Development of Separating and Purifying Methods for Lithium Isotope Analysis of Bauxite
-
摘要: 铝土矿是极端风化作用的产物,也是锂的重要载体,由于其资源量巨大,对铝土矿中锂的富集机制和分布规律的研究将有利于找矿预测。锂同位素的高效准确分析是深入认识矿物中锂的富集机制和分布规律的基础。铝土矿样品由于化学稳定性较强,溶样过程较为复杂,且Al、Na、Ca、K等基体元素含量远高于锂,给锂的纯化增加不少难度。本文采用内径5mm、柱长190mm的聚四氟乙烯离子交换柱和AG50W-X12阳离子交换树脂,以0.5mol/L硝酸为淋洗液淋洗34mL,收集最后的12mL,即可完成对铝土矿中锂的完全纯化回收。该纯化方法减少了淋洗液的使用量,提高了实验效率。采用该方法对国际标样L-SVEC、RGM-2、GSP-2进行锂的纯化,通过多接收电感耦合等离子体质谱仪(MC-ICP-MS)测试锂同位素组成,得到的δ7Li测试值分别为-0.26‰±0.09‰(2SD,n=3)、3.19‰±0.37‰(2SD,n=3)、-0.78‰±0.22‰(2SD,n=3),与前人报道一致,验证了该方法的可靠性。此外,采用本方案对铝土矿国家标样(GBW07182)进行锂的纯化,δ7Li测定值为10.16‰±0.21‰(2SD,n=3)。Abstract:
BACKGROUNDBauxite is a product from extreme weathering, an important carrier of lithium. Due to its huge resources, the study on the mechanism and distribution of lithium in bauxite will be beneficial to the prospecting and prediction of bauxite deposits. Efficient and accurate analysis of lithium isotopes is the basis for deep understanding of the lithium enrichment mechanism and distribution driplines in the ores. The bauxite samples are more chemically stable and the sample dissolution process is more complicated. The content of matrix elements such as Al, Na, Ca and K is much higher than that of Li, which makes it difficult to purify Li. OBJECTIVESTo establish a method for separating and purifying lithium in bauxite for Li isotope analysis. METHODSOn the basis of previous studies, the separation, purification, and measurement scheme of Li in bauxite were investigated by leaching experiment. RESULTSIn this scheme, polytetrafluoroethylene exchange column with an inner diameter of 5mm and a column length of 190mm, and AG50W-X12 cation exchange resin were used. 34mL of 0.5mol/L nitric acid was used as the eluent and the final solution was 12mL, resulting in complete purification and recovery of Li in bauxite. At the same time, the method was used to purify the Li in international standard samples, L-SVEC, RGM-2 and GSP-2, and the values of δ7Li were measured by MC-ICP-MS, which were -0.26‰±0.09‰ (2SD, n=3), 3.19‰±0.37‰ (2SD, n=3), -0.78‰±0.22‰ (2SD, n=3). The analytical results were consistent with the previous results obtained by other methods, verifying the reliability of this method. The proposed method was used to purify bauxite standard sample, GBW07182, which yielded δ7Li of 10.16‰±0.21‰ (2SD, n=3). CONCLUSIONSThe purification method reduces the amount of eluent used and improves experimental efficiency. -
Key words:
- bauxite /
- associated lithium /
- separation and purification /
- Li isotope /
- MC-ICP-MS /
- standard materials
-
-
表 1 测量离子浓度和锂同位素的仪器参数
Table 1. Instrument parameters for measuring ion concentration and Li isotope
仪器类型 参数 工作条件 ICP-MS
(型号Agilent 7900)射频功率 1550W 采样深度 8.00mm 雾化气流量 1.10L/min 雾化室温度 1℃ MC-ICP-MS
(型号Neptune Plus)射频功率 1200W 样品冷却气流量 15.00L/min 样品辅助气流量 0.70L/min 样品气流量 1.13L/min 提取电压 -2000V 仪器质量分辨率 低分辨 样品锥和截取锥 Jet sampler, X skimmer 杯 L4,C,H4 表 2 标样中锂元素含量
Table 2. Li element content in standard samples
标样编号 元素组成/成分 元素浓度
(μg/g)来源 Y-1 Li 1 阿法埃莎化学有限公司 Ag、Al、As、Ba、Cu、Cd、
Co、Cs、Fe、Ga、K、Mg、
Mn、Na、Rb、Zn、Ni、Se、
U、Pb、Sn、V各元素
浓度
均为1Y-2 Li 0.4 阿法埃莎化学有限公司 Na 2.0 Al 120.0 Mg 5.6 K 10.8 Ca 24.8 Ti 7.6 Fe 27.6 L-SVEC 纯碳酸锂 约100% 美国国家标准技术研究院 RGM-2 流纹岩 57 美国地质调查局 GSP-2 花岗闪长岩 36 美国地质调查局 GBW07182 铝土矿 147 国家地质实验测试中心 GSB Li Li 约100% 国家钢铁材料测试中心 Alfa Li Li 约100% 阿法埃莎化学有限公司 表 3 不同锂分离提纯方法的对比
Table 3. Comparison of Li separation and purification methods
方法编号 分离提纯实验步骤 交换柱 参考文献 1 ①用6mL 0.5mol/L硝酸平衡树脂(2mL/次)。
②将样品蒸干后溶于1mL 0.5mol/L硝酸,注入柱子中。
③用0.5mol/L硝酸淋洗,收集22~34mL区间内的淋洗液。聚四氟乙烯交换柱
(内径5mm,柱长190mm)本文 2 ①用3倍于柱子体积的0.5mol/L盐酸平衡树脂。
②将样品蒸干后溶于200μL0.5mol/L盐酸,注入柱子中。
③用0.5mol/L盐酸淋洗,收集6~11mL区间内的淋洗液。聚四氟乙烯交换柱
(内径3.2mm,柱长250mm)[29] 3 ①用20mL 0.15mol/L盐酸分两次平衡柱子。
②将样品蒸干后溶于0.15mol/L盐酸,注入柱子中。
③用190mL 0.15mol/L盐酸淋洗,收集后面80mL淋洗液。石英交换柱
(内径8mm,柱长300mm)[6] 4 ①用1mL 4mol/L盐酸平衡柱子。
②将样品蒸干后溶于1mL 4mol/L盐酸,注入柱1。
③用5mL 2.8mol/L盐酸洗脱,收集1mL工作液和5mL淋洗液。聚丙烯交换柱
(填充1.2mL树脂)[30] ④将经柱1处理的淋洗液蒸干,溶于2mL 0.15mol/L盐酸,注入柱2。
⑤用21mL 0.15mol/L盐酸洗脱,收集加入的21mL淋洗液。聚丙烯交换柱
(填充1.5mL树脂)⑥将经过柱2处理的1mL工作液注入柱3。
⑦用8mL 0.5mol/L盐酸和30%乙醇洗脱,收集并蒸干。石英交换柱
