Studies on Characteristics of High-energy Polarized Energy-dispersive X-ray Fluorescence Spectrometer and Determination of Major and Trace Elements in Geological Samples
-
摘要: 高能偏振能量色散X射线荧光光谱仪由于其高能特性为包括重金属和稀土元素在内的原子序数较大的重元素分析带来了新的契机。本文应用高能偏振X射线荧光光谱仪(HE-P-EDXRF)建立了土壤、岩石和水系沉积物中主微量元素分析方法,对分析线的选择、谱线重叠干扰校正及基体校正模式等进行了探讨,并用不确定度对方法进行了评估。研究表明:①原子序数较大的微量元素选取Kα线作为分析线,谱线重叠干扰较少,有利于获得谱峰净强度,甚至La、Ce和Nd等稀土元素也能够准确测定;②合适的基体校正方法能够改善标准曲线拟合效果;③微量元素Ba和稀土元素La、Ce等,HE-P-EDXRF方法检出限具有明显优势,而对于轻元素WDXRF方法检出限更低;④检验样本除Na2O、MgO、P和Sm外平均相对误差均在15%以下,微量元素相对平均误差在2.40%~16.3%之间,除Cu和Yb外其余微量元素准确度结果显著优于WDXRF;⑤根据欧盟和国际上不确定度的评估方法,除V和Th外,其他微量元素与有证标准物质的认定值间不存在显著性差异。综合来看,本方法更适用于分析岩石、土壤和沉积物等常规地质样品中的微量和稀土元素,解决了此类样品中微量元素对ICP-MS等需复杂化学前处理的分析方法的依赖。
-
关键词:
- 高能偏振能量色散X射线荧光光谱法 /
- 地质样品 /
- 粉末压片 /
- 主微量元素
Abstract:BACKGROUNDThe quantification of trace elements in geological samples depends largely on the analytical methods that require complex chemical pretreatment. High-energy polarized energy-dispersive X-ray fluorescence spectrometry (HE-P-EDXRF) has a considerable advantage for the determination of trace elements with large atomic numbers, due to its high-energy properties, which can effectively excite the Kα line of heavy elements. OBJECTIVESTo establish a HE-P-EDXRF method for quantitative analysis of major and trace elements in geological samples. METHODSHE-P-EDXRF was used to establish an analysis method for major and trace elements in soil, rock and water system sediments. The selection of analysis lines, line overlap interference correction and matrix correction modes were discussed. Uncertainty was used to evaluate the method. RESULTSThe Kα line was selected as the analysis line for trace elements with a larger atomic number due to less interference from the spectral line overlap, which is beneficial to obtaining the net peak intensity. Rare earth elements such as La, Ce and Nd can be accurately measured. Detection limits of the trace element Ba and rare earth elements such as La, Ce determined by EDXRF were greater than those determined by WDXRF, but lesser for light elements. For all the major and trace elements, the average of relative error of test training data was less than 15% except for Na2O, MgO, P and Sm. The average relative error of trace elements was between 2.40% and 16.3%. The accuracy of trace elements (except Cu and Yb) was significantly better than that of WDXRF. According to the evaluation method of the Europe Union, no significant difference existed between the trace elements results (except V and Th) and the recommended value of certified reference materials. CONCLUSIONSHE-P-EDXRF is a simple, fast and environmentally-friendly method that can simultaneously analyze multiple elements in geological samples. This method is suitable for quantification of the trace and rare earth elements in rock, soil and sediment, which overcomes the dependence of quantitative analysis of rare earth and trace elements in geological samples on the need for methods requiring complex chemical pretreatment. -
-
表 1 元素的HE-P-EDXRF测量条件
Table 1. Measurement conditions of elements by HE-P-EDXRF
分析元素 管压
(kV)管流
(mA)分析线 二次靶 测量时间(s) Na,Mg,K,Si,Al,P,Sc,V,Cr,S,Cl 75 8 Kα(ROI) Fe 250 Ca,Ti 75 8 Kα Fe 250 Mn,Co,Ni,Cu,Zn 75 8 Kα(ROI) Ge 250 Fe 75 8 Kα Ge 250 Ga 100 6 Kα KBr 250 Ge,As 100 6 Kα(ROI) KBr 250 Se,Br 100 6 Kα(ROI) Mo 250 Rb,Sr,Y 100 6 Kα Mo 250 Zr,Nb,Ba,La,Ce,Pr,Nd 100 6 Kα Al2O3 250 Hf,Ta,W,Hg,Tl,Bi,U,Th 100 6 Lα(ROI) Mo 250 Mo,Pd,Ag,Cd,In,Sn,Sb,Te,I,Cs,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu 100 6 Kα(ROI) Al2O3 250 Pb 100 6 Lβ1 Mo 250 注:ROI(region of interest)为元素感兴趣区范围。 表 2 谱线重叠校正和基体校正
Table 2. Correction of overlap lines and matrix effects
元素 重叠校正 基体校正 Na2O Zn, Zr, Cu α校正 MgO Al2O3 α校正 Al2O3 SiO2 α校正 SiO2 Al2O3 α校正 P SiO2 α校正 S Mo, SiO2, Cu, Zn α校正 Cl - α校正 K2O Zr, CaO α校正 Ca - α校正 Sc CaO α校正 Ti Ba, Sr α校正 V Ti α校正 Cr V, Ba, Ce α校正 Mn Cr, W α校正 Fe2O3 Mn α校正 Co Al2O3, As, Zr, Sn α校正 Ni Co α校正, Ge KAC Cu - α校正 Zn Cu α校正, Ge KAC Ga Zn, Bi α校正 Ge W, Zn, Ga α校正 As Pb, Bi α校正 Se Pb, As, Bi, Mo α校正 Br Pb, As α校正 Rb Nb, Sn, Ti α校正 Sr - α校正 Y Rb, Sr, As α校正 Zr Sr α校正 Nb Y, Th α校正 Mo Zr, U α校正 Ag Cd, Pd, Sb α校正 Cd Sn, Sb, Cu α校正 In Sn, As, Cd, Nb α校正 Sn Sb, Cd, Zr, As α校正 Sb - α校正 Te - α校正 I Sn, Sb, Ba, Cr α校正 Cs Te α校正 Ba - α校正 La - α校正 Ce Cs α校正 Pr Ba, Ce, Zr, Nb α校正 Nd Ba, Ce, Pr, Zn α校正 Sm Ti, Nd, Ce, As α校正 Eu Ti, Zr, Pr, Nd α校正 Gd Tb, Sm, Ba, Nd α校正 Tb Nb, Sm, Ce, Y - Dy Sm, Y, Sn, Ce α校正 Ho Y, Zr, Nb, Dy α校正 Er Y, Ce, Ti, Gd α校正 Tm Y, Nb, Sn, Pr α校正 Yb Y, Th, Ni, Nb α校正 Lu Ce, Y, Nb α校正 Hf Ba, Nb, Zn, Zr α校正 Ta Ni, Cu, Nb, Sn α校正 W Cu, Ni, Zn, Yb α校正 Hg Cr, As, Zn, S α校正 Tl Pb, W, Ga, As α校正 Pb Zn α校正, Mo KAC Bi Pb, As, W, Sn α校正 Th Rb, Pb, Bi, Zr α校正, Mo KAC U Rb, Th, Zr, Br α校正 注:Mo KAC为Mo Kα的康普顿散射线,Ge KAC为Ge Kα的康普顿散射线。 表 3 分析元素EDXRF和WDXRF的测定值和认定值对比
