中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征

陈康, 纪广轩, 朱有峰, 张华川. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征[J]. 岩矿测试, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005
引用本文: 陈康, 纪广轩, 朱有峰, 张华川. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征[J]. 岩矿测试, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005
Kang CHEN, Guang-xuan JI, You-feng ZHU, Hua-chuan ZHANG. Study on Alteration Characteristics of the Chengmenshan Tielukan Copper Deposit by A Hyperspectral Core Scanning System[J]. Rock and Mineral Analysis, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005
Citation: Kang CHEN, Guang-xuan JI, You-feng ZHU, Hua-chuan ZHANG. Study on Alteration Characteristics of the Chengmenshan Tielukan Copper Deposit by A Hyperspectral Core Scanning System[J]. Rock and Mineral Analysis, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005

基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征

  • 基金项目:
    中国地质调查局地质调查项目“实物地质资料汇集与服务”(DD20190411)
详细信息
    作者简介: 陈康, 硕士, 工程师, 从事实物地质资料开发与服务研究工作。E-mail:kangchen320@163.com
  • 中图分类号: P588.312

Study on Alteration Characteristics of the Chengmenshan Tielukan Copper Deposit by A Hyperspectral Core Scanning System

  • 铜矿床蚀变围岩与伴生矿体有着密切的成因与空间关系,通过分析铜矿床蚀变特征,可获得成矿时物理化学条件,热液中成矿元素的迁移、富集以及演化规律,最终指示铜矿床矿化富集程度以及矿体赋存位置。本文通过对城门山铜矿床外围铁路坎矿区的代表性岩心进行高光谱岩心扫描系统快速分析,结果显示在ZKJ9-7典型钻孔中,0~350m处以蒙脱石和碳酸盐典型光谱曲线为主;350~578m处以高岭土和白云母典型光谱曲线为主。通过矿物解译,自地表向下,城门山铁路坎矿区的矿物变化规律为:蒙脱石+高岭石→碳酸盐+蒙脱石→碳酸盐→白云母+高岭石+蒙脱石→白云母+高岭石+绿泥石。矿区浅部区域主要受花岗闪长斑岩体与碳酸盐类围岩之间的接触带构造控制;深部区域主要经历矽卡岩化和硅化,部分有绿泥石化,这些蚀变过程有利于铜矿的形成与富集。钻孔深部接触带两侧的岩石发生成分置换而形成矽卡岩,上升溶液沿着碳酸盐类接触面流动时,碳酸盐中的CaO通过粒间溶液,以上升溶液为媒介向硅铁质岩和硅铝质岩石方向扩散。相反,硅铁质岩和硅铝质岩中的FeO、Al2O3和SiO2以同样的方式向灰岩方向扩散,从而接触带两侧的岩石发生成分置换而形成矽卡岩。富铜矽卡岩型矿床的形成与溶液和岩石间的组分交换密切相关,组分的浓度差所引起的扩散作用在其中发挥了重要作用。
  • 加载中
  • 图 1  ZKJ9-7钻孔位置示意图

    Figure 1. 

    图 2  ZKJ9-7钻孔蚀变矿物——岩性分布柱状图

    Figure 2. 

    图 3  ZKJ9-7钻孔Cu含量与钻孔深度关系

    Figure 3. 

    表 1  CMS350B岩心光谱扫描技术参数

    Table 1.  Technical parameters of core spectrum scan in CMS350B

    参数 工作条件
    移动方向 X、Y方向移动
    平台 长1.5m,宽1.5m
    有效移动距离 X:1.2m,Y:1.2m
    扫描分辨率 1mm
    定位精度 优于0.1mm
    最大扫描速度 200mm/s
    有效荷载 样品台300kg,移动台100kg
    光谱范围 350~2500nm
    光谱分辨率 小于6nm
    测量矿物 低温蚀变矿物
    照片面积 130mm×100mm
    照片分辨率 0.1mm2
    下载: 导出CSV

    表 2  ZKJ9-7钻孔典型蚀变矿物光谱特征

    Table 2.  Spectral characteristics of typical altered minerals from the ZKJ9-7 drilling

