.marpetgeo.2017.10.010
[10] Bahadur J, Radlinski A P, Melnichenko Y B, et al.Small-angle and ultrasmall-angle neutron scattering (SANS/USANS) study of New Albany shale:A treatise on microporosity[J].Energy and Fuels, 2015, 29(2):567-576. doi: 10.1021/ef502211w
[11] Labani M M, Rezaee R, Saeedi A, et al.Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry:A case study from the Perth and Canning Basins, Western Australia[J].Journal of Petroleum Science and Engineering, 2013, 112(3):7-16. http://www.sciencedirect.com/science/article/pii/S0920410513003197
[12] Chalmers G R, Bustin R M, Power I M.Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett, Wood-ford, Haynesville, Marcellus, and Doig units[J].AAPG Bulletin, 2012, 96(6):1099-1119. doi: 10.1306/10171111052
[13] Yang R, He S, Yi J, et al.Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin:Investigations using FE-SEM, gas adsorption and helium pycnometry[J].Marine and Petroleum Geology, 2016, 70:27-45. doi: 10.1016/j.marpetgeo.2015.11.019
[14] 解德录, 郭英海, 赵迪斐.基于低温氮实验的页岩吸附孔分形特征[J].煤炭学报, 2014, 39(12):2466-2472. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201412017
Xie D L, Guo Y H, Zhao D F.Fractal characteristics of adsorption pore of shale based on low temperature nitrogen experiment[J].Journal of China Coal Society, 2014, 39(12):2466-2472. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201412017
[15] Xiong J, Liu X, Liang L.Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China[J].Journal of Natural Gas Science and Engineering, 2015, 22:530-539. doi: 10.1016/j.jngse.2015.01.004
[16] Jiang Z, Zhang D, Zhao J, et al.Experimental investi-gation of the pore structure of Triassic terrestrial shale in the Yanchang Formation, Ordos Basin, China[J].Journal of Natural Gas Science and Engineering, 2017, 46:436-450. doi: 10.1016/j.jngse.2017.08.002
[17] Sun M, Yu B, Hu Q, et al.Pore characteristics of Longmaxi shale gas reservoir in the northwest of Guizhou, China:Investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm[J].International Journal of Coal Geology, 2017, 171:61-68. doi: 10.1016/j.coal.2016.12.004
[18] Liu K, Ostadhassan M, Zhou J, et al.Nanoscale pore structure characterization of the Bakken shale in the USA[J].Fuel, 2017, 209:567-578. doi: 10.1016/j.fuel.2017.08.034
[19] Hu H, Hao F, Lin J, et al.Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173:40-50. doi: 10.1016/j.coal.2017.02.004
[20] Wei Z, Wang Y, Wang G, et al.Pore characterization of organic-rich Late Permian Da-long Formation shale in the Sichuan Basin, Southwestern China[J].Fuel, 2018, 211:507-516. doi: 10.1016/j.fuel.2017.09.068
[21] Wang G, Ju Y.Organic shale micropore and mesopore structure characterization by ultra-low pressure N2 physisorption:Experimental procedure and interpretation model[J].Journal of Natural Gas Science and Engineering, 2015, 27:452-465. doi: 10.1016/j.jngse.2015.08.003
[22] Shao X, Pang X, Li Q, et al.Pore structure and fractal characteristics of organic-rich shales:A case study of the Lower Silurian Longmaxi shales in the Sichuan Basin, SW China[J].Marine and Petroleum Geology, 2017, 80:192-202. doi: 10.1016/j.marpetgeo.2016.11.025
[23] Chen Q, Kang Y, You L, et al.Change in composition and pore structure of Longmaxi black shale during oxidative dissolution[J].International Journal of Coal Geology, 2017, 172:95-111. doi: 10.1016/j.coal.2017.01.011
[24] Cao T T, Song Z G, Wang S B, et al.A comparative study of the specific surface area and pore structure of different shales and their kerogens[J].Science China Earth Sciences, 2015, 58(4):510-522. doi: 10.1007/s11430-014-5021-2
[25] Kuila U, Prasad M.Specific surface area and pore-size distribution in clays and shales[J].Geophysical Prospecting, 2013, 61(2):341-362. doi: 10.1111/gpr.2013.61.issue-2
[26] Li Y, Li X, Wang Y, et al.Effects of composition and pore structure on the reservoir gas capacity of Carboniferous shale from Qaidam Basin, China[J].Marine and Petroleum Geology, 2015, 62:44-57. doi: 10.1016/j.marpetgeo.2015.01.011
[27] 杨峰, 宁正福, 张世栋, 等.基于氮气吸附实验的页岩孔隙结构表征[J].天然气工业, 2013, 33(4):135-140. doi: 10.3787/j.issn.1000-0976.2013.04.025
Yang F, Ning Z F, Zhang S D, et al.Characterization of pore structures in shale through nitrogen adsorption experiment[J].Natural Gas Industry, 2013, 33(4):135-140. doi: 10.3787/j.issn.1000-0976.2013.04.025
[28] Jiang F, Chen D, Wang Z, et al.Pore characteristic analysis of a Lacustrine shale:A case study in the Ordos Basin, NW China[J].Marine & Petroleum Geology, 2016, 73:554-571. http://www.sciencedirect.com/science/article/pii/S0264817216300903
[29] 于炳松.页岩气储层孔隙分类与表征[J].地学前缘, 2013, 20(4):211-220. http://industry.wanfangdata.com.cn/dl/Detail/Conference?id=Conference_8681345
Yu B S.Classification and characterization of gas shale pore system[J].Earth Science Frontiers, 2013, 20(4):211-220. http://industry.wanfangdata.com.cn/dl/Detail/Conference?id=Conference_8681345
[30] Thommes M, Kaneko K, Neimark A V, et al.Physis-orption of gases, with special reference to the evaluation of surface area and pore size distribution[R].IUPAC Technical Report, 2015:1-19.
