Research on the Chemical Pretreatment for Mo Isotope Analysis of Special Geological Samples
-
摘要: Mo同位素的研究在地学领域应用广泛,它可以示踪Mo的全球循环、古海洋氧化还原条件、成矿过程、天体演化过程等。应用多接收电感耦合等离子体质谱法(MC-ICP-MS)分析Mo同位素比值前需对样品进行分离纯化,以富集Mo和去除Zr、Ru、Fe、Mn等干扰元素。处理某些Fe含量特别高且Ca含量也高的特殊地质样品(如含大量黄铁矿的钙质泥岩、钙质页岩等),若根据传统的阴阳离子交换树脂双柱法,需多次使用阳离子交换树脂分离Fe,步骤较繁琐且Mo回收率也会降低,而根据传统的阴离子交换树脂单柱法,使用1mol/L氢氟酸-0.5mol/L盐酸介质会产生较多CaF2沉淀影响分离纯化效果。针对此类特殊地质样品,本实验使用同一阴离子树脂柱(AG1-X8,100~200目)对样品进行两次淋洗,第一次使用6mol/L盐酸,第二次使用1mol/L氢氟酸-0.1mol/L盐酸和6mol/L盐酸。结果表明Mo的回收率>96%,干扰元素的去除效果好,尤其是Ru的去除率接近100%,比原方法提高了约12%。对实际样品进行实验的结果也显示,Mo的回收率和干扰元素的去除都符合要求,δ98/95Mo测定值与文献报道值一致。改进后的阴离子交换树脂单柱-二次淋洗法适用于Fe、Ca含量较高的特殊样品,降低了分析成本,也适用于绝大多数地质样品。Abstract:
BACKGROUNDMo isotopes have been widely used in the field of geosciences. They can be used to trace the global cycle of Mo, paleoocean redox conditions, mineralization processes, and astronomical evolution. Before the analysis of Mo isotope by multi-collector inductivity coupled plasma-mass spectrometry (MC-ICP-MS), the samples must be pretreated to enrich Mo and remove the interference elements (Zr, Ru, Fe and Mn). According to the traditional anion-cation exchange resin double-column method, it is necessary to use a cation-exchange resin multiple times to separate Fe. The steps are more complicated and the Mo recovery will be reduced. According to the traditional anion-exchange resin single-column method, 1mol/L hydrofluoride acid-0.5mol/L hydrochloric acid medium will produce more CaF2 precipitation and affect the separation and purification results. OBJECTIVESTo develop a new method for managing Ca-bearing geological samples with high Fe content before Mo isotope analysis. METHODSFor such special geological samples, the same anionic resin column (AG1-X8, 100-200 mesh) was used to rinse the sample twice, the first time using 6mol/L hydrochloric acid, and the second time using 1mol/L hydrofluoride acid-0.1mol/L hydrochloric acid and 6mol/L hydrochloric acid. RESULTSResults showed that Mo recovery was better than 96%, and the removal of the interference elements was good, especially the Ru removal rate, which was higher than the previous methods by 12%, up to 100%. The results of experiments on actual samples also showed that the recovery of Mo and the removal of interfering elements meet the requirements, and the measured values of δ98/95Mo were consistent with those reported in the literature. CONCLUSIONSThe improved anion exchange resin single-column elution method is suitable for special samples with high Fe and Ca content, which reduces the analysis cost and is applicable to most geological samples. -
-
图 3 本研究与文献[44]的实际样品预处理分离纯化效果
Figure 3.
