中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成

高建飞, 徐衍明, 范昌福, 胡斌, 李延河. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128
引用本文: 高建飞, 徐衍明, 范昌福, 胡斌, 李延河. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128
Jian-fei GAO, Yan-ming XU, Chang-fu FAN, Bin HU, Yan-he LI. Analysis of Sulfur Isotope Composition of Gypsum Samples by Elemental Analyzer-Isotope Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128
Citation: Jian-fei GAO, Yan-ming XU, Chang-fu FAN, Bin HU, Yan-he LI. Analysis of Sulfur Isotope Composition of Gypsum Samples by Elemental Analyzer-Isotope Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成

  • 基金项目:
    中国地质科学院矿产资源研究所基本科研业务费项目(KK1913)
详细信息
    作者简介: 高建飞, 博士, 副研究员, 主要研究方向为同位素地球化学。E-mail:34209995@qq.com
    通讯作者: 范昌福, 博士, 副研究员, 主要研究方向为同位素地球化学。E-mail:tjfchangfu@163.com
  • 中图分类号: O657.63

Analysis of Sulfur Isotope Composition of Gypsum Samples by Elemental Analyzer-Isotope Mass Spectrometry

More Information
  • 硫酸盐硫同位素的常规分析方法是将硫酸盐转化为硫酸钡后搭配双路进样SO2法,该法易于操作、数据稳定,但样品用量大、费时费力,需要繁杂的前处理,无法满足微量分析发展方向的需求。本文以石膏为例,以元素分析仪-气体同位素质谱法(EA-IRMS)直接测定硫酸钙样品硫同位素比值,对同一样品分别采用:①硫酸钙与V2O5混合后包裹于锡杯中密封,直接进行元素分析仪-气体同位素质谱分析;②硫酸钙充分溶于去离子水中,向溶有硫酸钙样品的液体中加入沉淀试剂BaCl2,将生成的硫酸钡沉淀滤出后,用去离子水清洗2~3遍,烘干后与V2O5混合包裹于锡杯中密封再进行质谱测定。实验选取了13件δ34S值变化范围介于-20‰~+30‰之间的天然石膏样品,将获得的硫同位素比值进行对比,二者δ34SV-CDT绝对差值在0.00‰~0.24‰,表明同一样品的硫同位素比值结果在误差范围内基本一致。与常规分析方法相比,本文建立的直接在线分析时无需任何化学前处理,只需直接加入适量的V2O5,V2O5和氧气中的外部氧在瞬间燃烧的过程中替代了硫酸钙本身的氧,生成的SO2气体的氧是均一的,其硫同位素比值能代表样品的硫同位素组成,无需进行氧同位素的校正。经过验证表明,硫酸钙样品的直接在线分析是完全可行的。
  • 加载中
  • 图 1  EA-IRMS系统主要装置结构示意图

    Figure 1. 

    图 2  原始样品与经处理样品的δ34SV-CDT(‰)实测值线性图

    Figure 2. 

    表 1  原始样品与经处理样品的δ34SV-CDT(‰)实测值对比

    Table 1.  Comparison of the measured δ34SV-CDT(‰) values of original samples and treated samples

    样品编号 δ34SV-CDT(‰) 处理前后
    的差值
    原始样品(CaSO4) 经处理样品(BaSO4)
    样品1 -20.41 -20.65 0.24
    样品2 -13.44 -13.56 0.12
    样品3 0.82 0.77 0.05
    样品4 1.91 2.02 0.11
    样品5 -10.05 -9.95 0.10
    样品6 -23.91 -24.10 0.19
    样品7 15.39 15.18 0.21
    样品8 30.77 30.60 0.17
    样品9 24.75 24.65 0.09
    样品10 32.31 32.31 0.00
    样品11 19.92 20.01 0.09
    样品12 8.13 8.16 0.03
    样品13 -3.53 -3.62 0.09
    下载: 导出CSV
  • [1]

    Ohmoto H, Kakegawa T, Donald R L, et al.3.4-billion-year-old biogenic pyrites from Barberton, South Africa:Sulfur isotope evidence[J].Science, 1993, 262:555-557. doi: 10.1126/science.11539502

    [2]

    Ohmoto H, Goldhaber M B.Sulfur and Carbon Isotopes[M]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits (3rd Edition).New York: John Wiley and Sons, 1997: 517-611.

