Determination of Trace Gold in Geochemical Samples by Flame Atomic Fluorescence Spectrometry with PUFP Separation and Enrichment
-
摘要: 火焰原子荧光光谱法(FAFS)测定痕量金的灵敏度好、稳定性高及线性范围广,但在测定时干扰极为严重,如果干扰元素不加以分离或扣除,对0.5ng/g以下金无法进行准确测定。本方法在传统泡塑分离富集金的基础上,研究了FAFS法测定痕量金的最佳条件:在选定仪器条件下,提出了选择低背景值(≤0.25ng/g Au)泡塑分离富集Au,采用3.0g/L硫脲-1%盐酸为解脱液可消除记忆效应,在标准系列中加入5μg/mL的Fe3+溶液扣除铁对测定金的干扰。采用本分析方法对国家标准物质GBW07805、GBW07242、GBW07244a、GBW07245a和GBW07247进行测定,相对误差≤4.7%,相对标准偏差(RSD)≤23.2%;采用FAFS法与ICP-MS法对90个原生晕样品和4个控制样品中痕量金同时进行测定,两组测定结果数统计分析的F检验值为1.23,相关系数为1.01,符合性较好,无显著性差异。本分析方法简便、快速与实用,金检出限为0.08ng/g,线性范围为0.08~500ng/g,可达3个数量级。Abstract:
BACKGROUNDThe detection sensitivity, stability, and linear range of Au using flame atomic fluorescence spectrometry (FAFS) is comparable to the method of inductivity coupled plasma-mass spectrometry (ICP-MS). When Au concentration is below 0.5ng/g, it is difficult to accurately determine Au if the interference elements in FAFS are not separated and eliminated. OBJECTIVESTo optimize the conditions during determination of trace Au by FAFS method. METHODSThe optimized conditions for trace Au detection using FAFS were provided based on the conventional Au separation and enrichment method of polyurethane foam plastics (PUFP). Using the thiourea (3.0g/L) and HCl (1%) as desorption solution can effectively eliminate the Au memory effect after separation by PUFP with low Au background value (≤ 0.25ng/g), and 5μg/mL of Fe3+ solution added into Au standard solutions was used to eliminate the interference during Au detection using FAFS. RESULTSThe method was used to analyze national standard materials GBW07805, GBW07242, GBW07244a, GBW07245a and GBW07247, which yielded the relative error (RE) and relative standard deviation (RSD) of less than 4.7% and 23.2%, respectively. The Au contents for 90 primary halo samples and 4 monitor samples were analyzed simultaneously using FAFS and ICP-MS. Results showed that no significant differences existed between the two methods with F=1.23 and the correlation coefficient of 1.01, which further proved the accuracy and reliability of FAFS. CONCLUSIONSFAFS is simple, convenient, fast and practical. Method detection limit of Au is as low as 0.08ng/g, and the linear range (0.08-500ng/g) is three orders of magnitude. -
-
表 1 不同元素对测定Au荧光强度的影响
Table 1. Effect of different elements on the fluorescence intensity of Au
元素 浓度
(μg/mL)荧光强度 Ca 80 4400 Mg 40 1740 Al 80 3830 Fe 80 2000 K 1000 350 Na 1000 350 Li 1000 350 Rb 1000 350 Cs 1000 350 Cr 200 3500 Ni 400 4150 Mn 400 3000 Co 200 2800 Cu 100 350 Pb 100 350 Zn 400 350 As 100 470 Sb 10 400 Bi 80 360 Hg 10 400 Se 10 1400 Ge 10 400 Ga 50 770 In 10 380 Te 100 350 P 100 600 B 20 350 Ag 100 863 Ba 80 420 Mo 100 470 W 100 670 Pt 100 2250 Pd 100 1450 Ir 100 1550 Ru 100 1800 Rh 100 4330 Sc 100 7000 Be 50 2120 Ta 10 640 La 40 1340 Sn 10 700 Tl 50 610 U 10 530 Ce 80 1300 V 100 1670 Y 40 2000 Zr 40 2000 Nb 500 8000 Re 1 400 Cd 10 530 注:元素Pt、Pd、Ru、Rh、Ir的测定介质为10%王水,As、Sb、Bi、Hg、Se为10%盐酸,Pb、Nb、Ta为5%硝酸,La、Ce、Sc、Be为5%盐酸,其他元素的测定介质均为水。 表 2 分离富集后测定液中的元素残留量