表 1 Mo的分离纯化操作流程
Table 1. Elution sequence of the two-step single-column separation for Mo
方法1(使用盐酸、硝酸收集Mo) 步骤 材料和试剂 用量(mL) 操作步骤详细说明 装树脂 AG1-X8树脂 5 - 洗涤 3mol/L硝酸 30 - 洗涤 水 15 - 洗涤 1mol/L盐酸 30 - 平衡 6mol/L盐酸 15 - 样品引入 样品(介质6mol/L盐酸) 5 - 洗涤 6mol/L盐酸 10+10+10 - 收集Mo 1mol/L盐酸 30 将这60mL溶液收集后分析相关元素含量 收集Mo 3mol/L硝酸 30 洗涤 水 10+10+10 为第二次过柱做准备 洗涤 0.1mol/L盐酸 10 为第二次过柱做准备 平衡 1mol/L氢氟酸-0.1mol/L盐酸 15 - 样品引入 样品(介质1mol/L氢氟酸-0.1mol/L盐酸) 5 第二次过柱 洗涤 1mol/L氢氟酸-0.1mol/L盐酸 20 - 洗涤 6mol/L盐酸 10+10 - 收集Mo 1mol/L盐酸 30 每5mL收集为一件样品,共6件样品,分析每件样品的相关元素含量 收集Mo 3mol/L硝酸 30 每5mL收集为一件样品,共6件样品,分析每件样品的相关元素含量 方法2(使用盐酸收集Mo) 步骤 材料和试剂 用量(mL) 操作步骤详细说明 装树脂 AG1-X8树脂 5 - 洗涤 水 15 - 洗涤 1mol/L盐酸 30 - 平衡 6mol/L盐酸 15 - 样品引入 样品(介质6mol/L盐酸) 5 - 洗涤 6mol/L盐酸 10+10+10 - 收集Mo 1mol/L盐酸 40 将这40mL溶液收集后分析相关元素含量 洗涤 水 10+10+10 为第二次过柱做准备 洗涤 0.1mol/L盐酸 10 为第二次过柱做准备 平衡 1mol/L氢氟酸-0.1mol/L盐酸 15 - 样品引入 样品(介质1mol/L氢氟酸-0.1mol/L盐酸) 5 第二次过柱 洗涤 1mol/L氢氟酸-0.1mol/L盐酸 20 - 洗涤 6mol/L盐酸 10+10 - 收集Mo 1mol/L盐酸 40 每5mL收集为一件样品,共8件样品,分析每件样品的相关元素含量 注:“-”表示淋洗的酸液中主要为基质元素,作为废液处理。 表 2 质谱分析Mo同位素组成过程中潜在的干扰离子
Table 2. Potential species interfering Mo isotope measured by MC-ICP-MS
被干扰核素 干扰离子(多原子) 干扰离子(单原子) 92Mo 54Fe38Ar+, 56Fe36Ar+, 54Cr38Ar+, 52Cr40Ar+ 92Zr, 184W++, 184Os++ 94Mo 58Fe36Ar+, 56Fe38Ar+, 54Fe40Ar+, 58Ni36Ar+, 54Cr40Ar+ 94Zr, 188Os++ 95Mo 57Fe38Ar+, 55Mn40Ar+, 59Co36Ar+ 190Os++, 190Pt++ 96Mo 56Fe40Ar+, 58Fe38Ar+, 58Ni38Ar+, 60Ni36Ar+ 96Zr, 96Ru, 192Os++, 192Pt++ 97Mo 57Fe40Ar+, 59Co38Ar+, 61Ni36Ar+ 194Pt++ 98Mo 58Fe40Ar+, 58Ni40Ar+, 60Ni38Ar+, 62Ni36Ar+ 98Ru, 196Pt++, 196Hg++ 100Mo 64Ni36Ar+, 64Zn36Ar+, 62Ni38Ar+, 60Ni40Ar 100Ru+, 200Hg++ 表 3 通过离子交换树脂后的洗涤(收集)液的分析结果(方法1)
Table 3. Analysis of the sample purified by the anion resin exchange column (Method 1)
项目 Mo(μg) Zr(μg) Ru(μg) Fe(μg) Mn(μg) 初始样品 32.9 6.83 11.4 50700 364 60mL Mo收集液(第一次过柱) 32.1 0.252 1.39 49800 1.54 第一次过柱的回收率(%) 97.6 3.69 12.2 98.2 0.42 样品引入+洗涤液(第二次过柱) 0.0626 5.75 0.424 49800 1.54 Mo收集液① 0.0194 < 0.0005 0.0875 < 0.0005 0.0502 Mo收集液② 3.41 < 0.0005 0.0182 < 0.0005 0.137 Mo收集液③ 19.6 < 0.0005 0.0235 < 0.0005 0.124 Mo收集液④ 6.34 < 0.0005 0.0203 < 0.0005 0.132 Mo收集液⑤ 1.20 < 0.0005 0.0213 < 0.0005 0.141 Mo收集液⑥ 0.357 < 0.0005 0.0176 < 0.0005 0.151 盐酸收集液的总量 30.9 - 0.188 - 0.735 盐酸收集液的回收率(相对初始样品,%) 93.9 0 1.65 0 0.20 Mo收集液⑦ 0.163 < 0.0005 0.0227 < 0.0005 0.0774 Mo收集液⑧ 0.540 < 0.0005 0.242 < 0.0005 < 0.0005 Mo收集液⑨ 0.108 < 0.0005 0.367 < 0.0005 < 0.0005 Mo收集液⑩ 0.0527 < 0.0005 0.313 < 0.0005 < 0.0005 Mo收集液B11 0.0321 < 0.0005 0.231 < 0.0005 < 0.0005 Mo收集液B12 0.0174 < 0.0005 0.158 < 0.0005 < 0.0005 硝酸收集液的总量 0.913 - 1.33 - 0.0774 硝酸收集液的回收率(相对初始样品,%) 2.78 0 11.7 0 0.02 总回收率▲(相对初始样品,%) 96.7 0 13.4 0 0.22 注:Mo收集液①~Mo收集液⑥为第二次过柱中依次收集的5mL 1mol/L盐酸收集液,分6次收集,共30mL 1mol/L盐酸收集液;Mo收集液⑦~Mo收集液B12为第二次过柱中依次收集的5mL 3mol/L硝酸收集液,分6次收集,共30mL 3mol/L硝酸收集液。总回收率表示第二次过柱中盐酸收集液与硝酸收集液的总回收率。 表 4 通过离子交换树脂后的洗涤(收集)液的分析结果(方法2)
Table 4. Analysis of the sample purified by the anion resin exchange column (Method 2)