    [3]

    Ono S.Multiple-sulphur isotope biosignatures[J].Space Science Reviews, 2008, 135(1-4):203-220. doi: 10.1007/s11214-007-9267-2

    [4]

    Partridge M A, Golding S D, Baublys K, et al.Pyrite paragenesis and multiple sulfur isotope distribution in Late Archean and Early Paleoproterozoic hamersley basin sediments[J].Earth and Planetary Science Letters, 2008, 272(1-2):0-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95c4aec554daddf38e4372b5399893a7

    [5]

    Bowins R J, Crocket J H.Sulfur and carbon isotopes in Archean banded iron formations:Implications for sulfur sources[J].Chemical Geology, 1994, 111:307-323. doi: 10.1016/0009-2541(94)90097-3

    [6]

    Kakegawa T, Ohmoto H.Sulfur isotope evidence for the origin of 3.4 to 3.1Ga pyrite at the Princeton gold mine, Barberton Greenstone Belt, South Africa[J].Precambrian Research, 1999, 96:209-224. doi: 10.1016/S0301-9268(99)00006-6

    [7]

    刘成林, 王弭力, 焦鹏程.新疆罗布泊盐湖氢氧锶硫同位素地球化学及钾矿成矿物质来源[J].矿床地质, 1999, 18(3):268-275. doi: 10.3969/j.issn.0258-7106.1999.03.009

    Liu C L, Wang M L, Jiao P C.Hydrogen, oxygen, strontium and sulfur isotopic geochemistry and potash-forming material sources of LOP salt lake, Xinjiang[J].Mineral Deposits, 1999, 18(3):268-275. doi: 10.3969/j.issn.0258-7106.1999.03.009

    [8]

    张华, 刘成林, 王立成, 等.老挝他曲盆地钾盐矿床蒸发岩硫同位素特征及成钾指示意义[J].地质论评, 2014, 60(4):851-857. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404014

    Zhang H, Liu C L, Wang L C, et al.Characteristics of evaporites sulfur isotope from Potash Deposit in Thakhek Basin, Laos, and its implication for potash formation[J].Geological Review, 2014, 60(4):851-857. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404014

    [9]

    任顺利, 李延河, 曾普胜, 等.膏盐层在云南会泽和毛坪铅锌矿成矿中的作用:硫同位素证据[J].地质学报, 2018, 92(5):1041-1055. doi: 10.3969/j.issn.0001-5717.2018.05.010

    Ren S L, Li Y H, Zeng P S, et al.Effect of sulfate evaporate salt layer in mineralization of the Huize and Maoping lead-zinc deposits in Yunnan:Evidence from sulfur isotope[J].Acta Geologica Sinica, 2018, 92(5):1041-1055. doi: 10.3969/j.issn.0001-5717.2018.05.010

    [10]

    Strauss H.Geological evolution from isotope proxy signals-sulfur[J].Chemical Geology, 1999, 161(1):89-101. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210439375/

    [11]

    Ahmad K, Davies C.A model of basin evolution in the Qa'Al-Azraq, Jordan using sulfur isotope analysis to distinguish sources of sulfur and gypsum[J].Carbonates & Evaporites, DOI:10.1107/s13146-017-0138-2.

    [12]

    李庆宽, 樊启顺, 山发寿, 等.海陆相蒸发岩硫同位素值变化和地球化学应用[J].盐湖研究, 2018, 26(1):73-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhyj201801011

    Li Q K, Fan Q S, Shan F S, et al.The variation of sulfur isotope in marine-continental evaporites and its geochemical applications[J].Journal of Salt Lake Research, 2018, 26(1):73-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhyj201801011

    [13]

    Kazuya T, Yoichi N, Yuko M, et al.High-sensitivity sulfur isotopic measurements for Antarctic ice core analyses[J].Rapid Communications in Mass Spectrometry, 2018, 32:1991-1998. doi: 10.1002/rcm.8275

    [14]

    李延河, 段超, 韩丹, 等.膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J].岩石学报, 2014, 30(5):1355-1368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201405012

    Li Y H, Duan C, Han D, et al.Effect of sulfate evaporate salt layer for formation of porphyrite iorn ores in the Middle-Lower Yangtze River area[J].Acta Petrologica Sinica, 2014, 30(5):1355-1368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201405012

    [15]

    Thode H G, Macnamara J, Collins C B.Narural variations in the isotopic content of sulphur and their signification[J].Canadian Journal of Research, 1949, Canadab-27:361-373. https://www.ncbi.nlm.nih.gov/pubmed/18130453

    [16]

    卞霄鹏, 刘晨晖, 朱志勇, 等.硫酸盐硫同位素的MC-ICP-MS测定方法研究[J].矿物岩石地球化学通报, 2016, 35(3):465-472. doi: 10.3969/j.issn.1007-2802.2016.03.009