(填充1mL树脂)5 ①用2mL 0.67mol/L硝酸和30%甲醇混合溶液平衡树脂。
②将1mL样品溶液注入柱子中(200μL/次)。
③用1mol/L硝酸和80%甲醇混合液淋洗,收集10~25mL区间内的淋洗液。石英交换柱
(内径6mm,柱长215mm)[31] 表 4 GBW07182一次/二次纯化效果对比
Table 4. Comparison of primary/secondary purification effect for GBW07182
元素 元素含量(ng/g) GBW07182-柱1 GBW07182-柱2 Li 212.95 196.01 Na 518.22 325.66 Mg 8.38 0.00 Al 1251.65 0.51 K 126.51 21.34 Ca 111.83 52.40 Fe 51.36 0.00 表 5 纯化过程中标样锂回收率统计
Table 5. Statistics of recovery rate of Li in standard samples purification process
样品编号 锂上样量
(ng)锂接收量
(ng)锂回收率
(%)淋洗区间
(mL)L-SVEC-柱1 429.38 429.38 100.0 25~33 Y-1-柱1 844.86 844.86 100.0 25~33 GBW07182-柱1 428.92 425.90 99.30 25~33 GBW07182-柱2 392.11 392.03 99.98 25~33 Y-2-柱1 425.25 425.25 100.0 25~33 L-SVEC-柱1 1086.98 1086.98 100.0 23~31 L-SVEC-柱1 2251.11 2251.11 100.0 25~33 L-SVEC-柱2 2279.03 2275.08 99.83 25~33 GBW07182-柱1 2557.13 2557.13 100.0 25~33 GBW07182-柱2 2856.76 2854.17 99.91 25~33 表 6 本实验标准样品的锂同位素组成测定结果与文献报道值的对比
Table 6. Comparison of Li isotopic ratio in this experiment and reported values in literatures
标准样品编号 δ7Li测定值
(2SD,‰)数据来源 L-SVEC
(纯碳酸锂)0±2.4 [49] 0.0±0.03 [50] 0.2±0.82 [39] 0.2±0.3(未过柱) [51] -0.3±0.3(过柱) [51] -0.26±0.09(n=3)(2遍柱) 本实验 -0.31±0.34(n=3)(2遍柱) 本实验 RGM-2
(流纹岩)2.75±0.15 [31] 3.19±0.37(n=3)(2遍柱) 本实验 2.26±0.14(n=3)(2遍柱) 本实验 2.44±0.85(n=3)(2遍柱) 本实验 2.22±1.02(n=3)(2遍柱) 本实验 GSP-2
(花岗闪长岩)-0.86±0.26 [51] -0.75±0.21 [51] -0.8±0.3 [52] -0.78±0.25 [31] -0.64±0.19(n=3)(2遍柱) 本实验 -0.78±0.22(n=3)(2遍柱) 本实验 GBW07182
(铝土矿)10.84±0.26(n=3)(2遍柱) 本实验 10.23±0.18(n=3)(2遍柱) 10.07±0.06(n=3)(2遍柱) 10.46±0.25(n=3)(2遍柱) 9.93±0.27(n=3)(2遍柱) 9.89±0.10(n=3)(2遍柱) 10.48±0.34(n=3)(2遍柱) 10.15±0.14(n=3)(2遍柱) 10.26±0.24(n=3)(2遍柱) 10.01±0.18(n=3)(2遍柱) 9.81±0.39(n=3)(2遍柱) 9.83±0.16(n=3)(2遍柱) -
[1] Pistiner J S, Henderson G M.Lithium-isotope fractionation during continental weathering processes[J].Earth & Planetary Science Letters, 2003, 214(1):327-339. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026520886/
[2] Tomascak, Magna P, Dohmen T, et al.Advances in Lithium Isotope Geochemistry[M].Berlin:Springer-Verlag, 2016.