项目 Mo(μg) Zr(μg) Ru(μg) Fe(μg) Mn(μg) 初始样品 33.0 7.15 10.5 50600 357 40mL Mo收集液(第一次过柱) 32.1 0.281 0.0295 50300 0.230 第一次过柱的回收率(%) 97.3 3.93 0.281 99.4 0.064 样品引入+洗涤液(第二次过柱) - - - - - Mo收集液① 0.0043 0.0005 < 0.0005 0.359 0.0013 Mo收集液② 3.98 0.0027 < 0.0005 0.263 < 0.0005 Mo收集液③ 25.1 0.0077 < 0.0005 0.0551 < 0.0005 Mo收集液④ 2.46 0.0011 < 0.0005 0.265 < 0.0005 Mo收集液⑤ 0.231 0.0007 < 0.0005 0.114 0.0157 Mo收集液⑥ 0.0917 < 0.0005 < 0.0005 0.118 < 0.0005 Mo收集液⑦ 0.0262 < 0.0005 < 0.0005 0.118 < 0.0005 Mo收集液⑧ 0.0165 < 0.0005 < 0.0005 0.049 0.0012 收集液的总量 31.9 0.0127 0 1.34 0.0182 总回收率▲(相对初始样品,%) 96.7 0.178 0 0.003 0.003 注:Mo收集液①~Mo收集液⑧为第二次过柱中依次收集的5mL 1mol/L盐酸收集液,分8次收集,共40 mL 1mol/L盐酸收集液。“▲”总回收率表示第二次过柱中盐酸收集液的总回收率。 表 5 实际地质样品经阴离子交换树脂单柱-二次淋洗法分离纯化后的Mo同位素分析结果
Table 5. Mo isotope analysis of real geological samples pretreated by the modified separation method of anion exchange resin with single column-double
样品编号 样品性质 δ98/95Mo(‰) 文献 Xiaozhu-01 碳质页岩 -0.21±0.08
-0.22±0.13本研究
文献[44]Wj-4 碳质页岩夹方解石脉 1.65±0.10
1.63±0.12
1.63±0.11本研究
文献[44]
文献[14]Xiaozhu-33 白云岩 1.30±0.12
1.29±0.14本研究
文献[44]GBW07303 水系沉积物标准物质 -0.35±0.10
-0.38±0.16本研究
文献[44]注: ${\delta ^{98/95}}{\rm{Mo}}\left( \right) = [\frac{{{{{(^{98}}{\rm{Mo}}{/^{95}}{\rm{Mo}})}_{样品}}}}{{{{{{\rm{(}}^{98}}{\rm{Mo}}{/^{95}}{\rm{Mo}})}_{{\rm{NIST}}3134}} \times 0.99975}} - 1] \times 1000$ 。 -
[1] 朱祥坤, 王跃, 闫斌, 等.非传统稳定同位素地球化学的创建与发展[J].矿物岩石地球化学通报, 2013, 32(6):651-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201306002
Zhu X K, Wang Y, Yan B, et al.Developments of non-traditional stable isotope geochemistry[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6):651-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201306002
[2] Malinovsky D, Hammarlund D, Ilyashuk B, et al.Variations in the isotopic composition of molybdenum in freshwater lake systems[J].Chemical Geology, 2007, 236(3-4):181-198. doi: 10.1016/j.chemgeo.2006.09.006
[3] Archer C, Vance D.The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans[J].Nature Geoscience, 2008, 1(9):597-600. doi: 10.1038/ngeo282
[4] Nägler T F, Neubert N, Böttcher M E, et al.Molybdenum isotope fractionation in pelagic euxinia:Evidence from the modern Black and Baltic Seas[J].Chemical Geology, 2011, 289(1-2):1-11. doi: 10.1016/j.chemgeo.2011.07.001
[5] Noordmann J, Weyer S, Montoya-Pino C, et al.Uranium and molybdenum isotope systematics in modern euxinic basins:Case studies from the central Baltic Sea and the Kyllaren Fjord (Norway)[J].Chemical Geology, 2015, 396(9):182-195. http://cn.bing.com/academic/profile?id=2d437b78217075593a08aae32b18cba4&encoded=0&v=paper_preview&mkt=zh-cn
[6] Dahl T W, Wirth S B.Molybdenum isotope fractionation and speciation in a euxinic lake-Testing ways to discern isotope fractionation processes in a sulfidic setting[J].Chemical Geology, 2017, 460(5):84-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5977638c47070ba687d769cafd4da34a