[31] Yang C, Zhang J, Wang X, et al.Nanoscale pore structure and fractal characteristics of marine-continental transitional shale:A case study from the Lower Permian Shanxi shale in the Southeastern Ordos Basin, China[J].Marine and Petroleum Geology, 2017, 88:54-68. doi: 10.1016/j.marpetgeo.2017.07.021
[32] Fu H, Wang X, Zhang L, et al.Investigation of the factors that control the development of pore structure in lacustrine shale:A case study of Block X in the Ordos Basin, China[J].Journal of Natural Gas Science & Engineering, 2015, 26:1422-1432. http://www.sciencedirect.com/science/article/pii/S1875510015300469
[33] Huang Y, Fan C, Han X, et al.A TGA-MS investigation of the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale[J].Oil Shale, 2016, 33(2):125-141. doi: 10.3176/oil.2016.2.03
[34] Kang Z, Zhao J, Yang D, et al.Study of the evolution of micron-scale pore structure in oil shale at different temperatures[J].Oil Shale, 2017, 34(1):42-54. doi: 10.3176/oil.2017.1.03
[35] 康毅力, 陈益滨, 李相臣, 等.页岩粒径对甲烷吸附性能影响[J].天然气地球科学, 2017, 28(2):272-279. doi: 10.11764/j.issn.1672-1926.2017.01.006
Kang Y L, Chen Y B, Li X C, et al.Effect of particle size on methane sorption capacity of shales[J].Nature Gas Geoscience, 2017, 28(2):272-279. doi: 10.11764/j.issn.1672-1926.2017.01.006
[36] Burgess C G V, Everett D H, Nuttall S.Adsorption hysteresis in porous materials[J].Pure and Applied Chemistry, 1989, 61(11):1845-1852. doi: 10.1351/pac198961111845
[37] Sigmund G, Hüffer T, Hofmann T, et al.Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature[J].Science of the Total Environment, 2016, 580:770-775. http://www.tandfonline.com/servlet/linkout?suffix=cit0189&dbid=8&doi=10.1080%2F10643389.2017.1421844&key=27964990
[38] Liang M, Wang Z, Gao L, et al.Evolution of pore structure in gas shale related to structural deformation[J].Fuel, 2017, 197:310-319. doi: 10.1016/j.fuel.2017.02.035
[39] Brunauer S, Deming L S, Deming W E, et al.On a theory of the van der Waals adsorption of gases[J].Journal of the American Chemical Society, 1940, 62(7):1723-1732. doi: 10.1021/ja01864a025
[40] Sing K S W, Everett D H, Haul W R A, et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J].Pure and Applied Chemistry, 1985, 57(4):603-619. doi: 10.1351/pac198557040603
[41] Tang X, Jiang Z, Li Z, et al.The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China[J].Journal of Natural Gas Science and Engineering, 2015, 23:464-473. doi: 10.1016/j.jngse.2015.02.031
[42] Fan C, Do D D, Nicholson D.On the hysteresis of argon adsorption in a uniform closed end slit pore[J].Journal of Colloid and Interface Science, 2013, 405(9):201-210. http://www.sciencedirect.com/science/article/pii/S0021979713004128
[43] Donaldson E C, Kendall R F, Baker B A, et al.Surface area measurement of geologic material[J].SPE Journal, 1975, 15(2):111-116. doi: 10.2118/4987-PA
[44] 陈生蓉, 帅琴, 高强, 等.基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究[J].岩矿测试, 2015, 34(6):636-642. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykcs201506005&dbname=CJFD&dbcode=CJFQ
Chen S R, Shuai Q, Gao Q, et al.Analysis of the pore structure of shale in Ordos Basin by SEM with nitrogen gas adsorption-desorption[J].Rock and Mineral Analysis, 2015, 34(6):636-642. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykcs201506005&dbname=CJFD&dbcode=CJFQ
[45] 王羽, 汪丽华, 王建强, 等.利用纳米CT研究石柱龙马溪组页岩有机孔三维结构特征[J].岩矿测试, 2017, 36(6):580-590. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykcs20171128001&dbname=CJFD&dbcode=CJFQ
Wang Y, Wang L H, Wang J Q, et al.Investigation of organic matter pore structures of Longmaxi Shale in Shizhu area in three dimensions using nano-CT[J].Rock and Mineral Analysis, 2017, 36(6):580-590. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykcs20171128001&dbname=CJFD&dbcode=CJFQ
[46] 聂海宽, 张金川, 马晓彬, 等.页岩等温吸附气含量负吸附现象初探[J].地学前缘, 2013, 20(6):282-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201306031
Nie H K, Zhang J C, Ma X B, et al.A preliminary study of negative adsorption phenomena of shale adsorption gas content by isothermal adsorption[J].Earth Science Frontiers, 2013, 20(6):282-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201306031
-