    矿物 波谱图 波谱特征
    碳酸盐 碳酸盐在2300~2400nm间具有单一的吸收特征,对称性左宽右窄,有别于其他矿物;同时绝大多数矿物在2100~2200nm及2500nm附近具有次一级特征吸收峰
    蒙脱石 蒙脱石在2208nm附近表现出强烈的吸收特征,同时在1410nm和1910nm附近具有吸收特征
    绢云母 绢云母的光谱吸收特征主要分布在2200nm附近有明显的吸收峰,在2340nm和2440nm附近有次级吸收峰
    高岭石 高岭石在1400nm和2200nm处出现双吸收峰,同时双吸收峰的距离较近(< 15nm)
    下载: 导出CSV

    表 3  城门山矿区蚀变带划分

    Table 3.  Partition of alteration zone in Chengmenshan copper deposit

    蚀变带 亚带 蚀变带名称 相对位置 蚀变特征
    内带 1 钾长石-石英化带 中心带 岩体中的蚀变
    2 黑云母-钾长石化带 过渡带
    3 泥化-绢云母化带 边缘带
    外带 4 矽卡岩化带 接触带 围岩中的蚀变(碳酸盐类岩石和砂岩)
    5 硅化-大理岩化带 外接触带
    下载: 导出CSV

    表 4  ZKJ9-7钻孔中石榴子石的化学组成

    Table 4.  Chemical compositions of garnet in ZKJ9-7 drilling

    元素 各样品化学组成(%)
    9-7-3-1 9-7-3-2 9-7-3-3 9-7-3-5 9-7-3-6 9-7-3-7 9-7-3-8
    SiO2 37.902 37.867 38.019 38.503 37.027 37.455 38.501
    CaO 34.941 35.274 34.902 35.365 34.608 34.874 34.121
    FeO 16.679 16.601 17.044 13.112 17.921 19.106 17.701
    Al2O3 8.568 9.058 8.897 11.828 7.548 7.202 8.297
    MnO 0.379 0.295 0.341 0.505 0.343 0.347 0.320
    TiO2 0.148 0.164 0.075 0.170 0.199 0.012 0.046
    K2O 0.019 0 0.014 0.036 0.023 0.011 0.003
    Na2O 0 0.011 0.008 0.052 0.013 0.037 0.066
    MgO 0.096 0.058 0.081 0.122 0.148 0.034 0.098
    Cr2O3 0.019 0.021 0 0.008 0.001 0 0.001
    NiO 0 0.009 0 0 0 0 0
    总计 98.751 99.358 99.381 99.701 97.831 99.078 99.154
    下载: 导出CSV
  • [1]

    Lowell J D, Guilbert J M.Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J].Economic Geology, 1970, 65:373-408. doi: 10.2113/gsecongeo.65.4.373

    [2]

    杨金中, 方洪宾, 张玉君, 等.中国西部重要成矿带遥感找矿异常提取的方法研究[J].国土资源遥感, 2003(3):50-53. doi: 10.3969/j.issn.1001-070X.2003.03.012

    Yang J Z, Fang H B, Zhang Y J, et al.Remote sensing anomaly extraction in important metallogenic belts of western China[J].Remote Sensing for Land & Resources, 2003(3):50-53. doi: 10.3969/j.issn.1001-070X.2003.03.012

    [3]

    张玉君, 杨建民, 姚佛军.多光谱遥感技术预测矿产资源的潜能——以蒙古国欧玉陶勒盖铜金矿床为例[J].地学前缘, 2007, 14(5):63-69. doi: 10.3321/j.issn:1005-2321.2007.05.007

    Zhang Y J, Yang J M, Yao F J.The potential of multi-spectral remote sensing techniques for mineral exploration-Taking the Mongolian Oyu Tolgoi Cu-Au deposit as an example[J].Earth Science Frontiers, 2007, 14(5):63-69. doi: 10.3321/j.issn:1005-2321.2007.05.007

    [4]

    代晶晶, 王瑞江, 王润生, 等.基于蚀变信息提取的西藏班公湖-怒江成矿带中段斑岩铜矿找矿预测[J].地球学报, 2012, 33(5):755-762. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201205009.htm

    Dai J J, Wang R J, Wang R S, et al.Porphyry copper deposit prognosis in the middle part of the Bangong Co-Nujiang River metallogenic belt in Tibet based on alteration information extraction[J].Acta Geoscientica Sinica, 2012, 33(5):755-762. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201205009.htm