[7] Neely R A, Gislason S R, Ólafsson M, et al.Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland[J].Earth and Planetary Science Letters, 2018, 486(15):108-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cabccfbc281a1b45fa8881b07c972b4
[8] Siebert C, Nägler T F, Blanckenburg F V, et al.Molybdenum isotope record as a potential new proxy for paleoeanography[J].Earth and Planetary Science Letters, 2003, 211(1-2):159-171. doi: 10.1016/S0012-821X(03)00189-4
[9] Arnold G L, Anbar A D, Barling J, et al.Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans[J].Science, 2004, 304(5667):87-90. doi: 10.1126/science.1091785
[10] Lehmann B, Nägler T F, Holland H D, et al.Highly metalliferous carbonaceous shale and Early Cambrian seawater[J].Geology, 2007, 35(5):403-406. doi: 10.1130/G23543A.1
[11] 蒋少涌, 凌洪飞, 赵葵东, 等.华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物层的钼同位素组成讨论[J].岩石矿物学杂志, 2008, 27(4):341-345. doi: 10.3969/j.issn.1000-6524.2008.04.011
Jiang S Y, Ling H F, Zhao K D, et al.Discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in South China[J].Acta Petrologica et Mineralogica, 2008, 27(4):341-345. doi: 10.3969/j.issn.1000-6524.2008.04.011
[12] Kendall B, Komiya T, Lyons T W, et al.Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the Late Ediacaran Period[J].Geochimica et Cosmochimica Acta, 2015, 156(1):173-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=105ec9e88167bc09a96debc22b05c90d
[13] Kurzweil F, Drost K, Pašava J, et al.Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran[J].Geochimica et Cosmochimica Acta, 2015, 171(15):121-142. https://www.sciencedirect.com/science/article/abs/pii/S0016703715005256
[14] Wen H J, Fan H F, Zhang Y X, et al.Reconstruction of Early Cambrian ocean chemistry from Mo isotopes[J].Geochimica et Cosmochimica Acta, 2015, 164(1):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd5c3e3cf51efe0e3c67e8967ba60fd0
[15] Ruebsam W, Dickson A J, Hoyer E M, et al.Multiproxy reconstruction of oceanographic conditions in the Southern Epeiric Kupferschiefer Sea (Late Permian) based on redox-sensitive trace elements, molybdenum isotopes and biomarkers[J].Gondwana Research, 2017, 44:205-218. doi: 10.1016/j.gr.2016.10.017
[16] Yin L, Li J, Tian H, et al.Rhenium-osmium and molybdenum isotope systematics of black shales from the Lower Cambrian Niutitang Formation, SW China:Evidence of a well oxygenated ocean at ca.520Ma[J].Chemical Geology, 2018, 499(5):26-42.
[17] Chen J B, Zhao L S, Algeo T J, et al.Evaluation of paleomarine redox conditions using Mo-isotope data in low-[Mo] sediments:A case study from the Lower Triassic of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519(1):178-193. https://www.sciencedirect.com/science/article/abs/pii/S0031018217310787
[18] Duan Y, Anbar A D, Arnold G L, et al.Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J].Geochimica et Cosmochimica Acta, 2010, 74(23):6655-6668. doi: 10.1016/j.gca.2010.08.035