Table 3. Comparison of analytical data of EDXRF and WDXRF between certified values for major and trace elements
元素 分析方法 含量(%) 平均相对误差(%) GBW07302 GBW07304 GBW07305 GBW07306 GBW07104 GBW07105 GBW07107 GBW07402 GBW07403 GBW07405 EDXRF 2.86 0.54 0.44 2.63 3.72 3.03 0.44 1.64 2.59 0.086 18.7 Na2O WDXRF 3.00 0.31 0.36 2.35 4.72 3.98 0.29 1.93 3.03 0.14 11.9 认定值 3.03 0.30 0.39 2.30 3.86 3.38 0.35 1.62 2.72 0.12 - EDXRF 0.20 1.23 1.18 3.13 1.31 6.33 2.40 0.91 0.45 0.80 17.7 MgO WDXRF 0.24 1.06 0.98 2.89 1.40 5.78 1.90 1.04 0.63 0.70 9.63 认定值 0.21 1.02 0.98 3.00 1.72 7.77 2.01 1.04 0.58 0.61 - EDXRF 16.5 18.0 16.5 13.5 14.6 13.0 18.7 10.5 12.2 22.0 5.22 Al2O3 WDXRF 16.4 16.2 16.0 13.6 14.0 12.4 17.7 10.4 12.0 22.1 5.11 认定值 15.7 15.7 15.4 14.2 16.2 13.8 18.8 10.3 12.2 21.6 - EDXRF 70.5 56.4 57.9 60.6 59.3 44.2 61.3 71.9 75.3 49.6 2.68 SiO2 WDXRF 68.4 55.9 57.4 59.9 53.1 44.4 60.6 69.9 70.7 49.9 4.29 认定值 69.9 52.6 56.4 61.2 60.6 44.6 59.2 73.4 74.7 52.6 - EDXRF 1.95 6.61 6.45 5.93 4.87 12.0 7.75 3.39 2.06 12.6 4.52 Fe2O3 WDXRF 1.75 6.34 6.15 5.73 4.43 12.8 7.15 3.33 1.89 11.7 6.14 认定值 1.90 5.91 5.84 5.88 4.90 13.4 7.60 3.52 2.00 12.6 - EDXRF 5.16 2.28 2.12 2.44 1.65 2.11 4.27 2.42 2.99 1.47 3.67 K2O WDXRF 4.82 2.19 2.05 2.29 1.56 2.08 3.87 2.35 2.82 1.44 7.08 认定值 5.20 2.23 2.11 2.43 1.89 2.32 4.16 2.54 3.04 1.50 - EDXRF 0.32 7.84 5.65 3.80 4.88 8.28 0.71 2.28 1.31 0.17 14.6 CaO WDXRF 0.21 7.59 5.51 3.67 4.54 8.21 0.61 2.16 1.17 0.074 9.13 认定值 0.25 7.54 5.34 3.87 5.20 8.81 0.60 2.36 1.27 0.10 - EDXRF 236 850 1234 966 624 1237 203 495 303 1371 4.17 Mn WDXRF 264 858 1213 959 587 1265 142 498 308 1267 5.42 认定值 240 825 1160 970 604 1310 173 510 304 1360 - EDXRF 564 408 470 950 1014 4037 583 442 450 384 29.0 P WDXRF 161 427 604 993 913 4239 604 432 344 370 7.8 认定值 200 470 630 1020 1030 4130 690 446 320 390 - EDXRF 7.50 41.8 34.5 74.4 16.8 139 37.9 18.4 12.1 43.5 6.62 Ni WDXRF 8.20 41.2 37.2 82.5 12.2 132 41.8 18.7 12.3 44.2 13.1 认定值 5.5 40.0 34 78 17 140 37 19.4 12 40 - EDXRF 8.6 38.3 143 393 57.6 44.5 43.7 19.5 11.0 137 13.1 Cu WDXRF 2.5 41.7 150 400 49.0 53.0 47.6 17.7 10.0 143 12.9 认定值 4.9 37.0 137 383 55.0 49.0 42.0 