中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

X射线荧光光谱法半定量分析高烧失量矿物的准确度研究

李大勇, 朱志雄, 李靖, 王亮. X射线荧光光谱法半定量分析高烧失量矿物的准确度研究[J]. 岩矿测试, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034
引用本文: 李大勇, 朱志雄, 李靖, 王亮. X射线荧光光谱法半定量分析高烧失量矿物的准确度研究[J]. 岩矿测试, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034
Da-yong LI, Zhi-xiong ZHU, Jing LI, Liang WANG. Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis[J]. Rock and Mineral Analysis, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034
Citation: Da-yong LI, Zhi-xiong ZHU, Jing LI, Liang WANG. Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis[J]. Rock and Mineral Analysis, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034

X射线荧光光谱法半定量分析高烧失量矿物的准确度研究

  • 基金项目:
    贵州省地质矿产勘查开发局科研项目(35号黔地矿科合[2017]35号)
详细信息
    作者简介: 李大勇, 高级工程师, 长期从事化学分析及X射线荧光光谱分析工作。E-mail:48304206@qq.com
    通讯作者: 朱志雄, 教授级高级工程师, 长期从事分析技术及质量管理工作。E-mail:2366635624@qq.com
  • 中图分类号: O657.34

Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis

More Information
  • 应用X射线荧光光谱半定量分析软件(SQX)分析未知样品时,SQX软件可对样品中的9F~92U元素进行半定量分析,而对H2O、C这些参数不能直接测定。对于烧失量和结晶水含量较高的铝土矿、CO2含量较高的碳酸盐矿物、硫碳含量较高的硫化物金属矿等样品,平衡归一化计算时,未测定参数对样品中的Al2O3、SiO2、CaO、MgO、Fe等主要元素分析结果影响较大,半定量分析数据的准确度较低。本文通过试验研究,提出了一种校正模式。该校正模式根据XRF半定量分析初步结果,选择性地对未知样品中的烧失量、结晶水、二氧化碳、硫等参数进行化学定量分析,将化学定量分析结果输入SQX,二次平衡归一计算得出新的半定量分析结果。实验结果表明,使用该校正模式分析铝土矿、碳酸盐矿物、硫化物金属矿中的多元素,平均准确度提高了2.6~4.5倍。本方法可快速、较为准确地测定铝土矿、碳酸盐矿物、硫化物金属矿等高烧失量矿物中的多元素。
  • 加载中
  • 图 1  定性分析基本流程

    Figure 1. 

    表 1  仪器测量条件

    Table 1.  Measuring conditions of the XRF equipment

    分析元素 数据库 靶材 电流
    (kV)
    电压
    (mA)
    滤光片 衰减器 准直器 晶体 探测器 PHA
    重元素 Standard Rh 50 60 OUT 1/1 S2 LiF(200) SC 100~300
    重元素(1) Sta-Ni400 Rh 50 60 Ni-400 1/1 S2 LiF(200) SC 150~250
    Ca-Kα Standard Rh 40 75 OUT 1/1 S4 LiF(200) PC 100~300
    K-Kα Standard Rh 40 75 OUT 1/1 S2 LiF(200) PC 100~300
    Cl-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    S-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    P-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300
    Si-Kα Standard Rh 30 100 OUT 1/1 S4 PET PC 100~300
    Al-Kα Standard Rh 30 100 OUT 1/1 S4 PET PC 100~250
    Mg-Kα Standard Rh 30 100 OUT 1/1 S4 RX25 PC 100~250
    Na-Kα Standard Rh 30 100 OUT 1/1 S4 RX25 PC 100~250
    F-Kα Standard Rh 40 75 OUT 1/1 S4 RX25 PC 100~300
    下载: 导出CSV

    表 2  铝土矿标准物质GBW(E)70036各种校正模式计算值与认定值对比

    Table 2.  Calculated values and standard values of bauxite standard material GBW(E)70036 in various correction models

    分析元素 氧化物模式测试
    结果(%)
    添加LOI校正结果
    (%)
    H2O作平衡
    校正结果(%)
    GBW(E)70036
    认定值(%)
    氧化物模式测试结果
    相对误差(%)
    LOI校正结果
    相对误差(%)
    MgO 0.136 0.121 0.116 0.120 13.33 0.83
    Al2O3 76.94 67.51 64.46 69.74 10.32 -3.20
    SiO2 7.91 6.62 6.12 4.88 62.09 35.66
    P2O5 0.159 0.132 0.121 0.120 32.50 10.00
    SO3 0.182 0.00 0.139 0.047 - -
    K2O 1.07 0.880 0.810 0.710 50.70 23.94
    CaO 0.258 0.212 0.195 0.180 43.33 17.78
    TiO2 5.10 4.17 3.81 3.97 28.46 5.04
    Fe2O3 7.42 5.97 5.35 6.09 21.84 -1.97
    LOI * 13.70 13.74 - -
    H2O * 18.26 - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或H2O其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV

    表 3  碳酸盐标准物质GBW07131各种校正模式计算值与认定值对比

    Table 3.  Calculated values and standard values of carbonate standard material GBW07131 in various correction models

    分析元素 氧化物模式
    测试结果(%)
    CO2平衡
    校正结果(%)
    添加LOI
    校正结果(%)
    钙镁元素以碳酸盐
    计平衡计算(%)
    GBW07131
    认定值(%)
    氧化物模式测试
    结果相对误差(%)
    LOI校正结果
    相对误差(%)
    MgO 29.73 19.57 19.18 20.4 20.14 47.62 4.77
    Al2O3 0.759 0.454 0.449 0.451 0.290 161.72 -54.83
    SiO2 2.18 1.29 1.27 1.28 1.15 89.57 -10.43
    P2O5 0.051 0.030 0.030 0.030 0.016 218.75 -87.50
    SO3 0.442 0.256 0.00 0.254 - - -
    K2O 0.292 0.161 0.160 0.160 0.160 82.50 0.00
    CaO 64.54 31.76 32.07 31.50 30.93 108.66 -3.69
    TiO2 0.045 0.018 0.0186 0.0178 0.013 246.15 -43.08
    MnO 0.038 0.015 0.016 0.011 0.012 216.67 -33.33
    Fe2O3 0.435 0.169 0.176 0.167 0.170 155.88 -3.53
    CO2 * 45.66 - - - -
    LOI * 45.67 - 45.73 - 0.13
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或CO2其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV

    表 4  硫化矿多金属矿标准物质GBW07166各种校正模式计算值与认定值对比

    Table 4.  Calculated values and standard values of sulfide polymetallic ore standard material GBW07166 in various correction models

    分析元素 氧化物模式测试
    结果(%)
    总硫、总碳固定
    平衡计算(%)
    LOI平衡计算
    (%)
    Sulfide模式
    校正结果(%)
    GBW07166
    认定值(%)
    氧化物模式测试
    结果相对误差(%)
    总硫、总碳校正
    结果相对误差(%)
    MgO 0.360 0.350 0.675 0.505 0.310 16.13 12.90
    Al2O3 1.60 1.55 3.03 2.29 1.25 28.00 24.00
    SiO2 3.34 3.50 6.26 4.86 3.78 -11.64 7.41
    S 18.43 33.80 0.00 27.75 33.80 - -
    K2O 0.306 0.433 0.387 0.484 0.320 -4.38 35.31
    CaO 2.05 2.02 2.61 3.27 1.96 4.59 3.06
    Fe 18.22 28.58 27.45 30.84 29.60 -38.45 -3.45
    Cu 15.50 28.00 30.72 28.42 24.20 -35.95 15.70
    Zn 0.025 0.057 0.049 0.055 0.057 -56.14 0.00
    C * 0.138 - - - -
    LOI * 27.04 - - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或C其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV

    表 5  某未知样品各种校正模式的计算值与化学分析值对比

    Table 5.  Calculated values and chemical analysis values of various correction modes for the unknown sample

