中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物

胡璇. 电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物[J]. 岩矿测试, 2020, 39(6): 954-960. doi: 10.15898/j.cnki.11-2131/td.201911260164
引用本文: 胡璇. 电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物[J]. 岩矿测试, 2020, 39(6): 954-960. doi: 10.15898/j.cnki.11-2131/td.201911260164
Xuan HU. Determination of Rare Earth Oxides in Bauxite by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 954-960. doi: 10.15898/j.cnki.11-2131/td.201911260164
Citation: Xuan HU. Determination of Rare Earth Oxides in Bauxite by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 954-960. doi: 10.15898/j.cnki.11-2131/td.201911260164

电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物

  • 基金项目:
    中国铝业股份有限公司技术标准项目(ZY2019GZC01)
详细信息
    作者简介: 胡璇, 硕士, 高级工程师, 主要从事电感耦合等离子体光谱分析工作。E-mail:hux19832003@aliyun.com
  • 中图分类号: O657.31

Determination of Rare Earth Oxides in Bauxite by Inductively Coupled Plasma-Optical Emission Spectrometry

  • 采用电感耦合等离子体发射光谱法(ICP-OES)测定铝土矿中的稀土氧化物时,酸溶往往造成溶样不彻底,高温碱熔时大量的熔剂会降低稀土元素的发射强度,同时由于稀土氧化物含量(0.0010%~0.050%)较低,存在铝、铁等基体干扰,难以准确测定。本文采用氢氧化钠熔融铝土矿样品,熔融物用热水浸取,三乙醇胺溶液掩蔽铝和铁,乙二胺四乙酸二钠溶液络合钙、镁等干扰元素,稀土氢氧化物留存于沉淀中,沉淀经盐酸溶解进入待测液,从而将稀土元素与熔剂和基体元素分离。实验结果表明:标准溶液无需基体匹配,各稀土氧化物标准曲线的线性相关系数均不小于0.9999,检出限在0.0002%~0.0015%之间;按照实验方法分析实际样品中稀土氧化物的含量,测定结果的相对标准偏差(RSD,n=6)为2.0%~4.6%,回收率为85.2%~104.4%。本方法与电感耦合等离子体质谱法(ICP-MS)相比,两种方法的测定结果无显著性差异。
  • 加载中
  • 表 1  稀土氧化物的线性方程、相关系数和检出限

    Table 1.  Linear equation, correlation coefficient and detection limit for rare earth oxides

    稀土氧化物 线性方程 相关系数 检出限(%) 测定下限(%)
    La2O3 y=51.91x+0.85 0.9999 0.0008 0.0027
    CeO2 y=8.35x+0.097 0.9999 0.0010 0.0033
    Pr6O11 y=7.35x+0.22 0.9999 0.0012 0.0040
    Nd2O3 y=7.39x-0.32 0.9999 0.0015 0.0050
    Sc2O3 y=176.63x-0.58 1.0000 0.0002 0.0005
    Y2O3 y=22.40x-0.51 0.9999 0.0002 0.0005
    下载: 导出CSV

    表 2  方法精密度和回收率(n=6)

    Table 2.  Precision and recovery tests of the method

    稀土氧化物 本底值
    (mg)
    RSD
    (%)
    加标量
    (mg)
    测定总量
    (mg)
    回收率
    (%)
    La2O3 0.040 3.2 0.020 0.059 96.3
    CeO2 0.10 3.9 0.050 0.15 94.9
    Pr6O11 0.021 4.6 0.011 0.030 85.2
    Nd2O3 0.033 4.5 0.016 0.047 87.6
    Sc2O3 0.029 2.0 0.015 0.045 104.4
    Y2O3 0.026 3.2 0.013 0.039 97.8
    下载: 导出CSV

    表 3  铝土矿中稀土氧化物的测定结果

    Table 3.  Analytical results of rare earth oxides in bauxite determined by ICP-OES and ICP-MS

    测定方法 La2O3
    (%)
    CeO2
    (%)
    Pr6O11
    (%)
    Nd2O3
    (%)
    Sc2O3
    (%)
    Y2O3
    (%)
    ICP-OES(本方法) 0.0080 0.020 0.0042 0.0065 0.0058 0.0051
    ICP-MS 0.0078 0.025 0.0045 0.0060 0.0061 0.0055
    相对误差(%) 2.50 25.0 7.14 7.69 5.17 7.84
    下载: 导出CSV
  • [1]

    李彬, 王枝平, 曲凡, 等.赤泥中有价金属的回收现状与展望[J].昆明理工大学学报(自然科学版), 2019, 44(2):1-10.

    Li B, Wang Z P, Qu F, et al.Present situation and prospect of recovery of valuable metals from red mud[J].Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(2):1-10.