[3] Huh Y, Chan L H, Zhang L, et al.Lithium and its isotopes in major world rivers:Implications for weathering and the oceanic budget[J].Geochimica et Cosmochimica Acta, 1998, 62(12):2039-2051. doi: 10.1016/S0016-7037(98)00126-4
[4] Lemarchand E, Chabaux F, Vigier N, et al.Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France)[J].Geochimica et Cosmochimica Acta, 2010, 74(16):4612-4628. doi: 10.1016/j.gca.2010.04.057
[5] Liu X M, Rudnick R L, Mcdonough W F, et al.Influence of chemical weathering on the composition of the continental crust:Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts[J].Geochimica et Cosmochimica Acta, 2013, 115(5):73-91. http://cn.bing.com/academic/profile?id=efb87ed0a9e605b013fcf8eb54965f9b&encoded=0&v=paper_preview&mkt=zh-cn
[6] 汪齐连, 赵志琦, 刘丛强, 等.天然样品中锂的分离及其同位素比值的测定[J].分析化学, 2006, 34(6):764-768. doi: 10.3321/j.issn:0253-3820.2006.06.005
Wang Q L, Zhao Z Q, Liu C Q, et al.Separation and isotopic determination of lithium in natural samples[J].Chinese Journal of Analytical Chemistry, 2006, 34(6):764-768. doi: 10.3321/j.issn:0253-3820.2006.06.005
[7] Zack T, Tomascak P B, Rudnick R L, et al.Extremely light Li in orogenic eclogites:The role of isotope fractionation during dehydration in subducted oceanic crust[J].Earth & Planetary Science Letters, 2003, 208(3):279-290. http://cn.bing.com/academic/profile?id=b30464dd8ec3f6ec9c2f2bfc8c86bfa9&encoded=0&v=paper_preview&mkt=zh-cn
[8] Brant C, Coogan L A, Gillis K M, et al.Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise[J].Geochimica et Cosmochimica Acta, 2012, 96(none):272-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79b3e0f07008b195dd2ac3c86b79feea
[9] Chan L H, Lassiter J C, Hauri E H, et al.Lithium isotope systematics of lavas from the Cook-Austral Islands:Constraints on the origin of HIMU mantle[J].Earth and Planetary Science Letters, 2009, 277(3-4):433-442. doi: 10.1016/j.epsl.2008.11.009
[10] Tang Y J, Zhang H F, Deloule E, et al.Slab-derived lithium isotopic signatures in mantle xenoliths from Northeastern North China Craton[J].Lithos, 2012, 149(1):79-90. http://cn.bing.com/academic/profile?id=0aa3c2d158b0e13d4e1c02a1634c4d80&encoded=0&v=paper_preview&mkt=zh-cn
[11] Cullen J T, Hurwitz S, Barnes J D, et al.Temperature-dependent variations in mineralogy, major element chemistry and the stable isotopes of boron, lithium and chlorine resulting from hydration of rhyolite:Constraints from hydrothermal experiments at 150 to 350℃ and 25MPa[J].Geochimica et Cosmochimica Acta, 2019, 261:269-287. doi: 10.1016/j.gca.2019.07.012
[12] Bottomley D J, Katz A, Chan L H, et al.The origin and evolution of Canadian Shield brines:Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton[J].Chemical Geology, 1999, 155(3-4):295-320. doi: 10.1016/S0009-2541(98)00166-1
[13] Orberger B, Rojas W, Millot R, et al.Stable isotopes (Li, O, H) combined with brine chemistry:Powerful tracers for Li origins in Salar deposits from the Puna Region, Argentina[J].Procedia Earth and Planetary Science, 2015, 13:307-311. doi: 10.1016/j.proeps.2015.07.072