Table 2. Elemental residues after separation and enrichment
元素 加入量(μg) 残余量(μg) Ca 2000 1.01 Mg 2000 0.2 Al 2000 0.4 Be 50 0.15 Fe 400000 49 Cr 2000 0.075 Ni 2000 0.0045 Mn 2000 0.0075 Co 2000 ND Cu 500 ND Pb 500 ND P 100 ND Ba 500 ND Ag 100 0.0125 Mo 100 0.0025 W 100 ND Tl 50 50 U 100 ND V 500 0.0055 Re 50 0.455 Se 50 ND In 50 0.0101 Ga 50 0.0003 Th 50 0.005 Sn 100 0.003 Cd 50 0.0014 Pt 25 0.0104 Pd 25 0.0325 Ir 25 0.0311 Ru 25 0.0048 Rh 25 0.0004 Sc 100 0.0005 Nb 100 0.0005 Ta 100 0.0005 Zr 100 0.0006 Y 100 ND La 100 ND Ce 100 ND Nd 100 ND Sm 100 0.0006 Gd 100 ND Tb 100 ND Dy 100 ND Ho 100 ND Er 100 ND Tm 100 ND Yb 100 ND Lu 100 ND Ge 50 ND 注:ND为未检出,Fe元素为10次实验测定结果的最大值,其他元素为两次实验测定结果的平均值。 表 3 标准物质分析结果
Table 3. Measurement results of the standard materials
标准物质
编号Au测定值(ng/g) RSD
(%)Au认定值
(ng/g)相对误差
(%)分次测定值 平均值 GBW07242 0.5 0.61 0.6 0.5 23.2 0.5
(0.1)0 0.39 0.5 0.32 0.66 0.38 0.53 GBW07805 0.72 0.62 0.97 0.84 18 0.85
(0.04)-1.2 0.82 0.82 0.82 0.82 1.16 0.82 GBW07244a 4.68 4.6 5.46 4.86 17 5.1
(0.2)-4.7 4.35 4.08 4.23 6.67 5.34 4.35 GBW07245 9.61 10.1 10.3 10.1 6.2 10.5
(0.5)3.8 10 10.4 10.9 9 9.45 10.8 GBW07247 46 48 52 49 5.1 51
(1)-3.9 50 46 53 49 47 50 注:认定值中括号内数据为标准偏差值。 表 4 ICP-MS与FAFS测定Au数据比较
Table 4. Comparison of analytical results of Au determined by ICP-MS and FAFS
样品编号 Au测定值(ng/g) ICP-MS法 FAFS法 样品1 2.88 2.55 样品2 1.78 1.55 样品3 2.9 2.56 样品4 6.83 5.81 样品5 23.19 19.5 GBW07805b 0.85 0.61 样品6 25.22 20 样品7 20.52 16.6 样品8 11.1 9.32 样品9 9.15 7.66 样品10 3.85 3.24 样品11 2.48 2.23 样品12 8.93 7.51 样品13 1.82 1.71 GBW07244b 5.04 4.32 样品14 46.65 37.7 样品15 303.18 248 样品16 2.08 1.95 样品17 1.38 1.35 样品18 7.3 6.15 样品19 2.56 2.57 样品20 1.63 1.59 样品21 1.16 1.23 样品22 0.73 0.61 样品23 0.42 0.41 样品24 2.35 2.18 样品25 1.37 1.45 样品26 1.49 1.47 样品27 1.68 1.51 样品28 1.68 1.61 GBW07242a 0.47 0.4 样品29 0.26 0.52 样品30 0.46 0.46 样品31 0.28 0.36 样品32 5.13 4.54 样品33 0.22 0.31 样品34 0.64 0.8 样品35 0.42 0.58 样品36 0.51 0.63 样品37 0.21 0.44 样品38 0.13 0.28 样品39 0.18 0.3 样品40 0.25 0.38 样品41 0.13 0.18 样品42 0.45 0.41 GBW07243 1.43 1.27 样品43 0.33 0.34 样品44 0.17 0.19 样品45 0.53 0.53 样品46 0.42 0.42 样品47 0.15 0.3 样品48 0.11 0.22 GBW07805b 0.79 0.62 样品49 0.38 0.45 样品50 0.21 0.23 样品51 0.22 0.21 样品52 0.18 0.22 样品53 0.23 0.27 样品54 0.11 0.18 样品55 0.97 0.89 样品56 0.22 0.26 样品57 0.19 0.29 样品58 0.32 0.35 样品59 0.74 0.64 GBW07244b 4.93 5.3 样品60 0.78 0.83 样品61 0.5 0.56 样品62 0.99 0.92 样品63 1.64 1.28 样品64 1.15 1.03 样品65 1.14 1.03 样品66 1.55 0.6 样品67 0.79 0.89 样品68 0.46 0.56 GBW07242a 0.44 0.42 样品69 0.79 0.89 样品70 0.28 0.32 样品71 0.36 0.49 样品72 0.46 0.42 样品73 0.47 0.49 样品74 27.91 25.1 样品75 1.25 1.23 样品76 0.29 0.26 样品77 0.6 0.58 样品78 1.52 1.56 样品79 48.49 43 样品80 5.46 4.95 样品81 5.05 4.8 样品82 0.92 0.9 样品83 4.96 4.7 GBW07243 1.49 1.19 样品84 1.98 1.91 样品85 1.02 1.03 样品86 4.71 4.4 样品87 1287 1054 样品88 840 744 样品89 2143 1898 样品90 2068 1971 注:4个控制样品Au的认定值分别为:GBW07805b (0.87±0.07ng/g)、GBW07242a (0.5±0.1ng/g)、GBW07244b(5.1±0.2ng/g)、GBW07243(1.5±0.1ng/g)。 -