16.3 11.4 144 - EDXRF 44.2 106 259 155 66.9 140 57.1 40.4 31.8 505 4.49 Zn WDXRF 43.2 98.7 243 153 65.0 132 65.6 45.3 36.1 532 8.23 认定值 44 101 243 144 71.0 150 55.0 42.0 31.0 494 - EDXRF 5.62 21.1 82.3 11.6 1.58 0.51 1.76 14.9 4.46 412 12.8 As WDXRF 4.40 19.4 80.7 11.8 3.30 0.50 0 10.4 5.40 458 29.5 认定值 6.20 19.7 75.0 13.6 2.10 0.70 1.40 13.7 4.40 412 - EDXRF 480 129 118 110 39.7 37.2 212 86.6 89.9 115 2.40 Rb WDXRF 456 134 124 114 35.6 39.7 211 89.7 91.8 119 4.52 认定值 470 130 118 107 38.0 37.0 205 88.0 85.0 117 - EDXRF 32.4 140 199 264 782 1100 94.0 183 378 45.1 3.60 Sr WDXRF 30.9 145 205 273 715 1163 97.7 181 377 48.9 5.98 认定值 28.0 142 204 266 790 1100 90.0 187 380 42.0 - EDXRF 443 193 223 173 89.5 282 108 228 244 271 3.94 Zr WDXRF 421 201 233 180 91.4 297 109 209 261 269 6.70 认定值 460 188 220 170 99 277 96 219 246 272 - EDXRF 189 474 463 323 1061 502 436 912 1238 279 3.22 Ba WDXRF 180 452 433 311 942 477 431 870 1183 298 4.47 认定值 185 470 440 330 1020 527 450 930 1210 296 - EDXRF 94.2 38.1 42.4 37.0 19.6 54.9 60.4 163 17.9 32.9 6.20 La WDXRF 73.3 52.3 34.3 16.5 23.6 51.0 59.2 131 24.4 51.9 23.4 认定值 90 40 46 39 22 56 62 164 21 36 - EDXRF 196 79.9 90.5 67.7 40.2 96.8 106 398 39.5 81.9 3.02 Ce WDXRF 170 77.7 87.7 82.6 57.7 76.9 92.1 399 56.1 100 17.6 认定值 192 78 89 68 40 105 109 402 39 91 - EDXRF 63.7 33.3 38.2 31.8 20.1 50.8 48.5 209 19.1 21.2 4.75 Nd WDXRF 48.1 34.1 41.8 29.3 23.1 54.5 41.2 177 23.4 27.0 15.2 认定值 62 32 35 33 19 54 48 210 18.4 24 - EDXRF 9.67 4.84 5.90 5.81 4.43 8.18 5.68 19.0 4.05 4.21 16.3 Sm WDXRF 7.70 6.10 5.80 5.00 5.00 7.50 6.80 18.5 4.60 6.40 24.8 认定值 10.8 6.2 6.6 5.6 3.4 10.2 8.4 18 3.3 4 - EDXRF 9.63 2.88 2.92 2.18 0.84 2.24 3.00 2.33 1.58 2.30 12.9 Yb WDXRF 7.40 2.90 3.00 2.20 0.80 2.00 3.20 2.20 1.60 2.70 12.7 认定值 11 2.9 2.9 2.1 0.89 1.50 2.6 2 1.7 2.8 - EDXRF 18.2 5.1 6.32 5.11 2.57 7.67 3.04 7.03 6.81 7.43 9.39 Hf WDXRF 13.7 4.8 6.10 5.00 4.90 6.00 2.90 6.20 8.30 6.10 18.4 认定值 20 5.8 6.5 4.9 2.96 6.5 2.9 5.8 6.8 8.1 - EDXRF 39.8 30.2 117 31.4 9.95 4.35 8.9 20.3 25.9 550 10.0 Pb WDXRF 47.3 38.9 123 28.8 10.1 1.50 7.6 21.1 22.6 527 21.9 认定值 32 30 112 27 11.3 7.00 8.7 20 26 552 - 表 4 有证标准物质测量值和认定值的绝对差(Δm)与测量值和认定值之间的扩展不确定度(UΔ)比较
Table 4. Comparison of the absolute differences between mean measured values and certified values (Δm) and the expanded uncertainty of differences between results and certified values (UΔ)
