中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究

胡志中, 王坤阳, 晏雄, 杨波, 杜谷. 锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究[J]. 岩矿测试, 2020, 39(6): 804-815. doi: 10.15898/j.cnki.11-2131/td.201909210135
引用本文: 胡志中, 王坤阳, 晏雄, 杨波, 杜谷. 锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究[J]. 岩矿测试, 2020, 39(6): 804-815. doi: 10.15898/j.cnki.11-2131/td.201909210135
Zhi-zhong HU, Kun-yang WANG, Xiong YAN, Bo YANG, Gu DU. Study on the Morphology of Zircon-bearing Epoxy Resin Surface and Its Effect for LA-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2020, 39(6): 804-815. doi: 10.15898/j.cnki.11-2131/td.201909210135
Citation: Zhi-zhong HU, Kun-yang WANG, Xiong YAN, Bo YANG, Gu DU. Study on the Morphology of Zircon-bearing Epoxy Resin Surface and Its Effect for LA-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2020, 39(6): 804-815. doi: 10.15898/j.cnki.11-2131/td.201909210135

锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究

详细信息
    作者简介: 胡志中, 硕士, 工程师, 主要从事微区原位分析。E-mail:hzz_pot@aliyun.com
    通讯作者: 杜谷, 硕士, 教授级高级工程师, 主要从事岩石、矿物分析研究。E-mail:dugucgs@163.com
  • 中图分类号: O657.63

Study on the Morphology of Zircon-bearing Epoxy Resin Surface and Its Effect for LA-ICP-MS Analysis

More Information
  • 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是目前锆石研究常用方法之一,该法普遍采用环氧树脂靶为载体,对锆石环氧树脂靶表面形貌及平整度影响进行研究,有助于评估其制作工艺以及LA-ICP-MS锆石分析的准确性。本次研究采用原子力显微镜(AFM)对锆石环氧树脂靶表面进行形貌分析,并通过分析和对比193nm激光不同剥蚀模式和不同剥蚀条件下的锆石表面形貌,研究锆石表面形貌及平整度对LA-ICP-MS锆石分析的影响;同时实验采用氩离子抛光技术对锆石环氧树脂靶进行二次抛光,并探讨该技术对锆石环氧树脂靶影响。实验结果表明本次靶中表面总体平整性较好但存在细微的不平,锆石表面存在程度较小(几至几十纳米的不等)的擦痕,锆石颗粒边缘与靶面存在高差和间隙;而通过研究后认为锆石表面细微的不平对于分析的影响小于能量密度、频率、移动速率等其他激光参数的影响,对分析准确性的影响较小。实验分析并对比了锆石和玻璃标准等不同基体的线扫描形貌,发现其剥蚀深度以及剥蚀形貌存在差异,相同剥蚀条件下线扫描剥蚀深度:NIST610 > CGSG系列>锆石91500。经氩离子二次抛光后锆石样品表面擦痕不明显,但可能会对锆石造成损伤等影响。本次研究认为锆石环氧树脂靶表面总体平整性较好,锆石表面细微的不平对分析准确性的影响较小,不同基体的线扫描形貌研究则为LA-ICP-MS锆石及其他分析提供了参考,而氩离子抛光技术对LA-ICP-MS分析的影响及应用还有待进一步的研究。
  • 加载中
  • 图 1  锆石颗粒和树脂靶表面的形貌图

    Figure 1. 

    图 2  不同点剥蚀条件下锆石91500剥蚀坑的形貌图

    Figure 2. 

    图 3  不同线扫描条件下锆石91500剥蚀坑的形貌图

    Figure 3. 

    图 4  CGSG系列线扫描剥蚀坑的形貌图

    Figure 4. 

    图 5  经氩离子抛光后页岩和锆石表面的形貌图

    Figure 5. 

    图 6  氩离子抛光前后的锆石阴极发光图及抛光后反射光图像

    Figure 6. 