    [5]

    Kruse F A.Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra[J].International Journal of Remote Sensing, 1996, 17(9):1623-1632. doi: 10.1080/01431169608948728

    [6]

    Taylor G R.Mineral and lithology mapping of drill core pulps using visible and infrared spectrometry[J].Natural Resources Research, 2000, 9(4):257-268. doi: 10.1023/A:1011501125239

    [7]

    张川, 叶发旺, 徐清俊, 等.钻孔岩心高光谱技术系统及其在矿产勘查中的应用[J].地质科技情报, 2016, 35(6):177-183. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606025.htm

    Zhang C, Ye F W, Xu Q J, et al.Drill core hyperspectral technology system and its application in mineral prospecting[J].Geological Science and Technology Information, 2016, 35(6):177-183. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606025.htm

    [8]

    Michelle T, Benoit R, David G, et al.Automated drill core logging using visible and near-infrared reflectance spectroscopy:A case study from the Olympic Dam IOCG deposit, South Australia[J].Economic Geology, 2011, 106(2):289-296. doi: 10.2113/econgeo.106.2.289

    [9]

    Michelle C T, Benoit R, David G, et al.The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J].Ore Geology Reviews, 2013, 53(3):26-38. https://www.sciencedirect.com/science/article/pii/S0169136812002399

    [10]

    张杰林, 黄艳菊, 王俊虎, 等.铀矿勘察钻孔岩心高光谱编录及三维矿物填图技术研究[J].铀矿地质, 2013, 29(4):249-255. doi: 10.3969/j.issn.1000-0658.2013.04.009

    Zhang J L, Huang Y J, Wang J H, et al.Hyperspectral drilling core logging and 3D mineral mapping technology for uranium exploration[J].Uranium Geology, 2013, 29(4):249-255. doi: 10.3969/j.issn.1000-0658.2013.04.009

    [11]

    修连存, 郑志忠, 俞正奎, 等.近红外光谱分析技术在蚀变矿物鉴定中的应用[J].地质学报, 2007, 81(11):1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013

    Xiu L C, Zheng Z Z, Yu Z K, et al.Mineral analysis technology application with near infrared spectroscopy in identifying alteration mineral[J].Acta Geologica Sinica, 2007, 81(11):1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013

    [12]

    修连存, 郑志忠, 陈春霞, 等.国外便携式近红外药品分析仪原理及其应用[J].现代科学仪器, 2008(4):120-123. http://www.cnki.com.cn/Article/CJFDTotal-XDYQ200804036.htm

    Xiu L C, Zheng Z Z, Chen C X, et al.Principle and application of domestic portable near infrared medicine analyzer[J].Modern Scientific Instruments, 2008(4):120-123. http://www.cnki.com.cn/Article/CJFDTotal-XDYQ200804036.htm

    [13]

    修连存, 郑志忠, 俞正奎, 等.近红外光谱仪测定岩石中蚀变矿物方法研究[J].岩矿测试, 2009, 28(6):519-523. doi: 10.3969/j.issn.0254-5357.2009.06.004

    Xiu L C, Zheng Z Z, Yu Z K, et al.Study on method of measuring altered minerals in rocks with near-infrared spectrometer[J].Rock and Mineral Analysis, 2009, 28(6):519-523. doi: 10.3969/j.issn.0254-5357.2009.06.004

    [14]

    修连存, 郑志忠, 殷靓, 等.岩心扫描仪光谱数据质量评估方法研究[J].光谱学与光谱分析, 2015, 35(8):2352-2356. doi: 10.3964/j.issn.1000-0593(2015)08-2352-05

    Xiu L C, Zheng Z Z, Yin L, et al.Research on assessment methods of & spectrum data quality of core scan[J].Spectroscopy and Spectral Analysis, 2015, 35(8):2352-2356. doi: 10.3964/j.issn.1000-0593(2015)08-2352-05

    [15]

    蒙亚平, 杜培军, 李二珠, 等.国产岩心光谱扫描仪CMS350A数据预处理技术[J].国土资源遥感, 2017, 29(4):73-81. http://www.cnki.com.cn/Article/CJFDTotal-GTYG201704013.htm