[1] Winefordner J D, Vickers T J.Atomic fluorescence spectrometry as a means of chemical analysis[J].Analytical Chemistry, 1964, 36(1):161-165. doi: 10.1021/ac60207a052
[2] Demers D R, Allemand C D.Atomic fluorescence spectrometry with an inductively coupled plasma as atomization cell and pulsed hollow cathode lamps for excitation[J].Analytical Chemistry, 1981, 53(12):1915-1921. doi: 10.1021/ac00235a044
[3] Montaser A, Fassel V A.Inductively coupled plasmas as atomization cells for atomic fluorescence spectrometry[J].Analytical Chemistry, 1976, 48(11):1490-1499. doi: 10.1021/ac50005a021
[4] Weeks S J, Haraguchi H, Winefordner J D.Improvement of detection limits in laser-excited atomic fluorescence flame spectrometry[J].Analytical Chemistry, 1978, 50(2):360-368. doi: 10.1021/ac50024a047
[5] Bolshov M A, Zybin A V, Smmirenkina I I.Atomic fluorescence spectrometry with laser excitation[J].Spectrochimica Acta, 1981, 36B(12):1143-1152. http://cn.bing.com/academic/profile?id=b51e21ede682630b891b64061f22f376&encoded=0&v=paper_preview&mkt=zh-cn
[6] 李刚, 胡斯宪, 陈琳玲.原子荧光光谱分析技术的创新与发展[J].岩矿测试, 2013, 32(3):358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003 http://www.ykcs.ac.cn/article/id/0c8cca2d-b0a6-46c7-be65-25f1c32a1e6b
Li G, Hu S X, Chen L L.Innovation and development for atomic fluorescence spectrometry analysis[J].Rock and Mineral Analysis, 2013, 32(3):358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003 http://www.ykcs.ac.cn/article/id/0c8cca2d-b0a6-46c7-be65-25f1c32a1e6b
[7] 《岩石矿物分析》编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:623-638.
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis(The Fourth Edition:Volume Ⅲ)[M].Beijing:Geological Press, 2011:623-638.
[8] 刘向磊, 文田耀, 孙文军, 等.聚氨酯泡塑富集硫脲解脱-石墨炉原子吸收光谱法测定地质样品中金铂[J].岩矿测试, 2013, 32(4):576-580. doi: 10.3969/j.issn.0254-5357.2013.04.010 http://www.ykcs.ac.cn/article/id/bffc2619-f4d4-436f-b10e-648818d62874
Liu X L, Wen T Y, Sun W J, et al.Determination of Au and Pt in geological samples by graphite furnace atomic absorption spectrometry with concentrate and extraction by foam plastics and thiourea[J].Rock and Mineral Analysis, 2013, 32(4):576-580. doi: 10.3969/j.issn.0254-5357.2013.04.010 http://www.ykcs.ac.cn/article/id/bffc2619-f4d4-436f-b10e-648818d62874
[9] 邢夏, 徐进力, 陈海杰, 等.抗坏血酸为基体改进剂石墨炉原子吸收光谱法测定金矿区植物样品中的痕量金[J].岩矿测试, 2015, 34(3):319-324. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.010
Xing X, Xu L J, Chen H J, et al.Determination of trace gold in plant samples from a gold mining mrea by graphite furnace atomic absorption spectrometry with ascorbic acid as the matrix modifier[J].Rock and Mineral Analysis, 2015, 34(3):319-324. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.010
[10] 陈景伟, 李玉明, 宋双喜, 等.载炭泡塑吸附-电感耦合等离子体发射光谱测定金矿石的金量[J].岩矿测试, 2015, 34(3):314-318. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.009
Chen J W, Li Y M, Song S X, et al.Determination of gold in gold ores by inductively coupled plasma-optical emission spectrometry with carbon-loaded foam flastic adsorption[J].Rock and Mineral Analysis, 2015, 34(3):314-318. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.009