    表 1  点剥蚀不同条件下锆石91500的剥蚀深度

    Table 1.  Depth of pits in zircon 91500 under different ablation conditions

    锆石91500的剥蚀条件 剥蚀次数 深度范围
    (nm)
    平均深度
    (nm)
    16μm,3J/cm2,10Hz 1 19~29 24
    16μm,3J/cm2,10Hz 5 130~155 143
    16μm,3J/cm2,10Hz 10 138~197 168
    16μm,3J/cm2,10Hz 15 326~369 348
    16μm,3J/cm2,10Hz 20 584~668 626
    16μm,6J/cm2,5Hz 250 6215~6291 6253
    下载: 导出CSV

    表 2  不同基体线扫描的剥蚀深度

    Table 2.  Depth of pits with different sample matrixes by linear scanning

    标准样品 剥蚀条件 平均剥蚀深度
    (nm)
    CGSG-1 16μm,10Hz,1μm/s 6929
    CGSG-2 16μm,10Hz,1μm/s 7064
    CGSG-4 16μm,10Hz,1μm/s 6139
    CGSG-5 16μm,10Hz,1μm/s 6400
    锆石91500 16μm,10Hz,1μm/s 5713
    NIST610 16μm,10Hz,1μm/s >7668
    注:NIST610标准样品的数据来自文献[36]。
    下载: 导出CSV
  • [1]

    范晨子, 胡明月, 赵令浩, 等.锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展[J].岩矿测试, 2012, 31(1):29-46.

    Fan C Z, Hu M Y, Zhao L H, et al.Advances in situ microanalysis of U-Pb zircon geochronology using laser ablation-inductively coupled plasma-mass spectro-metry[J].Rock and Mineral Analysis, 2012, 31(1):29-46.

    [2]

    Schaltegger U, Schmitt A K, Horstwood M S A.U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS:Recipes, interpretations, and opportunities[J].Chemical Geology, 2015, 402:89-110.

    [3]

    Kosler J.Present trends and the future of zircon in geochronology:Laser ablation ICPMS[J].Reviews in Mineralogy and Geochemistry, 2003, 53(1):243-275.

    [4]

    刘勇胜, 胡兆初, 李明, 等.LA-ICP-MS在地质样品元素分析中的应用[J].科学通报, 2013, 58(36):3753-3769.

    Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32):3863-3878.

    [5]

    Hu Z C, Liu Y S, Gao S, et al."Wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 78:50-57.

    [6]

    Xie L W, Xu L, Yin Q L, et al.A novel sample cell for reducing the "position effect" in laser ablation MC-ICP-MS isotopic measurements[J].Journal of Analytical Atomic Spectrometry, 2018, 33:1571-1578.

    [7]

    西尔维斯特著.林守麟译.地球科学中的激光剥蚀-ICPMS原理和应用[M].北京: 地质出版社, 2003.

    Sylvester P (Editor).Lin S L (Translator).Principles and applications of laser-ablation-ICPMS in the Earth sciences[M].Beijing: Geological Publishing House, 2003.

    [8]

    许雅雯, 王家松, 郭虎, 等.U-Pb同位素测年新方法-激光烧蚀等离子体质谱法直接测定探针片中锆石和磷灰石年龄[J].地质调查与研究, 2015, 38(1):67-76.

    Xu Y W, Wang J S, Guo H, et al.A new method of U-Pb isotopic dating:In polished thin section U-Pb dating of zircon, apatite using laser ablation-MC-ICP-MS[J].Geological Survey and Research, 2015, 38(1):67-76.

    [9]

    Zong K Q, Liu Y S, Gao C G, et al.In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite:Refining constraints on the ultra-high pressure metamorphism of the Sulu terrane[J].Chemical Geology, 2010:269:237-251.

    [10]

    Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin, 2010, 55(15):1535-1546.

    [11]

    宋彪.用SHRIMP测定锆石U-Pb年龄的工作方法[J].地质通报, 2015, 34(10):1777-1788.

    Song B.SHRIMP zircon U-Pb age measurement:Sample preparation, measurement, data processing and explanation[J].Geological Bulletin of China, 2015, 34(10):1777-1788.

    [12]

    Tang G Q, Li X H, Li Q L, et al.Deciphering the physical mechanism of the topography effect for oxygen isotope measurements using a Cameca IMS-1280 SIMS[J].Journal of Analytical Atomic Spectrometry, 2015, 30:950-956.