标准物质编号 参数 Na2O MgO Al2O3 SiO2 P K2O CaO Ti Mn Fe2O3 V GBW07301 Δm 0.22 0.52 2.62 0.31 25.3 0.13 0.32 563 61.3 0.53 12.8 UΔ 1.45 0.62 0.41 0.57 379 0.12 0.15 419 80.8 0.19 16.8 GBW07305 Δm 0.08 0.27 2.35 2.24 79.4 0.086 0.28 355 62.1 0.55 26.6 UΔ 0.42 0.31 0.38 0.64 218 0.14 0.21 321 89.0 0.20 12.7 GBW07307 Δm 0.45 0.15 0.78 2.29 168 0.029 0.0030 46.5 4.79 0.39 5.25 UΔ 3.77 1.99 1.07 1.03 524 0.17 0.10 331 71.4 0.20 12.1 GBW07105 Δm 0.21 2.42 1.54 0.84 131 0.10 0.61 1158 66.3 0.20 42.5 UΔ 1.45 1.76 1.19 0.58 445 0.12 0.18 926 129 0.45 22.2 GBW07108 Δm 4.98 0.015 3.52 2.20 156 0.020 0.88 88.4 29.7 0.47 15.5 UΔ 1.74 0.613 0.27 0.71 401 0.080 0.53 181 54.1 0.15 15.9 GBW07403 Δm 0.47 0.21 0.32 2.03 251 0.010 0.014 115 8.84 0.038 37.1 UΔ 3.33 1.19 1.39 1.00 302 0.11 0.10 179 48.0 0.10 9.73 GBW07405 Δm 0.17 0.26 0.58 0.71 27.0 0.016 0.15 108 56.3 1.26 84.8 UΔ 1.56 0.68 1.84 0.35 70.5 0.080 0.0029 475 143 0.39 22.5 GBW07406 Δm 0.90 0.26 0.58 1.84 86.8 0.11 0.050 137 207 0.57 44.9 UΔ 2.78 1.63 1.35 1.42 70.1 0.12 0.061 337 169 0.37 17.2 标准物质编号 参数 Cr Ni Cu Zn Ga As Rb Sr Y Zr Nb GBW07301 Δm 0.25 7.02 2.81 8.39 0.14 1.84 5.45 16.3 0.48 13.3 1.39 UΔ 20.1 17.7 4.00 14.0 2.30 1.48 12.1 82.2 6.03 47.8 7.46 GBW07305 Δm 12.3 4.38 7.66 19.89 1.40 1.29 7.82 8.36 1.95 7.23 0.70 UΔ 12.2 6.39 14.8 30.5 2.56 16.0 12.2 24.2 6.01 23.3 6.62 GBW07307 Δm 0.019 4.25 0.50 8.92 0.35 2.60 1.40 0.09 1.09 7.60 0.69 UΔ 15.6 8.17 4.94 24.8 3.78 12.2 16.3 30.0 4.36 18.4 4.20 GBW07105 Δm 22.5 1.84 6.31 18.00 1.62 0.27 1.98 0.61 2.59 23.5 3.41 UΔ 22.9 16.0 6.94 23.0 5.98 0.41 8.91 128 8.06 40.0 16.3 GBW07108 Δm 26.7 101 8.76 2.93 6.13 0.27 0.44 22.70 0.64 5.78 0.30 UΔ 12.0 6.78 5.78 8.40 3.66 1.39 8.06 108 3.30 27.6 4.36 GBW07403 Δm 1.96 1.41 1.16 2.12 3.06 0.23 4.65 2.79 0.13 9.94 0.85 UΔ 9.69 4.04 2.49 6.19 2.03 1.98 8.05 32.3 4.00 28.2 3.03 GBW07405 Δm 11.4 18.3 6.21 16.7 2.25 22.2 0.66 1.74 1.38 5.44 0.21 UΔ 15.7 8.12 14.6 50.1 10.9 32.2 12.7 8.03 6.08 32.0 6.79 GBW07406 Δm 9.70 1.12 21.2 4.93 1.54 8.42 4.18 0.68 1.35 6.07 0.28 UΔ 12.6 8.30 30.1 12.1 6.23 28.4 16.8 8.03 4.17 28.5 7.35 标准物质编号 参数 Cd Sn Ba La Ce Pr Nd Sm Eu Gd Tb GBW07301 Δm 0.064 0.75 2.17 2.98 2.13 1.04 0.25 0.30 0.095 0.0030 0.12 UΔ 0.93 2.63 132 15.9 17.1 3.24 11.3 1.07 0.41 