[11] 魏轶, 窦向丽, 巨力佩, 等.四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑[J].岩矿测试, 2013, 32(5):715-718. doi: 10.3969/j.issn.0254-5357.2013.05.007 http://www.ykcs.ac.cn/article/id/393aaaac-cb25-48c2-9c09-81a82f1e1b97
Wei Y, Dou X L, Ju L P, et al.Determination of antimony in gold-antimony ore and antimony ore by inductively coupled plasma-atomic emission spectrometry with four acids dissolution[J].Rock and Mineral Analysis, 2013, 32(5):715-718. doi: 10.3969/j.issn.0254-5357.2013.05.007 http://www.ykcs.ac.cn/article/id/393aaaac-cb25-48c2-9c09-81a82f1e1b97
[12] 张翼明, 张立锋, 周凯红.电感耦合等离子体质谱法测定硫化矿中金[J].冶金分析, 2014, 34(12):44-47. http://d.old.wanfangdata.com.cn/Periodical/yjfx201412009
Zhang Y M, Zhang L F, Zhou K H.Determination of gold in sulphide ore by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2014, 34(12):44-47. http://d.old.wanfangdata.com.cn/Periodical/yjfx201412009
[13] 刘军, 闫红岭, 连文莉, 等.封闭溶矿-电感耦合等离子体质谱法测定地质样品中金银铂钯[J].冶金分析, 2016, 36(7):25-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607004
Liu J, Yan H L, Lian W L, et al.Determination of gold, silver, platinum and palladium in geological samples by inductively coupled plasma mass spectrometry with sealed dissolution[J].Metallurgical Analysis, 2016, 36(7):25-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607004
[14] 蒋建华, 马重光, 陈方伦.化学光谱法测定超痕量的金[J].岩矿测试, 1982, 1(2):48-52. http://www.ykcs.ac.cn/article/id/ykcs_19820219
Jiang J H, Ma C G, Chen F L.Determination of ultratrace of gold by chemical spectrographic method[J].Rock and Mineral Analysis, 1982, 1(2):48-52. http://www.ykcs.ac.cn/article/id/ykcs_19820219
[15] 谷晓霞, 郎存棵, 夏爱利.SK-800型原子荧光测金仪在黄金矿山的应用[J].黄金, 2002, 23(9):45-48. doi: 10.3969/j.issn.1001-1277.2002.09.013
Gu X X, Lang C K, Xia A L.Application of SK-800 atom fluorescence spectrometric gold analyzer in gold mine[J].Gold, 2002, 23(9):45-48. doi: 10.3969/j.issn.1001-1277.2002.09.013
[16] 刘德林, 高树林, 黄炼.火焰-原子荧光光谱法测定微量金的研究[J].黄金, 2011, 32(6):53-56. doi: 10.3969/j.issn.1001-1277.2011.06.014
Liu D L, Gao S L, Huang L.Study on detecting trace gold with flame atomic fluorescence spectrometry[J].Gold, 2011, 32(6):53-56. doi: 10.3969/j.issn.1001-1277.2011.06.014
[17] 熊昭春.聚氨酯泡沫塑料离富集之应用与进展综述[J].岩石矿物及测试, 1985, 4(4):278-283. http://www.cnki.com.cn/Article/CJFDTotal-YSKW198503016.htm
Xiong Z C.A summary of applications of polyurethane foam in separation and preconcentration techniques[J].Rock and Mineral Analysis, 1985, 4(4):278-283. http://www.cnki.com.cn/Article/CJFDTotal-YSKW198503016.htm
[18] 任英, 张晶玉, 张佩勋.分光光度法测定矿石中痕量金的富集方法的研究Ⅰ.泡沫塑料静态吸附解脱金的研究[J].分析化学, 1991, 19(5):588-590. http://www.cqvip.com/Main/Detail.aspx?id=477100
Ren Y, Zhang J Y, Zhang P X.Separation and preconcentration of trace gold in ores with polyurethane foam for spoctrophotometric determination Ⅰ.Studies on static adsorption and de-adsorption of gold[J].Chinese Journal of Analytical Chemistry, 1991, 19(5):588-590. http://www.cqvip.com/Main/Detail.aspx?id=477100
-