Determination of Thorium and Potassium Oxide in Geological Samples by Inductively Coupled Plasma-Optical Emission Spectrometry
-
摘要: 同时测定地质样品中的钍和钾,可为放射性矿产资源勘探、天然放射性生态环境评价提供重要依据。对于钍,传统方法使用碱熔法分解试样分光光度法测定,此方法前处理冗长、复杂且不利于多元素的同时测定。而氧化钾一般采用酸溶法消解样品火焰原子吸收分光光度法测定,此方法测定浓度高的溶液需要稀释,检测效率较低。钍和氧化钾的分析涉及了两种配套方法。本文根据地质样品的化学成分特征,筛选出了用硝酸、氢氟酸和高氯酸为溶剂溶解样品,硝酸提取定容后,用电感耦合等离子体发射光谱法(ICP-OES)分别在波长401.913nm和766.490nm处,采用径向观测方式同时测定了钍、氧化钾的含量。钍、氧化钾的标准曲线相关系数均大于0.999,方法检出限分别为0.69μg/g、0.008%,标准物质的测定值与认定值基本一致,二者的对数误差绝对值小于0.1,相对标准偏差(RSD,n=6)小于6.0%,加标回收率在96.0%~104.0%之间,符合《地质矿产实验室测试质量管理规范》的要求。Abstract:
BACKGROUNDSimultaneous determination of thorium and potassium in geological samples can provide an important basis for exploration of radioactive mineral resources and evaluation of the natural radioactive ecological environment. The thorium in geological samples is usually digested by alkali fusion in traditional methods and determined by spectrophotometry. The traditional method is long, complex and not suitable for simultaneous determination of multiple elements. The potassium oxide in geological samples is digested by acid and generally determined by flame atomic absorption spectrometry, which requires diluting the solution with high concentration and has low detection efficiency. The determination of thorium and potassium oxide involves two different analytical methods and analytical instruments. OBJECTIVESTo establish an analytical method for simultaneous determination of thorium and potassium oxide in geological samples. METHODSChemical solvent which consists of nitric acid, hydrofluoric acid and perchloric acid, was identified according to the characteristics of the chemical composition of the geological samples. The geological samples were dissolved with this solvent and extracted with nitric acid. The content of thorium and potassium oxide in geological samples was measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) at wavelengths of 401.913nm and 766.490nm, respectively by radial observation mode. RESULTSThe correlation coefficient of the calibration curve of thorium and potassium oxide was greater than 0.999 and the detection limit of this method was 0.69μg/g and 0.008%, respectively. The measured value of the standard substance was consistent with the identified value, and the absolute logarithmic error of the two values was less than 0.1. The relative standard deviation was less than 6.0% and the recovery ranged from 96.0% to 104.0%. CONCLUSIONSThis method meets the requirements of the testing quality management standard for geological and mineral laboratories. -
-
表 1 不同混合酸消解样品中钍和氧化钾的测定结果比较
Table 1. Comparison of analytical results of Th and K2O in samples dissolutied with HCl-HNO3-HF-HClO4 and HNO3-HF-HClO4 acid digestion
样品处理方法 GBW07309 GBW07312 Th
(μg/g)K2O
(%)Th
(μg/g)K2O
(%)盐酸-硝酸-氢氟酸-高氯酸(方法1) 14.13 2.00 22.39 2.87 硝酸-氢氟酸-高氯酸(方法2) 14.32 1.97 23.26 2.91 认定值 12.4±0.7 1.99±0.06 21.4±1.1 2.91±0.04 表 2 钍和氧化钾的最佳分析谱线
Table 2. Analytical spectral lines for thorium and potassium oxide determination
测定次数 GBW04120 GBW04121 Th(μg/g) K2O(%) Th(μg/g) K2O(%) 283.730
nm401.913
nm766.490
nm283.730
nm401.913
nm766.490
nm1 11.08 3.82 0.93 43.11 24.63 6.19 2 10.00 3.92 0.95 52.84 23.59 6.17 3 12.10 3.70 0.90 48.53 23.14 6.15 测定平均值 11.06 3.81 0.93 48.16 23.79 6.17 认定值 3.4±0.1 0.84 21.7±0.5 6.08 相对误差(%) 225.29 12.16 10.32 121.94 9.62 1.48 RSD(%) 9.49 2.89 2.72 10.12 3.21 0.32 相关系数 0.9993 0.9999 0.9998 0.9993 0.9999 0.9998 表 3 准确度和精密度测定结果
Table 3. Accuracy and precision tests of the method