4.30 0.27 GBW07305 Δm 0.19 1.80 18.04 1.50 4.99 0.56 0.40 0.0077 0.041 1.07 0.024 UΔ 1.34 1.86 60.9 12.0 14.6 2.62 10.2 1.64 0.68 4.05 0.48 GBW07307 Δm 0.056 4.14 9.20 0.85 2.75 0.064 1.24 0.83 0.26 0.091 0.078 UΔ 1.32 4.11 90.1 10.4 12.8 3.03 12.8 1.28 0.54 3.06 0.33 GBW07105 Δm 0.23 1.72 2.63 1.87 2.59 2.02 4.96 0.89 0.30 0.34 0.31 UΔ 3.14 2.98 52.5 11.5 17.3 3.16 8.01 1.18 0.62 1.20 0.41 GBW07108 Δm 0.72 0.14 405 2.41 3.41 0.23 1.44 0.054 0.11 0.080 0.020 UΔ 0.24 1.58 52.1 10.1 6.19 0.81 3.80 0.72 0.25 1.57 0.21 GBW07403 Δm 0.37 2.15 18.9 3.78 3.98 0.091 3.94 0.29 0.015 0.72 0.0047 UΔ 0.69 2.14 130 6.83 8.63 0.88 4.73 0.57 0.28 1.24 0.29 GBW07405 Δm 0.063 0.32 3.08 3.97 7.28 1.54 2.85 0.49 0.88 0.64 0.12 UΔ 1.15 6.92 52.2 9.46 21.0 2.82 6.94 1.62 0.96 3.24 0.29 GBW07406 Δm 0.48 8.72 7.86 1.16 2.44 1.44 0.13 0.25 0.31 0.28 0.085 UΔ 1.71 14.6 28.3 4.31 13.5 1.92 8.31 1.60 0.43 1.23 0.22 GBW07301 Δm 0.36 0.064 0.093 0.032 0.13 0.012 1.92 0.60 3.26 UΔ 1.30 0.15 0.61 0.160 0.60 0.240 6.02 6.22 4.47 GBW07305 Δm 0.13 0.036 0.031 0.016 0.10 0.016 0.092 9.45 3.90 UΔ 1.54 0.30 1.00 0.140 0.62 0.120 3.82 18.5 2.73 GBW07307 Δm 0.28 0.095 0.15 0.053 0.10 0.027 0.54 0.12 4.99 UΔ 1.34 0.40 0.63 0.240 0.63 0.160 2.80 34.1 2.84 GBW07105 Δm 0.71 0.037 0.12 0.037 0.34 0.25 0.95 3.03 4.58 UΔ 0.70 0.097 0.43 0.082 0.80 0.12 1.60 1.38 2.31 GBW07108 Δm 0.10 0.0043 0.097 0.041 0.097 0.0023 0.19 2.66 7.74 UΔ 0.52 0.10 0.40 0.080 0.23 0.084 0.65 7.79 1.18 GBW07403 Δm 0.16 0.046 0.084 0.011 0.050 0.039 0.088 1.77 0.43 UΔ 0.82 0.12 0.61 0.110 0.41 0.046 1.60 6.19 1.59 GBW07405 Δm 0.97 0.18 0.30 0.058 0.37 0.018 0.54 17.1 33.2 UΔ 1.31 0.16 0.65 0.081 0.81 0.100 3.41 61.0 4.08 GBW07406 Δm 0.72 0.13 0.13 0.050 0.33 0.027 0.15 4.63 9.44 UΔ 0.98 0.12 0.61 0.130 0.82 0.100 1.64 26.8 5.58 -
[1] 谢学锦, 任天祥, 奚小环, 等.中国区域化探全国扫面计划卅年[J].地球学报, 2009, 30(6):700-716.
Xie X J, Ren T X, Xi X H, et al.The implementation of the Regional Geochemistry-National Reconnaissance Program (RGNR) in China in the past thirty years[J].Acta Geoscientica Sinica, 2009, 30(6):700-716.
[2] 张颖, 朱爱美, 张迎秋, 等.波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J].分析化学, 2019(7):1090-1097.
Zhang Y, Zhu A M, Zhang Y Q, et al.Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J].Chinese Journal of Analytical Chemistry, 2019(7):1090-1097.