    [13]

    Kita N T, Huberty J M, Kozdon R, et al.High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials:Accuracy, surface topography and crystal orientation[J].Surface and Interface Analysis, 2011, 43(1-2):427-431.

    [14]

    刘延辉, 王弘, 孙大亮, 等.原子力显微镜及其在各个研究领域的应用[J].科技导报, 2003, 21(3):9-12.

    Liu Y H, Wang H, Sun D L, et al.An atomic force microscope and its application[J].Science and Technology Review, 2003, 21(3):9-12.

    [15]

    Yang J, Gong M H, Wang X T, et al.Observation and characterization of asphalt microstructure by atomic force microscopy[J].Journal of Southeast University (English Edition), 2014, 30(3):353-357.

    [16]

    王亮, 章雄冬, 曹海虹.页岩的氩离子抛光制样研究[J].石油实验地质, 2015, 37(4):525-529.

    Wang L, Zhang X D, Cao H H.Shale preparation using Ar-ion milling[J].Petroleum Geology and Experiment, 2015, 37(4):525-529.

    [17]

    Hu M Y, Fan X T, Stoll B, et al.Preliminary characterisation of new reference materials for microanalysis:Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5[J].Geostandards and Geoanalytical Research, 2011, 35(2):235-251.

    [18]

    Jochum K P, Nohl U, Herwig K, et al.GeoReM:A new geochemical database for reference materials and isotopic standards[J].Geostandards and Geoanalytical Research, 2005, 29(3):333-338.

    [19]

    Yang F, Sun J G, Wang Y, et al.Geology, geochronology and geochemistry of Weilasituo Sn-polymetallic deposit in Inner Mongolia, China[J].Minerals, 2019, 9(2):104.

    [20]

    Zhang W F, Xia X P, Zhang Y Q, et al.A novel sample preparation method for ultra-high vacuum (UHV) secondary ion mass spectrometry (SIMS) analysis[J].Journal of Analytical Atomic Spectrometry, 2018, 33(9):1559-1563.

    [21]

    赵令浩, 孙冬阳, 胡明月, 等.激光剥蚀电感耦合等离子体质谱小激光斑束线扫描定量分析技术[J].分析化学, 2018, 46(6):931-937.

    Zhao L H, Sun D Y, Hu M Y, et al.Line scanning quantitative analysis by laser ablation inductively coupled plasma mass spectrometry with small laser beam[J].Chinese Journal of Analytical Chemistry, 2018, 46(6):931-937.

    [22]

    朱碧, 朱志勇, 吕苗, 等.Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J].岩矿测试, 2017, 36(1):14-21.

    Zhu B, Zhu Z Y, Lü M, et al.Application of iolite in data reduction of laser ablation inductively coupled plasms-mass spectrometry line-scan analysis[J].Rock and Mineral Analysis, 2017, 36(1):14-21.

    [23]

    Li Z, Hu Z C, Liu Y S, et al.Accurate determination of elements in silicate glass by nanosecond and femtosecond laser ablation ICP-MS at high spatial resolution[J].Chemical Geology, 2015, 400:11-23.

    [24]

    王辉, 汪方跃, 关炳庭, 等.激光能量密度对LA-ICP-MS分析数据质量的影响研究[J].岩矿测试, 2019, 38(6):609-619.

    Wang H, Wang F Y, Guan B T, et al.Effect of laser energy density on data quality during LA-ICP-MS measurement[J].Rock and Mineral Analysis, 2019, 38(6):609-619.

    [25]

    吴石头, 许春雪, Klaus S, 等.193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J].岩矿测试, 2017, 36(5):451-459.

    Wu S T, Xu C X, Klaus S, et al.Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J].Rock and Mineral Analysis, 2017, 36(5):451-459.

    [26]

    Liu X, Du D, Mourou G.Laser ablation and micromachining with ultrashort laser pulses[J].IEEE Journal of Quantum Electronics, 1997, 33(10):1706-1716.