[14] 李建森, 凌智永, 山发寿, 等.东昆仑山南、北两侧富锂盐湖成因的氢、氧和锶同位素指示[J].湿地科学, 2019, 17(4):391-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201904003
Li J S, Ling Z Y, Shan F S, et al.Hydrogen, oxygen and strontium isotopes indication on origin of lithium-rich salt lakes in Eastern Kunlun mountains[J].Wetland Science, 2019, 17(4):391-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201904003
[15] Magna T, Wiechert U, Halliday A N.New constraints on the lithium isotope compositions of the Moon and terrestrial planets[J].Earth and Planetary Science Letters, 2006, 243(3-4):336-353. doi: 10.1016/j.epsl.2006.01.005
[16] Liu M C, McKeegan K D, Goswami J N, et al.Isotopic records in CM hibonites:Implications for timescales of mixing of isotope reservoirs in the Solar nebula[J].Geochimica et Cosmochimica Acta, 2009, 73(17):5051-5079. doi: 10.1016/j.gca.2009.02.039
[17] Kunihiro K, Ota T, Nakamura E.Lithium and oxygen isotope compositions of chondrule constituents in the Allende Meteorite[J].Geochimica et Cosmochimica Acta, 2019, 252:107-125. doi: 10.1016/j.gca.2019.02.038
[18] Rudnick R L, Tomascak P B, Njo H B, et al.Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J].Chemical Geology, 2004, 212(1-2):45-57. doi: 10.1016/j.chemgeo.2004.08.008
[19] Ushikubo T, Kita N T, Cavosie A J, et al.Lithium in Jack Hills zircons:Evidence for extensive weathering of Earth's earliest crust[J].Earth & Planetary Science Letters, 2008, 272(3):666-676. http://cn.bing.com/academic/profile?id=5f6283982c3bbfe1ba03cd14eaafa501&encoded=0&v=paper_preview&mkt=zh-cn
[20] Sun H, Xiao Y, Gao Y, et al.Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permia-Triassic boundary[J].Proceedings of the National Academy of Sciences, 2018, 115(15):3782-3787. doi: 10.1073/pnas.1711862115
[21] Weynell M, Wiechert U, Schuessler J A.Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, Northeastern Tibetan Plateau[J].Geochimica et Cosmochimica Acta, 2017, 213:155-177. doi: 10.1016/j.gca.2017.06.026
[22] Kısakürek B, James R H, Harris N B W.Li and δ7Li in Himalayan rivers:Proxies for silicate weathering?[J].Earth and Planetary Science Letters, 2005, 237(3-4):387-401. doi: 10.1016/j.epsl.2005.07.019
[23] 汪齐连, 刘丛强, 赵志琦, 等.长江流域河水和悬浮物的锂同位素地球化学研究[J].地球科学进展, 2008, 23(9):952-958. doi: 10.3321/j.issn:1001-8166.2008.09.006
Wang Q L, Liu C Q, Zhao Z Q, et al.Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China[J].Advances in Earth Science, 2008, 23(9):952-958. doi: 10.3321/j.issn:1001-8166.2008.09.006
[24] Murphy M J, Porcelli D, Strandmann P, et al.Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J].Geochimica et Cosmochimica Acta, 2019, 245:154-171. doi: 10.1016/j.gca.2018.10.024
[25] Qi H H, Ma C, He Z K, et al.Lithium and its isotopes as tracers of groundwater salinization:A study in the southern coastal plain of Laizhou Bay, China[J].Science of the Total Environment, 2019, 650:878-890. doi: 10.1016/j.scitotenv.2018.09.122
[26] 张俊文.花岗岩风化过程锂同位素行为及其环境指示意义[D].武汉: 中国地质大学(武汉), 2018.
Zhang J W.Behavior of Lithium Isotopes and Environmental Indications during Granite Weathering[D].Wuhan: China University of Geosciences (Wuhan), 2018.