[3] 孙萱, 宋金明, 温廷宇, 等.X射线荧光光谱法测定海洋沉积物中的41种元素及氧化物[J].海洋科学, 2018(4):79-88.
Sun X, Song J M, Wen T Y, et al.Determination of 41 elements and oxides in marine sediments by X-ray fluorescence spectrometry[J].Marine Sciences, 2018(4):79-88.
[4] 沈亚婷, 李迎春, 孙梦荷, 等.波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J].光谱学与光谱分析, 2017, 37(7):2216-2224.
Shen Y T, Li Y C, Sun M H, et al.Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2216-2224.
[5] Luo L Q, Chu B B, Liu Y, et al.Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine[J].Environmental Science & Pollution Research, 2014, 21(13):8242-8260.
[6] 谭丽娟, 唐玉霜, 黄利宁, 等.氢化物发生-原子荧光光谱法测定1:5万区域地质调查样品中的As、Sb、Bi、Hg等4种元素[J].中国无机分析化学, 2019, 9(4):19-23.
Tan L J, Tang Y S, Huang L N, et al.Determination of regional geochemical survey (1:50000) samples of As, Sb, Bi, Hg by hydride generation-atomic fluorescence spectrometer[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4):19-23.
[7] 唐沫岚, 鲍征宇, 范博伦, 等.顺序提取分离-氢化物发生-原子荧光光谱法测定富硒土壤中5种形态硒的含量[J].理化检验(化学分册), 2018, 54(4):408-412.
Tang M L, Bao Z Y, Fan B L, et al.HG-AFS speciation analysis for 5 species of selenium in Se-rich soil with separation by sequential extraction[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2018, 54(4):408-412.
[8] 赵学沛.微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J].岩石矿物学杂志, 2019, 38(2):254-258.
Zhao X P.Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J].Acta Petrologica et Mineralogica, 2019, 38(2):254-258.
[9] 郭晓瑞, 孙启亮, 张宏丽, 等.高分辨连续光源原子吸收光谱法测定铀铌铅多金属矿中痕量银[J].冶金分析, 2019, 39(9):1-7.
Guo X R, Sun Q L, Zhang H L, et al.Determination of trace silver in uranium-niobium-lead polymetallic ore by high resolution continuum source flame atomic absorption spectrometry[J].Metallurgical Analysis, 2019, 39(9):1-7.
[10] 秦晓丽, 田贵, 李朝长.电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾[J].岩矿测试, 2019, 38(6):741-746.
Qin X L, Tian G, Li Z C, et al.Determination of thorium and potassium oxide in geological samples by inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2019, 38(6):741-746.
[11] 马生凤, 赵文博, 朱云, 等.碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素[J].岩矿测试, 2018, 37(6):650-656.
Ma S F, Zhao W B, Zhu Y, et al.Determination of symbiotic and associated elements in tin ore by ICP-MS combined with pressurized acid digestion and detinning process[J].Rock and Mineral Analysis, 2018, 37(6):650-656.
[12] 周伟, 曾梦, 王健, 等.熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J].岩矿测试, 2018, 37(3):298-305.
Zhou W, Zeng M, Wang J, et al.Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(3):298-305.
[13] 孔智灵, 张新磊, 王蒙, 等.基于小波变换的铁矿石品位X荧光在线检测方法研究[J].光谱学与光谱分析, 2016, 36(10):415-416.
Kong Z L, Zhang X L, Wang M, et al.Online analysis of iron ore grade using X-ray fluorescence spectrometry based on wavelet transform[J].Spectroscopy and Spectral Analysis, 2016, 36(10):415-416.
[14] 王佩佩, 李霄, 宋伟娇.微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J].分析测试学报, 2016, 35(2):235-240.
Wang P P, Li X, Song W J.Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J].Journal of Instrumental Analysis, 2016, 35(2):235-240.
[15] 荆淼, 王其枫, 王艳萍, 等.电感耦合等离子体质谱法测定土壤中常规元素及稀土元素[J].环境化学, 2016, 35(11):2445-2446.
Jing M, Wang Q F, Wang Y P, et al.Determination of conventional and rare earth elements in soil by inductively coupled plasma mass spectrometry[J].Environmental Chemistry, 2016, 35(11):2445-2446.