测定次数 GBW07409 GBW07404 GBW07310 GBW07302a Th(μg/g) K2O (%) Th(μg/g) K2O (%) Th(μg/g) K2O (%) Th(μg/g) K2O (%) 1 13.57 1.94 30.13 1.07 6.24 0.102 37.27 5.36 2 13.10 1.94 30.04 1.08 6.20 0.104 38.99 5.44 3 13.03 1.88 29.12 1.09 5.99 0.110 37.74 5.23 4 12.11 1.94 31.59 1.05 5.45 0.119 37.72 5.64 5 12.32 2.06 29.47 1.05 5.92 0.108 38.12 5.42 6 12.68 1.97 29.32 1.04 6.12 0.115 37.53 5.28 测定平均值 12.80 1.96 29.95 1.06 5.99 0.110 37.90 5.40 认定值 12.8±1.6 1.98±0.05 27.0±2 1.03±0.06 5.0±0.3 0.125±0.013 38±3 5.34±0.11 ∆lgC 0.00 0.01 0.04 0.01 0.08 0.06 0.00 0.01 标准偏差 0.540 0.059 0.900 0.020 0.290 0.006 0.605 0.144 RSD(%) 4.2 3.0 3.3 1.9 5.8 5.2 1.6 2.7 表 4 加标回收率试验
Table 4. Spiked recovery tests of the method
称样量
(g)Th K2O 测定值
(μg/mL)加入量
(μg)回收率
(%)测定值
(μg/mL)加入量
(μg)回收率
(%)0.1436 0.076 0 - 95.92 0 - 0.1325 0.128 1.5 96.0 166.11 2000 97.0 0.1526 0.159 2.0 98.0 232.88 3000 102.0 0.1462 0.174 2.5 97.0 237.50 3500 104.0 0.1452 0.198 3.0 101.0 253.67 4000 99.0 -
[1] 郭志英, 梁月琴, 崔晓磊, 等.电感耦合等离子体质谱法测定土壤钍含量以及记忆效应的研究[J].中国辐射卫生, 2013, 22(1):1-7. http://www.cnki.com.cn/Article/CJFDTotal-REDI201301002.htm
Guo Z Y, Liang Y Q, Cui X L, et al.Determination of thorium in soil by inductively coupled plasma mass spectrometry and study of thorium memory effect in analysis[J].Chinese Journal of Radiological Health, 2013, 22(1):1-7. http://www.cnki.com.cn/Article/CJFDTotal-REDI201301002.htm
[2] 潘自强.电离辐射环境监测与评价[M].北京:原子能出版社, 2007:389.
Pan Z Q.Monitoring and Evaluation of Ionizing Radiation Environment[M].Beijing:Atomic Energy Press, 2007:389.
[3] 程业勋, 王南萍, 侯胜利.核辐射场与放射性勘查[M].北京:地质出版社, 2005:43-44.
Cheng Y X, Wang N P, Hou S L.Nuclear Geophysical Survey[M].Beijing:Geological Publishing House, 2005:43-44.
[4] 刘立坤, 郭冬发, 黄秋红.岩石矿物中铀钍的分析方法进展[J].中国无机分析化学, 2012, 2(2):6-9. doi: 10.3969/j.issn.2095-1035.2012.02.0002
Liu L K, Guo D F, Huang Q H.Progress in analytical methods for determination of uranium and thorium in rocks and minerals[J].Chinese Journal of Inorganic Analytical Chemistry, 2012, 2(2):6-9. doi: 10.3969/j.issn.2095-1035.2012.02.0002
[5] 王敬, 王火焰.不同仪器测钾性能及优缺点比较研究[J].土壤学报, 2013, 50(2):340-348. http://www.cqvip.com/QK/90156X/201302/45203903.html
Wang J, Wang H Y.Comparison between different instruments in potassium determination performance[J].Acta Pedologica Sinica, 2013, 50(2):340-348. http://www.cqvip.com/QK/90156X/201302/45203903.html
[6] 李琳俐, 刘资文, 罗孟杰, 等.电感耦合等离子体原子发射光谱法测定钾长石矿中的多种元素[J].理化检验(化学分册), 2015, 51(7):917-920. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201507006
Li L L, Liu Z W, Luo M J, et al.Determination of elements in potash feldspar ores by ICP-AES[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(7):917-920. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201507006
[7] 李志伟, 赵晓亮, 李珍, 等.敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J].岩矿测试, 2017, 36(6):594-600. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201701030001
Li Z W, Zhao X L, Li Z, et al.Determination of niobium, tantalun and associated elements in niobium-tantalum ore by inductively coupled plasma-optical emission spectrometry with open acid dissolution[J].Rock and Mineral Analysis, 2017, 36(6):594-600. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201701030001
[8] 杨华, 张永刚.电感耦合等离子体原子发射光谱仪(ICP-OES)测定水系沉积物中6种重金属元素[J].中国无机分析化学, 2014, 4(1):22-24. doi: 10.3969/j.issn.2095-1035.2014.01.006
Yang H, Zhang Y G.Determination of six heavy metal elements in stream sediment by ICP-OES together with automated sample digestion system[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1):22-24. doi: 10.3969/j.issn.2095-1035.2014.01.006