[27] 叶霖, 潘自平, 程增涛.贵州修文小山坝铝土矿中镓等伴生元素分布规律研究[J].矿物学报, 2008, 28(2):105-111. doi: 10.3321/j.issn:1000-4734.2008.02.001
Ye L, Pan Z P, Cheng Z T.The regularities of distribution of associated elements in Xiaoshanba bauxite deposit, Guizhou[J].Acta Mineralogica Sinica, 2008, 28(2):105-111. doi: 10.3321/j.issn:1000-4734.2008.02.001
[28] 于沨, 王登红, 于扬, 等.国内外主要沉积型锂矿分布及勘查开发现状[J].岩矿测试, 2019, 38(3):354-364. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901180013
Yu F, Wang D H, Yu Y, et al.The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J].Rock and Mineral Analysis, 2019, 38(3):354-364. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901180013
[29] Misra S, Froelich P N.Measurement of lithium isotope ratios by quadrupole-ICP-MS:Application to seawater and natural carbonates[J].Journal of Analytical Atomic Spectrometry, 2009, 24(11):1524-1533. doi: 10.1039/b907122a
[30] 苏嫒娜, 田世洪, 李真真, 等.MC-ICP-MS高精度测定Li同位素分析方法[J].地学前缘, 2011, 18(2):304-314. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102027
Su A N, Tian S H, Li Z Z, et al.High-precision measurement of lithium isotopes using MC-ICP-MS[J].Earth Science Frontiers, 2011, 18(2):304-314. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102027
[31] 蔺洁, 刘勇胜, 胡兆初, 等.MC-ICP-MS准确测定地质样品中锂同位素组成[J].矿物岩石地球化学通报, 2016, 35(3):458-464. doi: 10.3969/j.issn.1007-2802.2016.03.008
Lin J, Liu Y S, Hu Z C, et al.Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3):458-464. doi: 10.3969/j.issn.1007-2802.2016.03.008
[32] 王琰, 孙洛新, 张帆, 等.电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛[J].岩矿测试, 2013, 32(5):719-723. doi: 10.3969/j.issn.0254-5357.2013.05.008 http://www.ykcs.ac.cn/article/id/b77e549e-dbd2-49c3-96ce-9d0075b681e6
Wang Y, Sun L X, Zhang F, et al.Determination of Si, Al, Fe and Ti in bauxite by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(5):719-723. doi: 10.3969/j.issn.0254-5357.2013.05.008 http://www.ykcs.ac.cn/article/id/b77e549e-dbd2-49c3-96ce-9d0075b681e6
[33] 赵悦, 侯可军, 田世洪, 等.常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J].岩矿测试, 2015, 34(1):28-39. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.004
Zhao Y, Hou K J, Tian S H, et al.Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):28-39. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.004
[34] Huang K F, You C F, Liu Y H, et al.Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2010, 25(7):1019. doi: 10.1039/b926327f
[35] 袁永海, 杨锋, 余红霞, 等.微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J].岩矿测试, 2018, 37(4):356-363. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201707290122
Yuan Y H, Yang F, Yu H X, et al.High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2018, 37(4):356-363. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201707290122
[36] Hoecke K V, Belza J, Croymans T, et al.Single-step chromatographic isolation of lithium from whole rock carbonate and clay for isotopic analysis with multi-collector ICP-mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2015, 30(12):2-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a6388002a2eb5a24ede6a4b3dfdc19c
[37] 程琤.溶液法大型多接收等离子质谱准确分析地质样品中的Si同位素组成研究[D].西安: 西北大学, 2016.
Cheng C.Determination of Si Isotopic Compositions of Geological Samples Using Solution Nebulization High Resolution Multi-collector Inductively Coupled Plasma Mass Spectrometry[D].Xi'an: Northweat University, 2016.
[38] Zambardi T, Poitrasson F.Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2010, 35(1):89-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=729af0dc086ca2555940bbfe1f60ca5e
[39] Nishio Y, Nakai S.Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 456(2):271-281. doi: 10.1016/S0003-2670(02)00042-9
[40] 刘峪菲.钙镁同位素分析方法的改进完善和对西藏拉萨地块中新世火成岩的岩浆源区示踪[D].北京: 中国科学院大学, 2017.
Liu Y F.The Improvements of Calcium and Magesum Isotope Analytical Methods and Their Implications for Tracing the Magma Source of Miocene Magmatic Rocks in the Lhasa Terrane, South Tibet[D].Beijing: University of Chinese Academy of Sciences, 2017.