    样品编号 分析元素 氧化物模式测试
    结果(%)
    平衡校准计算
    结果(%)
    化学法测定值
    (%)
    氧化物模式测试
    结果相对误差(%)
    平衡校准计算结果
    相对误差(%)
    允许限Yc
    (%)
    Al2O3 86.97 76.11 78.01 11.49 -2.44 0.63
    SiO2 2.94 1.82 1.31 124.43 38.93 4.17
    Fe2O3 3.26 2.54 2.55 24.84 -0.46 5.11
    TiO2 4.29 3.4 3.10 38.38 9.78 4.80
    未知样品1 K2O 0.19 0.17 0.16 18.75 6.25 10.45
    CaO 0.33 0.31 0.31 6.45 0.00 9.00
    MgO 0.29 0.25 0.20 45.00 25.00 9.95
    P2O5 0.28 0.22 0.14 100.00 61.37 10.76
    LOI * 14.6 14.6 - - 2.58
    Na2O 0.76 0.71 0.781 -2.59 -8.72 7.17
    MgO 0.29 0.24 0.21 39.14 14.95 9.84
    Al2O3 0.48 0.39 0.31 54.13 26.16 9.00
    SiO2 1.15 0.93 0.83 38.66 12.45 7.05
    P2O5 1.24 1.00 0.97 28.34 2.88 6.77
    Fe2O3 1.70 1.21 1.18 44.18 2.13 6.41
    未知样品2 S 4.72 3.21 47.04 - 4.74
    CaO 1.13 0.81 0.83 36.64 -2.40 7.05
    Cr 18.49 13.09 12.89 43.46 1.53 2.75
    Ni 22.81 16.18 16 42.55 1.12 2.47
    Cu 14.53 10.31 10.33 40.62 -0.23 3.04
    Zn 3.04 2.16 2.02 43.24 5.94 5.49
    LOI * 37.00 37.00 - - -
    MgO 0.21 0.200 0.185 14.49 8.11 10.12
    Al2O3 0.53 0.472 0.427 23.87 10.61 8.34
    SiO2 2.18 1.818 1.650 32.00 10.15 5.83
    P2O5 0.02 0.024 0.028 -34.29 -13.21 14.91
    S 18.84 34.02 34.02 - - -
    K2O 0.05 0.048 0.042 15.44 13.31 13.77
    未知样品3 CaO 0.15 0.127 0.137 7.72 -7.50 10.81
    TiO2 0.03 0.031 0.026 30.98 20.78 15.18
    Fe 4.52 6.942 6.720 -32.81 3.31 3.64
    Cu 0.68 1.057 1.218 -44.37 -13.18 6.36
    Zn 32.24 50.517 48.250 -33.18 4.70 1.15
    Pb 1.58 2.505 2.646 -40.46 -5.33 5.05
    C * 1.21 1.21 - - -
    注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI有测量结果时,该项结果不参与校正计算;“-”表示未定值或未统计计算。
    下载: 导出CSV
  • [1]

    Platbood G, Serbyns M, Quitin J M.Automated qualitative wavelength-dispersive X-ray fluorescence analysis[J].X-Ray Spectrometry, 1982, 11(2):83-88. doi: 10.1002/xrs.1300110211

    [2]

    Vila E, Bermuder-Polonio J, Jimenez-Seco J L.Com-puter method for qualitative wavelength-dispersive X-ray fluorescence analysis[J].X-Ray Spectrometry, 1984, 13(4):187-191. doi: 10.1002/xrs.1300130413

    [3]

    Jordanov J, Tsanov T, Stafanov R, et al.Problems of automatic qualitative X-ray fluorescence analysis:Part one[J].X-Ray Spectrometry, 1986, 16:255-259. http://cn.bing.com/academic/profile?id=c181e80588d21e794c16a2bfeea7b65c&encoded=0&v=paper_preview&mkt=zh-cn

    [4]

    Jordanov J, Tsanov T, Stafanov R, et al.Problems of automated qualitative X-ray fluorescence analysis.2.Location of maxima and line identification[J].X-Ray Spectrometry, 1988, 17:117-121. doi: 10.1002/xrs.1300170308

    [5]

    Janssens K, Espen P V.Implementation of an expert system for the qualitative interpretation of X-ray fluorescence spectra[J].Analytica Chimica Acta, 1986, 184:117-132. doi: 10.1016/S0003-2670(00)86475-2

    [6]

    Janssens K, van Espen P.Evaluation of energy- dispersive X-ray spectra with the aid of expert systems[J].Analytica Chimica Acta, 1986, 191:169-180. doi: 10.1016/S0003-2670(00)86306-0

    [7]

    Janssens K, Dorrine W, Espen P V.The development process of an expert system for the automated interpretation of large EMPA data sets[J].Chemometrics and Intelligent Laboratory Systems, 1988, 4:147-161. doi: 10.1016/0169-7439(88)80086-8

    [8]

    吉昂, 陶光仪, 卓尚军, 等.X射线荧光光谱分析[M].北京:科学出版社, 2005:145.

    Ji A, Tao G Y, Zhuo S J, et al.X-ray Fluorescence Spectrum Analysis[M].Beijing:Science Press, 2005:145.