    Meng Y P, Du P J, Li E Z, et al.Data preprocessing methods of domestic core spectral scanner CMS350A[J].Remote Sensing for Land & Resources, 2017, 29(4):73-81. http://www.cnki.com.cn/Article/CJFDTotal-GTYG201704013.htm

    [16]

    赵瑞, 谢奕汉, 姚御元, 等.城门山及武山铜矿床的硫同位素研究[J].地质学报, 1985, 59(3):251-258. http://www.cnki.com.cn/Article/CJFDTotal-DZKX198503004.htm

    Zhao R, Xie Y H, Yao Y Y, et al.Sulfur isotope study of the copper ore deposit of Chengmenshan and Wushan[J].Acta Geologica Sinica, 1985, 59(3):251-258. http://www.cnki.com.cn/Article/CJFDTotal-DZKX198503004.htm

    [17]

    孟良义, 黄恩邦.城门山铜、钼矿床的稳定同位素地质[J].长春地质学院学报, 1988, 18(3):269-276. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=CCDZ198803004

    Meng L Y, Huang E B.The stable isotopic geology of copper, molybdenum ore deposits in Chengmenshan, Jiangxi[J].Journal of Changchun University of Earth Science, 1988, 18(3):269-276. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=CCDZ198803004

    [18]

    黄恩邦, 张迺堂, 罗钊生.城门山、武山铜矿床成因[J].矿床地质, 1990, 9(4):291-300. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ199004000.htm

    Huang E B, Zhang N T, Luo Z S.The genesis of the Chengmenshan and Wushan copper deposits[J].Mineral Deposits, 1990, 9(4):291-300. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ199004000.htm

    [19]

    王忠玲.江西城门山块状硫化物矿床地质特征及成因研究[J].地质找矿论丛, 1991, 6(1):47-57. http://www.cnki.com.cn/Article/CJFDTotal-DZZK199101004.htm

    Wang Z L.Genesis and geological features of Chengmenshan massive sulfide Cu, S ore deposit, Jiangxi Province[J].Contributions to Geology and Mineral Resources Research, 1991, 6(1):47-57. http://www.cnki.com.cn/Article/CJFDTotal-DZZK199101004.htm

    [20]

    贾伟.江西城门山、武山矿区块状硫化物型铜矿成因新探讨[J].江西地质, 1999, 13(1):33-37. http://www.cnki.com.cn/Article/CJFDTotal-JXDZ901.006.htm

    Jia W.A discussion on the genesis of the Chengmenshan and Wushan massive sulfide copper deposits in Jiangxi Province[J].Jiangxi Geology, 1999, 13(1):33-37. http://www.cnki.com.cn/Article/CJFDTotal-JXDZ901.006.htm

    [21]

    王青华, 王润生, 郭小方.高光谱遥感技术在岩石识别中的应用[J].国土资源遥感, 2000, 12(4):39-43. doi: 10.3969/j.issn.1001-070X.2000.04.008

    Wang Q H, Wang R S, Guo X F.Application for discrimination of rock using hyperspectral remote sensing technique[J].Remote Sensing for Land & Resources, 2000, 12(4):39-43. doi: 10.3969/j.issn.1001-070X.2000.04.008

    [22]

    徐翠, 李林庆, 张洁, 等.X射线荧光光谱-电子探针在中酸性火山岩鉴定中的应用[J].岩矿测试, 2016, 35(6):626-633. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812190137

    Xu C, Li L Q, Zhang J, et al.Application of X-ray fluorescence spectrometry and electron microprobe in the identification of intermediate-felsic volcanic rocks[J].Rock and Mineral Analysis, 2016, 35(6):626-633. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812190137

    [23]

    罗建安, 杨国才.江西城门山铜矿地质特征及矿床成因[J].矿产与地质, 2007, 21(3):284-288. doi: 10.3969/j.issn.1001-5663.2007.03.014

    Luo J A, Yang G C.Geological characteristics of Chengmenshan copper deposit, Jiangxi and its ore genesis[J].Mineral Resources and Geology, 2007, 21(3):284-288. doi: 10.3969/j.issn.1001-5663.2007.03.014

    [24]

    李旭辉, 田九玲.城门山铜矿地质特征及深部三维成矿预测[J].金属矿山, 2016(6):113-116. doi: 10.3969/j.issn.1001-1250.2016.06.023

