Determination of Trace Element Compositions of Altered Minerals in Fenitization Veins by Inductively Coupled Plasma-Mass Spectrometry
-
摘要: 近年来全岩电感耦合等离子体质谱(ICP-MS)和原位激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)微量元素地球化学测试在地球科学领域的应用越来越广泛。霓长岩化是碳酸岩型稀土矿常见的蚀变类型,但其中的蚀变矿物微量元素特征与稀土矿化关系并不清楚。本文对川西牦牛坪矿床两期霓长岩化脉(无矿脉和含矿脉)中的霓辉石、钠铁闪石同时开展ICP-MS和LA-ICP-MS微量元素测试。结果表明:同期次的霓长岩化脉中,霓辉石、钠铁闪石全岩ΣREE含量远高于单矿物原位ΣREE含量,背散射图像显示霓辉石、钠铁闪石矿物中叠加了一些氟碳铈矿、重晶石微矿物。不同期次霓长岩化脉中霓辉石原位微量对比,含矿脉中的霓辉石具有更高的La/Nd值(0.19~0.23)、LREE/HREE值(6.58~7.79)、Ce/Nd值(0.95~1.11)、LaN/YbN值(2.07~2.33)。对比全岩微量组成,含矿脉中高含量的La、Ce、LREE、ΣREE,强烈的轻重稀土分异,可能代表了高稀土通量的霓长岩化流体。霓长岩化脉的出现以及脉体中霓辉石、钠铁闪石这些全岩微量、原位微量地球化学指标,可为碳酸岩型稀土矿床找矿勘查提供参考。Abstract:
BACKGROUNDIn recent years, whole-rock inductively coupled plasma-mass spectrometry (ICP-MS) trace and in situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element analyses have been increasingly more widely used in the field of earth sciences. Fenitization is a common type of alteration in carbonate-type rare earth deposits, but the relationship between the trace element characteristics of altered minerals and rare earth mineralization is not clear. OBJECTIVESTo better understand the relationship between fenitization and REE mineralization in the Maoniuping deposit as well as to provide references for prospecting carbonate-related (including alkaline rock) REE deposits. METHODSTrace elements for aegirine-augite and arfvedsonite in different stages of fenitization veins (ore-bearing or barren rocks) from the Maoniuping deposit, Dagudao area were analyzed by ICP-MS and LA-ICP-MS. RESULTSIn situ trace elements of aegirine-augite in different stages of fenitization veins showed that La/Nd (0.19-0.23), LREE/HREE (6.58-7.79), Ce/Nd (0.95-1.11), (La)N/(Yb)N (2.07-2.33) values of aegirine-augite in ore-bearing veins were higher than those of barren veins. CONCLUSIONSCompared with whole rock trace elements, high contents of La, Ce, LREE, ΣREE in mineral veins, strong differentiation of light and heavy rare earths may represent fenitization-related fluid with high rare earth flux. The occurrence of fenitization veins and the whole-rock trace and in situ trace geochemical indicators of aegirine-augite in veins may provide references for the prospecting and exploration of carbonate-type rare earth deposits. -
Key words:
- Maoniuping /
- fenitization /
- alteration /
- trace elements /
- aegirine-augite /
- arfvedsonite
-
-
图 2 牦牛坪矿床不同期次的霓长岩化脉体中霓辉石、钠铁闪石全岩和原位微量元素组成[38]
Figure 2.