    [2]

    王宝磊, 吴玉锋, 章启军, 等.草酸盐重量法测定荧光粉废料中稀土氧化物的总量[J].稀土, 2016, 37(5):92-96.

    Wang B L, Wu Y F, Zhang Q J, et al.Determination of total rare earth oxides content in waste phosphors with oxalate gravimetric method[J].Chinese Rare Earths, 2016, 37(5):92-96.

    [3]

    刘叶平, 李艳峰, 高立红, 等.重量法测定镧镍合金中稀土总量[J].冶金分析, 2019, 39(11):24-29.

    Liu Y P, Li Y F, Gao L H, et al.Determination of total rare earth content in lanthanum-nickel alloy by gravimetric method[J].Metallurgical Analysis, 2019, 39(11):24-29.

    [4]

    徐思婷, 施平.草酸盐重量法测定有机溶液中稀土氧化物总量[J].材料研究与应用, 2017, 11(1):55-58.

    Xu S T, Shi P.Determination of total rare earth oxide contents in organic solution with oxalate gravimetric method[J].Materials Research and Application, 2017, 11(1):55-58.

    [5]

    张燕辉, 杜若冰, 王振兴, 等.氯乙酸缓冲体系在稀土测定中的应用研究[J].中国稀土学报, 2013, 21(5):636-640.

    Zhang Y H, Du R B, Wang Z X, et al.Research on buffer solution of chloroacetic acid in rare earth detection[J].Journal of the Chinese Society of Rare Earths, 2013, 21(5):636-640.

    [6]

    胡珊玲, 邱谨, 吴志芳, 等.三溴偶氮胂分光光度法测定镁合金中稀土总量[J].冶金分析, 2016, 36(10):85-88.

    Hu S L, Qiu J, Wu Z F, et al.Determination of total earth in magnesium alloy by tribromoarsenazo spectropho-tometry[J].Metallurgical Analysis, 2016, 36(10):85-88.

    [7]

    潘福得, 刘丽萍.PMBP萃取-偶氮胂Ⅲ分光光度法测定茶叶中稀土元素总量[J].理化检验(化学分册), 2016, 52(1):93-95.

    Pan F D, Liu L P.Determination of the total amount of rare earth elements in tea by PMBP extraction-azobium Ⅲ spectrophotometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(1):93-95.

    [8]

    孙志峰, 张志刚, 张翼明, 等.镝铁合金中稀土总量的测定——EDTA容量法[J].稀土, 2010, 31(1):77-79.

    Sun Z F, Zhang Z G, Zhang Y M, et al.Determination of total rare earth content in Dy-Fe alloy with EDTA volume method[J].Chinese Rare Earths, 2010, 31(1):77-79.

    [9]

    Nuchdang S, Injarean U, Rattanaphra D.Evolution of rare earth elements, uranium and thoriumin geological samples by ICP-OES and their characterization[C]//Proceedings of International Nuclear Science and Technology Conference, 2019.

    [10]

    胡璇, 刘万超, 石磊.电感耦合等离子体发射光谱法测定赤泥浸出液中稀土元素[J].冶金分析, 2015, 35(12):46-50.

    Hu X, Liu W C, Shi L.Determination of rare earth elements in leaching solution of red mud by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(12):46-50.

    [11]

    周凯红, 张立锋, 刘晓杰.电感耦合等离子体原子发射光谱(ICP-AES)法测定镧玻璃废粉中稀土元素总量及配分量[J].中国无机分析化学, 2016, 6(3):62-65.

    Zhou K H, Zhang L F, Liu X J.Determination of total content and component contents of rare earth complex in waste powder of lanthanum glass by inductively coupled plasma atomic emission spectrometry (ICP-AES)[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(3):62-65.

    [12]

    潘春秀, 王伟, 李德军, 等.电感耦合等离子体原子发射光谱法同时测定球墨铸铁用稀土镁球化剂中硅、镁、钙、锰、铝、钛及稀土总量[J].理化检验(化学分册), 2019, 55(2):227-230.

    Pan C X, Wang W, Li D J, et al.Simultaneous determination of the total amount of silicon, magnesium, calcium, manganese, aluminum, titanium and rare earths in rare earth magnesium spheres for ductile iron by inductively coupled plasma atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(2):227-230.

    [13]

    张文娟, 谢玲君, 刘鸿.ICP-AES法测定氟碳铈矿中低含量稀土总量[J].有色金属科学与工程, 2016, 7(6):141-146.

    Zhang W J, Xie L J, Liu H.Determination of low content total rare earth in bastnaesite by ICP-AES[J].Nonferrous Metals Science and Engineering, 2016, 7(6):141-146.

    [14]

    宋旭东, 樊小伟, 陈文, 等.电感耦合等离子体质谱法测定离子吸附型稀土矿中全相稀土含量[J].冶金分析, 2018, 38(6):19-24.