    [9]

    吉昂.X射线荧光光谱30年[J].岩矿测试, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002 http://www.ykcs.ac.cn/article/id/ykcs_20120302

    Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002 http://www.ykcs.ac.cn/article/id/ykcs_20120302

    [10]

    刘敏, 庹先国, 李哲, 等.SDD-EDXRF中FP法无标样校正钒钛铁间吸收增强效应[J].核电子学与探测技术, 2012, 32(10):1192-1195. doi: 10.3969/j.issn.0258-0934.2012.10.020

    Liu M, Tuo X G, Li Z, et al.The application of fundamental parameters method in EDXRF based on SDD[J].Nuclear Electronics & Detection Technology, 2012, 32(10):1192-1195. doi: 10.3969/j.issn.0258-0934.2012.10.020

    [11]

    刘岩, 孙杨, 李冬梅, 等.X射线荧光光谱无标样分析法在催化剂检测中的应用[J].分析试验室, 2017, 36(12):1398-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201712008

    Liu Y, Sun Y, Li D M, et al.Application of X-ray fluorescence spectrometry in catalyst composition determination without standard[J].Chinese Journal of Analysis Laboratory, 2017, 36(12):1398-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201712008

    [12]

    张红菊, 张丁非, 余大亮, 等.X射线荧光光谱无标样分析在轻合金中的应用[J].分析试验室, 2017, 36(2):147-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201702006

    Zhang H J, Zhang D F, Yu D L, et al.Application of X-ray fluorescence spectrometer in the determination of light alloys[J].Chinese Journal of Analysis Laboratory, 2017, 36(2):147-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201702006

    [13]

    张淑英, 卜赛斌.X射线荧光光谱无标半定量分析稀土元素方法的改进[J].岩矿测试, 2003, 22(1):37-39. doi: 10.3969/j.issn.0254-5357.2003.01.008 http://www.ykcs.ac.cn/article/id/ykcs_20030110

    Zhang S Y, Bu S B.A semi-quantitative method improved for rare-earth element analysis by XRF without standards[J].Rock and Mineral Analysis, 2003, 22(1):37-39. doi: 10.3969/j.issn.0254-5357.2003.01.008 http://www.ykcs.ac.cn/article/id/ykcs_20030110

    [14]

    宋焕玲, 吴亲娟, 张兵.分析有机物中钾的IQ+无标样定量分析软件[J].科学技术与工程, 2006, 6(18):2981-2982. doi: 10.3969/j.issn.1671-1815.2006.18.049

    Song H L, Wu Q J, Zhang B.Analysis of potassium in organic compounds by using IQ+ standardless quantitative analysis program[J].Science Technology and Engineering, 2006, 6(18):2981-2982. doi: 10.3969/j.issn.1671-1815.2006.18.049

    [15]

    朱志秀, 冯健, 李晨, 等.X射线荧光光谱无标样分析技术在出入境矿产品检验中的应用[J].理化检验(化学分册), 2009, 45(7):832-835. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201602042

    Zhu Z X, Feng J, Li C, et al.Application of XRFS without using standard samples to inspection of mineral products in exits and entrances at customs[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(7):832-835. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201602042

    [16]

    梁述廷, 刘玉纯, 胡浩.X射线荧光光谱法同时测定土壤样品中碳氮等多元素[J].岩矿测试, 2004, 23(2):102-108. doi: 10.3969/j.issn.0254-5357.2004.02.005 http://www.ykcs.ac.cn/article/id/ykcs_20040229

    Liang S T, Liu Y C, Hu H.Determination of C, N and other 36 elements in soil samples by XRF[J].Rock and Mineral Analysis, 2004, 23(2):102-108. doi: 10.3969/j.issn.0254-5357.2004.02.005 http://www.ykcs.ac.cn/article/id/ykcs_20040229

    [17]

    张勤, 樊守忠, 潘宴山, 等.X射线荧光光谱法测定化探样品中主、次和痕量组分[J].理化检验, 2005, 41(8):547-552. doi: 10.3321/j.issn:1001-4020.2005.08.003

    Zhang Q, Fan S Z, Pan Y S, et al.X-ray fluorescence spectrometric determination of major, minor and trace elements in geochemical samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(8):547-522. doi: 10.3321/j.issn:1001-4020.2005.08.003

    [18]

    修凤凤, 樊勇, 李俊雨, 等.波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J].岩矿测试, 2018, 37(5):526-532. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704170061

    Xiu F F, Fan Y, Li J Y, et al.Determination of 18 minor elements in the structural superimposed Halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2018, 37(5):526-532. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704170061

    [19]

    刘玉纯, 林庆文, 马玲, 等.粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J].岩矿测试, 2018, 37(6):671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014

    Liu Y C, Lin Q W, Ma L, et al.Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J].Rock and Mineral Analysis, 2018, 37(6):671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014

    [20]

    卜兆杰, 蒋春宏, 陶泽秀, 等.粉末压片制样-X射线荧光光谱法测定稀土镁中间合金中镁锰硅钛钙铁[J].冶金分析, 2018, 38(3):61-64. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803012