    Bian X P, Liu C H, Zhu Z Y, et al.Sulfur isotope measurement of sulfates by using high-resolution MC-ICP-MS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3):465-472. doi: 10.3969/j.issn.1007-2802.2016.03.009

    [17]

    Giesemann A, Jaeger H J, Norman A L, et al.Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer[J].Analytical Chemistry, 1994, 66(18):2816-2819. doi: 10.1021/ac00090a005

    [18]

    Baublys1 K A, Goldingl S D, Youngl E, et al.Simultaneous determination of δ33SV-CDT and δ34SV-CDT using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer[J]. Rapid Communications in Mass Spectrometry, 2004, 18:2765-2769. doi: 10.1002/rcm.1681

    [19]

    Fourel F, Martineau F, Seris M, et al.Simultaneous N, C, S stable isotope analyses using a new purge and trap elemental analyzer and an isotope ratio mass spectrometer[J].Rapid Communications in Mass Spectrometry, 2014, 28(23):2587-2594. doi: 10.1002/rcm.7048

    [20]

    Grassineau N V, Mattey D P, Lowry D.Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry[J].Analysis Chemistry, 2001, 73:220-225. doi: 10.1021/ac000550f

    [21]

    Grassineau N V.High-precision EA-IRMS analysis of S and C isotopes in geological materials[J].Applied Geochemistry, 2006, 21:756-765. doi: 10.1016/j.apgeochem.2006.02.015

    [22]

    Studley S A, Ripley E M, Elswick E R, et al.Analysis of sulfides in whole rock matrices by elemental analyzer-continuous flow isotope ratios mass spectrometry[J].Chemical Geology, 2002, 192:141-148. doi: 10.1016/S0009-2541(02)00162-6

    [23]

    金贵善, 刘汉彬, 张建锋, 等.硫化物中硫同位素组成的EA-IRMS分析方法[J].铀矿地质, 2014, 30(3):187-192. doi: 10.3969/j.issn.1000-0658.2014.03.010

    Jin G S, Liu H B, Zhang J F, et al.EA-IRMS system measurement of stable sulfur isotope in sulphide[J].Uranium Geology, 2014, 30(3):187-192. doi: 10.3969/j.issn.1000-0658.2014.03.010

    [24]

    韩娟, 刘汉彬, 金贵善, 等.硫同位素组成的样品提取和制备[J].地质学报, 2015, 89(增刊):82-84. http://d.old.wanfangdata.com.cn/Conference/8771780

    Han J, Liu H B, Jin G S, et al.Sample extraction and preparation of sulfur isotope composition[J].Acta Geological Sinica, 2015, 89(Supplement):82-84. http://d.old.wanfangdata.com.cn/Conference/8771780

    [25]

    Fourel F, Martineau F, Seris M, et al.Simultaneous N, C, S stable isotope analyses using a new purge and trap elemental analyzer and an isotope ratio mass spectrometer[J].Rapid Communications in Mass Spectrometry, 2014, 28(23):2587-2594. doi: 10.1002/rcm.7048

    [26]

    Fry B, Silva S R, Kendall C, et al.Oxygen isotope corrections for online δ34S analysis[J].Rapid Communications in Mass Spectrometry, 2002, 16:854-858. doi: 10.1002/rcm.651

    [27]

    韩娟, 刘汉彬, 金贵善, 等.样品质量对EA-IRMS法测量硫同位素组成的影响[J].铀矿地质, 2018, 34(3):166-173. doi: 10.3969/j.issn.1000-0658.2018.03.006

    Han J, Liu H B, Jin G S, et al.Sample mass influence on the measurement of sulfur isotopic composition by EA-IRMS method[J].Uranium Geology, 2018, 34(3):166-173. doi: 10.3969/j.issn.1000-0658.2018.03.006

    [28]

    白瑞梅, 李金城.热解硫酸钡制备硫同位素分析试样二氧化硫[J].岩矿测试, 1998, 17(1):40-43. doi: 10.3969/j.issn.0254-5357.1998.01.006 http://www.ykcs.ac.cn/article/id/ykcs_19980109

    Bai R M, Li J C.Thermal decomposition of barium sulfate for preparation of sulfur dioxide used in sulfur isotope analysis[J].Rock and Mineral Analysis, 1998, 17(1):40-43. doi: 10.3969/j.issn.0254-5357.1998.01.006 http://www.ykcs.ac.cn/article/id/ykcs_19980109

  • 加载中

(2)

(1)

计量
  • 文章访问数:  2635
  • PDF下载数:  170
  • 施引文献:  0
出版历程
收稿日期:  2019-08-12
修回日期:  2019-09-21
录用日期:  2019-10-21

目录