    Song X D, Fan X W, Chen W, et al.Determination of total-phase rare earth content in ion-adsorption rare earth ore by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2018, 38(6):19-24.

    [15]

    倪文山, 刘长淼, 姚明星, 等.电感耦合等离子体质谱法测定磷灰石中稀土元素分量和总量[J].冶金分析, 2016, 36(7):69-73.

    Ni W S, Liu C M, Yao M X, et al.Determination of the total amount of rare earth elements and its component in apatite by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(7):69-73.

    [16]

    董学林, 何海洋, 储溱, 等.碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J].岩矿测试, 2019, 38(6):620-630.

    Dong X L, He H Y, Chu Q, et al.Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2019, 38(6):620-630.

    [17]

    Satyanarayanan M, Balaram V, Sawant S S, et al.Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J].Atomic Spectroscopy, 2018, 39(1):1-15.

    [18]

    袁静, 沈加林, 刘建坤, 等.高能偏振能量色散X射线荧光光谱仪测定地质样品中稀土元素[J].光谱学与光谱分析, 2018, 38(2):582-589.

    Yuan J, Shen J L, Liu J K, et al.Determination of rare earth elements in geological samples by high energy polarized energy dispersive X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2018, 38(2):582-589.

    [19]

    蒋天怡, 吴文琪, 张术杰, 等.熔融制样-X射线荧光光谱法测定轻稀土精矿中稀土总量[J].冶金分析, 2017, 37(12):27-32.

    Jiang T Y, Wu W Q, Zhang S J, et al.Determination of total rare earths in light rare earth concentrate by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2017, 37(12):27-32.

    [20]

    田春霞, 刘文华, 刘璟.稀土元素分析[J].分析试验室, 2018, 37(2):222-248.

    Tian C X, Liu W H, Liu J.Rare earth elements analysis[J].Chinese Journal of Analysis Laboratory, 2018, 37(2):222-248.

    [21]

    白英彬, 白英奇.ICP-OES法测定铝厂赤泥中的稀土元素[J].分析仪器, 2011(6):30-33.

    Bai Y B, Bai Y Q.Determination of rare earth elements in red mud by ICP-OES[J].Analytical Instrumentation, 2011(6):30-33.

    [22]

    吴伟明.赤泥矿中的稀土元素测定方法的研究[J].有色金属科学与工程, 2011, 2(3):76-80.

    Wu W M.Determination methods of rare earth elements in mud-mineral[J].Nonferrous Metals Science and Engineering, 2011, 2(3):76-80.

    [23]

    王克勤, 于永波, 王皓, 等.赤泥盐酸浸出提取钪的试验研究[J].稀土, 2010, 31(1):95-99.

    Wang K Q, Yu Y B, Wang H, et al.Experimental investigation on leaching scandium from red mud by hydrochloric acid[J].Chinese Rare Earths, 2010, 31(1):95-99.

    [24]

    门倩妮, 沈平, 甘黎明, 等.敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J].岩矿测试, 2020, 39(1):59-67.

    Men Q N, Shen P, Gan L M, et al.Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral survey samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J].Rock and Mineral Analysis, 2020, 39(1):59-67.

    [25]

    胡璇, 刘万超, 石磊.电感耦合等离子体发射光谱法测定赤泥中6种稀土元素[J].理化检验(化学分册), 2017, 53(11):1304-1307.

    Hu X, Liu W C, Shi L.ICP-AESdetermination of 6 rare earth elements in red mud[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(11):1304-1307.

    [26]

    黎卫亮, 程秀花, 李忠煜, 等.碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J].岩矿测试, 2017, 36(5):468-473.

    Li W L, Cheng X H, Li Z Y, et al.Determination of rare earth elements in peridotite by inductively coupled plasma mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J].Rock and Mineral Analysis, 2017, 36(5):468-473.

    [27]

    吴葆存, 于亚辉, 闫红岭, 等.碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J].冶金分析, 2016, 36(7):39-45.

    Wu B C, Yu Y H, Yan H L, et al.Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J].Metallurgical Analysis, 2016, 36(7):39-45.

    [28]

    杜宝华, 盛迪波, 宋平.ICP-OES法测定地质样品中稀土元素[J].世界核地质科学, 2019, 36(1):57-62.

    Du B H, Sheng D B, Song P.Determination of rare earth elements in geological samples by ICP-OES[J].World Nuclear Geoscience, 2019, 36(1):57-62.

    [29]

    李文玉.代用茶稀土元素含量检测的研究[D].南宁: 广西大学, 2017.

    Li W Y.Study on the content determination of rare earth elements in substitute tea[D].Nanning: Guangxi University, 2017.

  • 加载中

(3)

计量
  • 文章访问数:  1929
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2019-11-26
修回日期:  2020-02-13
录用日期:  2020-05-20

目录