[41] 张路远, 陈宁, 侯小琳, 等.大气129I水平对超低129I含量地质样品分析中流程空白的影响[J].地球环境学报, 2016, 7(5):529-536. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201605010
Zhang L Y, Chen N, Hou X L, et al.Influence of atmospheric 129I level on procedural blanks in analysis of ultra-low 129I geological samples[J].Journal of Earth Environment, 2016, 7(5):529-536. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201605010
[42] 吕彩芬, 何红蓼, 周肇茹, 等.锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金Ⅱ.分析流程空白的降低[J].岩矿测试, 2002, 21(1):7-11. doi: 10.3969/j.issn.0254-5357.2002.01.002 http://www.ykcs.ac.cn/article/id/ykcs_20020103
Lü C F, He H L, Zhou Z R, et al.Determination of platinum group elements and gold in geochemical exploration samples by nickel sulfide fire assay-ICP-MS. Ⅱ.Reduction of reagent blank[J].Rock and Mineral Analysis, 2002, 21(1):7-11. doi: 10.3969/j.issn.0254-5357.2002.01.002 http://www.ykcs.ac.cn/article/id/ykcs_20020103
[43] Bryant C J, McCulloch M T, Bennett V.Impact of matrix effects on the accurate measurement of Li isotope ratios by inductively coupled plasma mass spectrometry (MC-ICP-MS) under "cold" plasma conditions[J].Journal of Analytical Atomic Spectrometry, 2003, 18:734-737. doi: 10.1039/B212083F
[44] 苟龙飞, 金章东, 邓丽, 等.高效分离Li及其同位素的MC-ICP-MS精确测定[J].地球化学, 2017, 46(6):528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003
Gou L F, Jin Z D, Deng L, et al.Efficient purification for Li and high-precision and accuracy determination of Li isotopic compositions by MC-ICP-MS[J].Geochimica, 2017, 46(6):528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003
[45] 史凯, 朱建明, 吴广亮, 等.地质样品中高精度铬同位素分析纯化技术研究进展[J].岩矿测试, 2019, 38(3):341-353. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805130059
Shi K, Zhu J M, Wu G L, et al.A review on the progress of purification techniques for high precision determination of Cr isotopes in geological samples[J].Rock and Mineral Analysis, 2019, 38(3):341-353. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805130059
[46] Rosner M, Ball L, Ehrenbrink B P, et al.A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and δ7Li values of seawater and rock reference materials[J].Geostandards and Geoanalytical Research, 2007, 31(2):77-88. doi: 10.1111/j.1751-908X.2007.00843.x
[47] Seitz H M, Brey G P, Lahaye Y, et al.Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes[J].Chemical Geology, 2004, 212(1-2):0-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ba93766f12546b5027f397a1b6300e5e
[48] Macpherson G L, Phan T T, Stewart B W.Direct determination (without chromatographic separation) of lithium isotopes in saline fluids using MC-ICP-MS:Establishing limits on water chemistry[J].Journal of Analytical Atomic Spectrometry, 2015, 30(7):1673-1678. doi: 10.1039/C5JA00060B
[49] Carignan J, Cardinal D, Eisenhauer A, et al.A reflection on Mg, Cd, Ca, Li and Si isotopic measurements and related reference materials[J].Geostandards & Geoanalytical Research, 2010, 28(1):139-148. http://cn.bing.com/academic/profile?id=d730a55054b75144e8ce7f092d099453&encoded=0&v=paper_preview&mkt=zh-cn
[50] Jeffcoate A B, Elliott T, Thomas A, et al.Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J].Geostandards & Geoanalytical Research, 2010, 28(1):161-172. http://cn.bing.com/academic/profile?id=d776db86de6ea94f500c6fd68dd734b4&encoded=0&v=paper_preview&mkt=zh-cn
[51] Simons K K, Harlow G E, Brueckner H K, et al.Lithium isotopes in Guatemalan and Franciscan HP-LT rocks:Insights into the role of sediment-derived fluids during subduction[J].Geochimica et Cosmochimica Acta, 2010, 74(12):3621-3641. doi: 10.1016/j.gca.2010.02.033
[52] Sun H, Gao Y, Xiao Y, et al.Lithium isotope fractionation during incongruent melting:Constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China[J].Chemical Geology, 2016, 439:71-82. doi: 10.1016/j.chemgeo.2016.06.004
-