[19] Wen H J, Carigan J, Zhang Y X, et al.Molybdenum isotopic records across the Precambrian-Cambrian Boundary[J].Geology, 2011, 39(8):775-778. doi: 10.1130/G32055.1
[20] Eroglu S, Schoenberg R, Wille M, et al.Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca.2.58-2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa[J].Precambrian Research, 2015, 266:27-46. doi: 10.1016/j.precamres.2015.04.014
[21] Kurzweil F, Wille M, Schoenberg R, et al.Continuously increasing δ98Mo values in Neoarchean blackshales and iron formations from the Hamersley Basin[J].Geochimica et Cosmochimica Acta, 2015, 164(1):523-542. https://www.sciencedirect.com/science/article/abs/pii/S0016703715002781
[22] Li G S, Wang Y B, Shi G R, et al.Fluctuations of redox conditions across the Permian-Triassic Boundary-New evidence from the GSSP section in Meishan of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 448(15):48-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c98fba540ac9a13248c245103589084
[23] Dickson A J, Jenkyns H C, Porcelli D, et al.Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2(Late Cretaceous)[J].Geochimica et Cosmochimica Acta, 2016, 178(1):291-306. http://cn.bing.com/academic/profile?id=bf4c28aed97e3ef7a708a68879759feb&encoded=0&v=paper_preview&mkt=zh-cn
[24] Kurzweil F, Wille M, Gantert N, et al.Manganese oxide shuttling in pre-GOE oceans-Evidence from molybdenum and iron isotopes[J].Earth and Planetary Science Letters, 2016, 452(15):69-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=773a3659d9e156bfbe3b20d0d709ba4a
[25] Matthews A, Azrieli-Tal I, Benkovitz A, et al.Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies, Fe speciation, Fe and Mo isotopes[J].Chemical Geology, 2017, 475(25):24-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85af14d13ee9dd6a9cf0a1befb740a9d
[26] Dong B H, Long X P, Li J, et al.Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area, South China:Evidence for redox environment corresponding to the Cambrian Explosion[J].Gondwana Research, 2019, 69:45-55. doi: 10.1016/j.gr.2018.12.002
[27] Murthy V R.Elemental and isotopic abundances of moly-bdenum in some meteorites[J].Geochimica et Cosmochimica Acta, 1963, 27:1171-1178. doi: 10.1016/0016-7037(63)90098-X
[28] Nicolussi G K, Pellin M J, Lewis R S, et al.Molybdenum isotopic composition of individual presolar silicon carbide grains from the Murchison meteorite[J].Geochimica et Cosmochimica Acta, 1998, 62(6):1093-1104. doi: 10.1016/S0016-7037(98)00038-6
[29] Burkhardt C, Hin R C, Kleine T, et al.Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation[J].Earth and Planetary Science Letters, 2014, 391(1):201-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c2d5e903b1c71be7c889ddd72714c2f
[30] Worsham E A, Burkhardt C, Budde G, et al.Distinct evolution of the carbonaceous and non-carbonaceous reservoirs:Insights from Ru, Mo, and W isotopes[J].Earth and Planetary Science Letters, 2019, 521(1):103-112. http://cn.bing.com/academic/profile?id=c2f36f44d57614e12971095dd01f70e4&encoded=0&v=paper_preview&mkt=zh-cn