    Li X H, Tian J L.Geological characteristics and deep three-dimensional metallogenic prediction of Chengmengshan copper mine[J].Metal Mine, 2016(6):113-116. doi: 10.3969/j.issn.1001-1250.2016.06.023

    [25]

    李旭辉, 高任, 马立成, 等.江西城门山矿田块状硫化物型矿体矿化分带特征[J].地质力学学报, 2016, 22(3):794-802. doi: 10.3969/j.issn.1006-6616.2016.03.032

    Li X H, Gao R, Ma L C, et al.Mineralization zonation of massive sulfide deposit in the Chengmenshan orefield, Jiangxi Province, China[J].Journal of Geomechanics, 2016, 22(3):794-802. doi: 10.3969/j.issn.1006-6616.2016.03.032

    [26]

    吴俊华, 龚敏, 袁承先, 等.江西城门山铜矿含矿斑岩体风化作用地球化学特征[J].矿床地质, 2010, 29(3):501-509. doi: 10.3969/j.issn.0258-7106.2010.03.011

    Wu J H, Gong M, Yuan C X, et al.Weathering geochemical characteristics of ore-bearing porphyry in Chengmenshan copper deposit, Jiangxi Province[J].Mineral Deposits, 2010, 29(3):501-509. doi: 10.3969/j.issn.0258-7106.2010.03.011

    [27]

    吴俊华, 龚敏, 龚鹏, 等.江西九江城门山铜矿三维地质地球化学特征与成矿预测[J].地质通报, 2010, 29(6):925-932. doi: 10.3969/j.issn.1671-2552.2010.06.015

    Wu J H, Gong M, Gong P, et al.3D geological and geochemical features and metallogenic prognosis of Chengmenshan copper deposit, Jiujiang, Jiangxi, China[J].Geological Bulletin of China, 2010, 29(6):925-932. doi: 10.3969/j.issn.1671-2552.2010.06.015

    [28]

    龚鹏, 龚敏, 熊燃, 等.老矿区深部资源量预测的地球化学方法——以江西九江城门山铜矿深部铜资源量预测为例[J].地质通报, 2010, 29(2/3):414-420. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2010Z1029.htm

    Gong P, Gong M, Xiong R, et al.Resources prediction geochemical method in deep area for old orefield-A case study of Chengmenshan copper deposit about copper deep area resources prediction, Jiujiang County, Jiangxi Province, China[J].Geological Bulletin of China, 2010, 29(2/3):414-420. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2010Z1029.htm

    [29]

    方福康.江西城门山斑岩铜钼矿成矿流体研究[D].北京: 中国地质大学(北京), 2012.

    Fang F K.Studies on the fluid inclusions of the Chengmenshan porphyry Cu-Mo deposit, Jiangxi Province[D].Beijing: China University of Geosciences (Beijing), 2012.

    [30]

    文春华, 徐文艺, 钟宏, 等.九瑞矿集区城门山斑岩型钼铜矿床流体包裹体研究[J].地质学报, 2012, 86(10):1604-1619. doi: 10.3969/j.issn.0001-5717.2012.10.005

    Wen C H, Xu W Y, Zhong H, et al.Fluid inclusion study of the Chengmenshan porphyry Mo-Cu deposit in the Jiujiang-Ruichang district[J].Acta Geologica Sinica, 2012, 86(10):1604-1619. doi: 10.3969/j.issn.0001-5717.2012.10.005

    [31]

    郭宇明, 胡基垣, 李超.城门山铜矿矿石矿物组成及矿物学特征[J].四川地质学报, 2018, 38(3):427-430. doi: 10.3969/j.issn.1006-0995.2018.03.018

    Guo Y M, Hu J H, Li C.Ore mineral component and mineralogy of the Chengmenshan Cu deposit[J].Acta Geologica Sichuan, 2018, 38(3):427-430. doi: 10.3969/j.issn.1006-0995.2018.03.018

  • 加载中

(3)

(4)

计量
  • 文章访问数:  2226
  • PDF下载数:  71
  • 施引文献:  0
出版历程
收稿日期:  2020-04-28
修回日期:  2020-07-24
录用日期:  2020-09-19

目录