    Bu Z J, Jiang C H, Tao Z X, et al.Determination of magnesium, manganese, silicon, titanium, calcium, iron in rare earth-magnesium intermediate alloy by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2018, 38(3):61-64. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803012

    [21]

    李强, 张学华.粉末压片-X射线荧光光谱法快速分析多金属核和富钴结壳中22种组分[J].冶金分析, 2014, 34(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201401005

    Li Q, Zhang X H.Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2014, 34(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201401005

    [22]

    曾江萍, 李小莉, 张楠, 等.粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟[J].岩矿测试, 2019, 38(1):71-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804060038

    Zeng J P, Li X L, Zhang N, et al.Determination of high concentration of fluorine in lithium mica by X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2019, 38(1):71-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804060038

    [23]

    《岩石矿物分析》编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:234.

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (The Fourth Edition:Vol.Ⅲ)[M].Beijing:Geological Publishing House, 2011:234.

    [24]

    杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社, 1993:5-6.

    Yang Z Y.Alumina Production Technology[M].Beijing:Metallurgical Industry Press, 1993:5-6.

    [25]

    刘静, 马慧侠, 彭展, 等.浅析铝土矿烧失量放入差异在X射线荧光光谱(XRF)分析中造成的影响[J].中国无机分析化学, 2018, 8(4):26-29. doi: 10.3969/j.issn.2095-1035.2018.04.007

    Liu J, Ma H X, Peng Z, et al.Influence of measurement on the ignition loss difference of bauxite by X-ray fluorescence (XRF)[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4):26-29. doi: 10.3969/j.issn.2095-1035.2018.04.007

    [26]

    孙晓飞, 文孟喜, 杨丹丹.康普顿散射线结合经验系数法校正在X射线荧光光谱测定石灰石和白云石中的应用[J].冶金分析, 2016, 36(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/yjfx201601003

    Sun X F, Wen M X, Yang D D.Application of Compton scatter and empirical coefficient correction in X-ray fluorescence spectrometric determination of limestone and dolomite[J].Metallurgical Analysis, 2016, 36(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/yjfx201601003

    [27]

    田琼, 张文昔, 宋嘉宁, 等.波长色散X射线荧光光谱法测定锌精矿中主次量成分[J].岩矿测试, 2012, 31(3):463-467. doi: 10.3969/j.issn.0254-5357.2012.03.015 http://www.ykcs.ac.cn/article/id/ykcs_20120315

    Tian Q, Zhang W X, Song J N, et al.Determination of major and minor components in zinc concentrate by wavelength dispersive-X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2012, 31(3):463-467. doi: 10.3969/j.issn.0254-5357.2012.03.015 http://www.ykcs.ac.cn/article/id/ykcs_20120315

    [28]

    王谦, 应晓浒, 张建波.X射线荧光光谱分析样品烧增量的影响及校正[J].光谱学与光谱分析, 2011, 31(9):2574-2577. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201109059

    Wang Q, Ying X H, Zhang J B.The influence of the gain on ignition and correction in X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2011, 31(9):2574-2577. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201109059

    [29]

    曲月华, 王一凌, 张悫, 等.熔融制样-X射线荧光光谱法测定锰矿中9种组分[J].冶金分析, 2011, 31(9):24-29. doi: 10.3969/j.issn.1000-7571.2011.09.006

    Qu Y H, Wang Y L, Zhang Q, et al.Determination of nine components in manganese ore by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2011, 31(9):24-29. doi: 10.3969/j.issn.1000-7571.2011.09.006

    [30]

    曾江萍, 张莉娟, 李小莉, 等.超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J].冶金分析, 2015, 35(7):37-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201507007

    Zeng J P, Zhang L J, Li X L, et al.Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J].Metallurgical Analysis, 2015, 35(7):37-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201507007

    [31]

    宫嘉辰, 白小叶, 姜炳南.熔融制样-X射线荧光光谱法测定钒钛磁铁矿中12种组分[J].冶金分析, 2019, 39(2):66-70. http://d.old.wanfangdata.com.cn/Periodical/jsyj201704008

    Gong J C, Bai X Y, Jiang B N.Determination of twelve components in vanadium-titanium magnetite ore by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2019, 39(2):66-70. http://d.old.wanfangdata.com.cn/Periodical/jsyj201704008

  • 加载中

(1)

(5)

计量
  • 文章访问数:  3398
  • PDF下载数:  151
  • 施引文献:  0
出版历程
收稿日期:  2019-03-08
修回日期:  2019-07-05
录用日期:  2019-07-16

目录