[31] Mathur R, Brantley S, Anbar A, et al.Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits[J].Miner Deposita, 2010, 45(1):43-50. doi: 10.1007/s00126-009-0257-z
[32] Shafiei B, Shamanian G, Mathur R, et al.Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems[J].Mineralium Deposita, 2015, 50(3):281-291. doi: 10.1007/s00126-014-0537-0
[33] Lehmann B, Frei R, Xu L G, et al.Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China:Reconnaissance chromium isotope data and a refined metallogenic model[J].Economic Geology, 2015, 111(1):89-103.
[34] Wang Y, Zhou L, Gao S, et al.Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan Plateau and its implications[J].Mineralium Deposita2015, 51(2):201-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e6f77431d5e3a87aa4af5e9911a409d
[35] Yao J M, Mathur R, Sun W D, et al.Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field[J].Geochemistry, Geophysics, Geosystems, 2016, 17(5):1725-1739. doi: 10.1002/2016GC006328
[36] Migeon V, Bourdon B, Pili E, et al.Molybdenum isotope fractionation during acid leaching of a granitic uranium ore[J].Geochimica et Cosmochimica Acta, 2018, 231(15):30-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddb693ed5dc1a983fa945ba7dc53d610
[37] 胡文峰, 张烨恺, 刘金华, 等.西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义[J].地球科学, 2019, 44(6):1923-1934. http://d.old.wanfangdata.com.cn/Periodical/dqkx201906013
Hu W F, Zhang Y K, Liu J H, et al.The isotopic compositions of copper and molybdenum from porphyry Cu-Mo deposit in the Gangdese, Tibet, and their significance[J].Earth Science, 2019, 44(6):1923-1934. http://d.old.wanfangdata.com.cn/Periodical/dqkx201906013
[38] 孟郁苗, 胡瑞忠, 高剑峰, 等.锑的地球化学行为以及锑同位素研究进展[J].岩矿测试, 2016, 35(4):339-348. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.002
Meng Y M, Hu R Z, Gao J F, et al.Research progress on Sb geochemistry and Sb isotopes[J].Rock and Mineral Analysis, 2016, 35(4):339-348. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.002
[39] 尹鹏, 何倩, 何会军, 等.离子交换树脂法分离沉积物中锶和钕的影响因素研究[J].岩矿测试, 2018, 37(4):379-387. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804170046
Yin P, He Q, He H J, et al.Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J].Rock and Mineral Analysis, 2018, 37(4):379-387. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804170046
[40] 袁永海, 杨锋, 余红霞, 等.微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J].岩矿测试, 2018, 37(4):356-363. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201707290122
Yuan Y H, Yang F, Yu H X, et al.High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2018, 37(4):356-363. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201707290122