[16] 沈亚婷.EDXRF测定土壤元素含量及其在有机碳垂直分布特征研究中的应用[J].光谱学与光谱分析, 2012, 32(11):3117-3122.
Shen Y T.Determination of major, minor and trace elements in soils by polarized energy X-ray fluorescence spectrometry and the application to vertical distribution characteristics of soil organic carbon[J].Spectroscopy and Spectral Analysis, 2012, 32(11):3117-3122.
[17] 吉昂, 卓尚军, 李国会.能量色散X射线荧光光谱[M].北京:科学出版社, 2011.
Ji A, Zhuo S J, Li G H.Energy dispersive X-ray fluorescence spectroscopy[M]. Beijing:Science Press, 2011.
[18] 盛成, 卓尚军, 吉昂, 等.高能偏振能量色散X射线荧光光谱法分析古陶瓷[J].理化检验(化学分册), 2012, 48(6):629-633.
Sheng C, Zhuo S J, Ji A, et al.Application of high energy polarized energy dispersion-XRFS to analysis of ancient ceramics[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2012, 48(6):629-633.
[19] 吉昂, 郑南, 王河锦, 等.高能偏振能量色散-X射线荧光光谱法测定PM10大气颗粒物的组成[J].岩矿测试, 2011, 30(5):528-535.
Ji A, Zheng N, Wang H J, et al.Determination of composition in PM10 aerosols by high-energy polarized energy-dispersive X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2011, 30(5):528-535.
[20] Özen S A, Özkalaycı F, Çevik U, et al.Investigation of heavy metal distributions along 15m soil profiles using EDXRF, XRD, SEM-EDX, and ICP-MS techniques[J].X-Ray Spectrometry, 2018, 47(3):1-11.
[21] Manousakas M, Diapouli E, Papaefthymiou H, et al.XRF characterization and source apportionment of PM10 samples collected in a coastal city[J].X-Ray Spectrometry, 2017, 46(3):190-200.
[22] Takeda A, Yamasaki S, Tsukada H, et al.Determination of total contents of bromine, iodine and several trace elements in soil by polarizing energy-dispersive X-ray fluorescence spectrometry[J].Soil Science and Plant Nutrition, 2011, 57(1):19-28.
[23] Matsunami H, Matsuda K, Yamasaki S, et al.Rapid simultaneous multi-element determination of soils and environmental samples with polarizing energy dispersive X-ray fluorescence (EDXRF) spectrometry using pressed powder pellets[J].Soil Science & Plant Nutrition, 2010, 56(4):530-540.
[24] Koz B.Energy-dispersive X-ray fluorescence analysis of moss and soil from abandoned mining of Pb-Zn ores[J].Environmental Monitoring & Assessment, 2014, 186(9):5315-5326.
[25] Cevik U, Koz B, Makarovska Y.Heavy metal analysis around Iskenderun Bay in Turkey[J].X-Ray Spectrometry, 2010, 39(3):202-207.
[26] Amaya M A, Grimida S E, Elkekli A R, et al.Geospatial mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban soil, Cd.Juarez, Chihuahua, Mexico[C]//Proceedings of Fall Meeting of American Geophysical Union.2015: GC51G-1170.
[27] 储彬彬, 罗立强.铅锌矿区土壤重金属的EDXRF分析[J].光谱学与光谱分析, 2010, 30(3):825-828.
Chu B B, Luo L Q.EDXRF analysis of soil heavy metals on lead-zinc orefield[J].Spectroscopy and Spectral Analysis, 2010, 30(3):825-828.
[28] Luo L Q, Chu B B, Li Y C, et al.Determination of Pb, As, Cd and trace elements in polluted soils near a lead-zinc mine using polarized X-ray fluorescence spectrometry and the characteristics of the elemental distribution in the area[J].X-Ray Spectrometry, 2012, 41(3):133-143.
[29] Gazulla M F, Rodrigo M, Vicente S, et al.Methodology for the determination of minor and trace elements in petroleum cokes by wavelength-dispersive X-ray fluorescence (WD-XRF)[J].X-Ray Spectrometry, 2010, 39(5):321-327.
-