[9] 孙晓慧, 李章, 刘希良.微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J].冶金分析, 2014, 34(11):56-60. http://d.old.wanfangdata.com.cn/Periodical/yjfx201411011
Sun X H, Li Z, Liu X L.Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis, 2014, 34(11):56-60. http://d.old.wanfangdata.com.cn/Periodical/yjfx201411011
[10] 刘峰, 秦樊鑫, 胡继伟, 等.不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响[J].理化检验(化学分册), 2011, 47(8):951-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102835164
Liu F, Qin F X, Hu J W, et al.Effects of different acid mixtures for sample digestion on the ICP-AES determination of heavy metal elements in soil[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(8):951-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102835164
[11] 姜云军, 李星, 姜海伦, 等.四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J].岩矿测试, 2018, 37(2):152-158. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704010048
Jiang Y J, Li X, Jiang H L, et al.Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J].Rock and Mineral Analysis, 2018, 37(2):152-158. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704010048
[12] 余海军, 张莉莉, 屈志朋, 等.微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中主次元素[J].中国无机分析化学, 2019, 9(1):34-38. doi: 10.3969/j.issn.2095-1035.2019.01.008
Yu H J, Zhang L L, Qu Z P, et al.Determination of primary and secondary elements in soil by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1):34-38. doi: 10.3969/j.issn.2095-1035.2019.01.008
[13] 王小强.电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁[J].岩矿测试, 2012, 31(3):442-445. doi: 10.3969/j.issn.0254-5357.2012.03.011 http://www.ykcs.ac.cn/article/id/ykcs_20120311
Wang X Q.Simultaneous quantification of K, Na, Ca, Mg, Al, Ti and Fe in feldspar samples by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2012, 31(3):442-445. doi: 10.3969/j.issn.0254-5357.2012.03.011 http://www.ykcs.ac.cn/article/id/ykcs_20120311
[14] 倪文山.氢氧化镁共沉淀-电感耦合等离子体原子发射光谱法测定矿石样品中钍[J].冶金分析, 2013, 33(1):13-16. doi: 10.3969/j.issn.1000-7571.2013.01.003
Ni W S.Determination of thorium in mineral samples by inductively coupled plasma atomic emission spectrometry after preconcentration through coprecipitation of magnesium hydroxide[J].Metallurgical Analysis, 2013, 33(1):13-16. doi: 10.3969/j.issn.1000-7571.2013.01.003
[15] 汪君, 王頔, 邓长生, 等.电感耦合等离子体发射光谱法测定地球化学样品中的钍[J].岩矿测试, 2014, 33(4):501-505. doi: 10.3969/j.issn.0254-5357.2014.04.008 http://www.ykcs.ac.cn/article/id/b0559d52-1375-47cd-8224-13dea98fbd1e
Wang J, Wang D, Deng C S, et al.Determination of thorium in geochemical sample by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2014, 33(4):501-505. doi: 10.3969/j.issn.0254-5357.2014.04.008 http://www.ykcs.ac.cn/article/id/b0559d52-1375-47cd-8224-13dea98fbd1e
[16] 霍红英.微波消解-电感耦合等离子体原子发射光谱法测定钒钛精矿中钾和钠[J].冶金分析, 2017, 37(6):75-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201706015
Huo H Y.Determination of potassiuman sodium in vanadium-titanium-iron concentrate by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2017, 37(6):75-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201706015
[17] 卜道露, 杨旭, 李高湖, 等.ICP-MS测定地球化学样品中钍铀等14种元素[J].化学研究与应用, 2017, 29(8):1254-1257. doi: 10.3969/j.issn.1004-1656.2017.08.028
Bu D L, Yang X, Li G H, et al.Determination of 14 elements including thorium, uranium in geochemical samples by inductively coupled plasma-mass spectrometry[J].Chemical Research and Application, 2017, 29(8):1254-1257. doi: 10.3969/j.issn.1004-1656.2017.08.028
-