[41] Barling J, Arnold G L, Anbar A D.Natural mass-dependent variations in the isotopic composition of molybdenum[J].Earth and Planetary Science Letters, 2001, 193(3-4):447-457. doi: 10.1016/S0012-821X(01)00514-3
[42] Pietruszka A J, Walker R J, Candela P A.Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS:An evaluation of matrix effects[J].Chemical Geology, 2006, 225(1-2):121-136. doi: 10.1016/j.chemgeo.2005.09.002
[43] 张羽旭, 温汉捷, 樊海峰.地质样品中Mo同位素测定的前处理方法研究[J].分析化学, 2009, 37(2):216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010
Zhang Y X, Wen H J, Fan H F.Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples[J].Chinese Journal of Analytical Chemistry, 2009, 37(2):216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010
[44] 张羽旭.非传统稳定同位素Mo、Cd的分析测试方法及其地质应用[D].北京: 中国科学院大学, 2010.
Zhang Y X.The Researches on Analytical Methods of the Isotope Fractionation of Non-traditional Stable Isotopes (Mo, Cd) and Its Application in Earth Sciences[D].Beijing: University of Chinese Academy of Sciences, 2010.
[45] Liu J, Wen H J, Zhang Y X, et al.Precise Mo isotope ratio measurements of low-Mo(ng·g-1) geological samples using MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2016, 31(6):1287-1297. doi: 10.1039/C6JA00006A
[46] Magnall J M, Gleeson S A, Poulton S W, et al.Links between seawater paleoredox and the formation of sediment-hosted massive sulphide (SHMS) deposits-Fe speciation and Mo isotope constraints from Late Devonian mudstones[J].Chemical Geology, 2018, 490(25):45-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f73fdb9ed0826f0f1e08d3d4004403ed
[47] Pearce C R, Cohen A S, Parkinson I J.Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2009, 33(2):219-229. doi: 10.1111/j.1751-908X.2009.00012.x
[48] 李津, 朱祥坤, 唐索寒.钼化学纯化法及其适用的MC-ICP-MS仪器质量分馏校正方法对比[J].岩石矿物学杂志, 2011, 30(4):748-754. doi: 10.3969/j.issn.1000-6524.2011.04.021
Li J, Zhu X K, Tang S H.Ion-exchange separation of Mo and its suitability for sample-standard bracketing and double spiking techniques of mass bias correction[J].Acta Petrologica et Mineralogica, 2011, 30(4):748-754. doi: 10.3969/j.issn.1000-6524.2011.04.021
[49] Li J, Zhu X K, Tang S H, et al.High-precision mea-surement of molybdenum isotopic compositions of selected geochemical reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3):405-415. doi: 10.1111/j.1751-908X.2015.00369.x
[50] King E K, Thompson A, Chadwick O A, et al.Moly-bdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect[J].Chemical Geology, 2016, 445(16):54-67. https://www.sciencedirect.com/science/article/abs/pii/S0009254116300249
[51] Kraus K A, Nelson F, Moore G E.Molybdenum(Ⅵ), tungsten(Ⅵ) and uranium(Ⅵ) in HCl and HCl-HF solutions[J].Journal of the American Chemical Society, 1955, 77(5):3972-3977.
[52] Wen H J, Carigan J, Cloquet C, et al.Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS:Proposition for delta zero and secondary references[J].Journal of Analytical Atomic Spectrometry, 2010, 25(5):716-721. doi: 10.1039/b921060a
-