    [27]

    Durrant S F.Laser ablation inductively coupled plasma mass spectrometry:Achievements, problems, prospects[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9):1385-1403.

    [28]

    杨文武, 史光宇, 商琦, 等.飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J].光谱学与光谱分析, 2017, 37(7):208-214.

    Yang W W, Shi G Y, Shang Q, et al.Applications of femtosecond (fs) laser ablation-inductively coupled plasma-mass spectrometry in Earth sciences[J].Spectroscopy and Spectral Analysis, 2017, 37(7):208-214.

    [29]

    Fernández B, Claverie F, Pécheyran C, et al.Direct analysis of solid samples by fs-LA-ICP-MS[J].Trends in Analytical Chemistry, 2007, 26(10):951-966.

    [30]

    王辉, 汪方跃, 盛兆秋.LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究[J].岩石矿物学杂志, 2019, 38(1):115-122.

    Wang H, Wang F Y, Sheng Z Q.The laser ablation behavior and rate of minerals with different Mohs hardnesses in LA-ICP-MS analysis[J].Acta Petrologica et Mineralogica, 2019, 38(1):115-122.

    [31]

    吴石头, 王亚平, 许春雪, 等.193nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J].分析化学, 2016, 44(7):1035-1041.

    Wu S T, Wang Y P, Xu C X, et al.Elemental fractionation studies of 193nm ArF excimer laser ablation system at high space resolution mode[J].Chinese Journal of Analytical Chemistry, 2016, 44(7):1035-1041.

    [32]

    范晨子, 詹秀春, 曾普胜, 等.白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究[J].岩矿测试, 2015, 34(6):609-616.

    Fan C Z, Zhan X C, Zeng P S, et al.Multi-element content analysis of rare earth fluorocarbonates from Bayan Obo deposit by laser ablation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(6):609-616.

    [33]

    Günther D, Heinrich C A.Comparison of the ablation be-haviour of 266nm Nd:YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9):1369-1374.

    [34]

    Mank A J G, Mason P R D.A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples[J].Journal of Analytical Atomic Spectrometry, 1999, 14(8):1143-1153.

    [35]

    Kosler J, Wiedenbeck M, Wirth R, et al.Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon-implications for elemental fractionation during ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 2005, 20:402-409.

    [36]

    胡志中, 李佩, 蒋璐蔓, 等.古代玻璃材料LA-ICP-MS组分分析及产源研究[J].岩矿测试, 2020, 39(4):505-514.

    Hu Z Z, Li P, Jiang L M, et al.Application of LA-ICP-MS in the analysis of archaeological glass and source discrimination[J].Rock and Mineral Analysis, 2020, 39(4):505-514.

    [37]

    吕涛, 刘勇胜, 张春来.193nm波长脉冲激光剥蚀地质样品的剥蚀速率变化规律[J].吉林大学学报(地球科学学报), 2015, 45(1):1073-1074.

    Lü T, Liu Y S, Zhang C L.Study on ablation rates of a 193nm laser system for geological samples[J].Journal of Jilin University (Earth Science Edition), 2015, 45(1):1073-1074.

    [38]

    Kuhn B K, Birbaum K, Luo Y, et al.Fundamental studies on the ablation behaviour of Pb/U in NIST610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology[J].Journal of Analytical Atomic Spectrometry, 2010, 25(1):1-27.

    [39]

    Hu Z C, Liu Y S, Chen L, et al.Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J].Journal of Analytical Atomic Spectrometry, 2011, 26:425-430.

    [40]

    焦淑静, 张慧, 薛东川.泥页岩样品自然断面与氩离子抛光扫描电镜制样方法的比较与应用[J].电子显微学报, 2016, 35(6):544-549.

    Jiao S J, Zhang H, Xue D C.Application and comparison of fresh fracture secondary electron SEM and ion-milled backscatter SEM for shale sample preparation[J].Journal of Chinese Electron Microscopy Society, 2016, 35(6):544-549.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  3203
  • PDF下载数:  151
  • 施引文献:  0
出版历程
收稿日期:  2019-09-21
修回日期:  2020-02-07
录用日期:  2020-05-13

目录