表 1 牦牛坪矿床不同期次的霓长岩化脉体中霓辉石、钠铁闪石全岩微量元素组成
Table 1. Total trace elements compositions of aegirine-augite and arfvedsonite in different period fenitization veins from the Maoniuping deposit, analyzed by ICP-MS
元素 霓辉石(×10-6) 钠铁闪石(×10-6) 霓辉石(×10-6) 钠铁闪石(×10-6) BAgt1 BAgt2 BArf1 BArf2 HAgt1 HAgt2 HArf1 HArf2 Ti 843 564 216 395 1645 589 489 162 Rb 72.1 13.0 28.9 63.9 97.4 9.84 160 11.8 Sr 173 155 1039 619 114 605 272 1531 Ba 2214 1592 3563 36100 3639 14690 86220 805 Zr 168 118 14.4 28.7 150 169 17.2 13.5 Nb 19.5 12.7 4.21 6.76 47.4 17.7 31.7 3.00 La 71.5 192 27.1 925 572 614 13120 1144 Ce 115 296 53.1 1136 838 879 17170 1270 Pr 16.7 32.7 7.83 103 81 82.9 1401 105 Nd 68.4 116 39.2 312 249 267 3798 293 Sm 14.4 17.3 9.42 33.0 32.2 30.3 267 27.7 Eu 3.74 4.01 2.75 8.44 6.96 6.31 40.4 5.51 Gd 11.1 10.6 9.97 15.1 16.6 14.2 45.8 13.3 Tb 1.46 1.34 1.22 2.31 2.24 1.69 6.42 1.84 Dy 7.24 6.53 6.00 12.5 11.3 8.32 43.5 9.80 Y 31.5 26.9 90.7 63.6 49.9 23.3 89.5 120 Ho 1.2 1.02 1.09 2.03 1.72 1.02 2.83 1.44 Er 3.51 2.83 2.94 5.66 4.89 2.65 2.74 3.57 Tm 0.59 0.48 0.38 0.91 0.78 0.46 0.71 0.46 Yb 4.31 3.78 2.14 5.69 5.36 3.83 5.91 2.64 Lu 1.00 0.87 0.37 1.02 1.11 0.98 1.33 0.44 Hf 12.3 10.9 1.06 1.95 10.5 11.3 2.10 0.90 Ta 0.06 0.07 0.07 0.08 0.86 0.14 0.26 0.05 Pb 308 56.5 47.5 209 316 240 484 236 Th 1.60 5.27 1.09 6.28 718 33.8 62.6 8.12 U 5.22 3.03 0.79 13.0 119 18.0 17.80 0.70 ∑REE 320 685 164 2563 1823 1913 35906 2879 LREE 272 637 127 2476 1740 1843 35489 2812 HREE 9.41 7.96 5.83 13.28 12.14 7.92 10.69 7.11 LREE/HREE 28.91 80.03 21.78 186.45 143.33 232.70 3319.83 395.50 LaN/YbN 16.6 50.8 12.7 163 107 160 2220 433 注:LREE/HREE、LaN/YbN无单位。 表 2 牦牛坪矿床不同期次的霓长岩化脉体中霓辉石、钠铁闪石原位微量元素组成
Table 2. In situ trace elements compositions of aegirine-augite and arfvedsonite in different period fenitization veins from the Maoniuping deposit, analyzed by LA-ICP-MS
元素 霓辉石(×10-6) 钠铁闪石(×10-6) 霓辉石(×10-6) 钠铁闪石(×10-6) La-BAgt1 La-BAgt2 La-BAgt3 La-BAgt4 La-BArf1 La-BArf2 La-BArf3 La-BArf4 La-HAgt1 La-HAgt2 La-HAgt3 La-HAgt4 La-HArf1 La-HArf2 La-HArf3 La-HArf4 Ti 292 298 305 313 400 420 507 255 692 488 658 653 484 312 438 249 Rb 0.04 0.06 0 0 6.9 7.58 5.79 8.17 0 0 0.05 0 6.01 7.85 7.03 8.10 Sr 194 181 187 194 97.1 105 104 105 182 167 169 158 54.9 98 96.3 94.1 Ba 0.03 0 0.14 0.05 1.09 0.85 0.86 0.79 0.26 0.44 0.01 0.38 7.15 3.07 4.96 4.99 Zr 167 164 128 133 13.7 10.0 14.8 9.70 144 124 141 155 31.9 12.2 11.5 11.1 Nb 0.16 0.15 0.29 0.16 2.60 1.04 2.23 0.37 0.34 0.2 0.41 0.36 3.96 0.63 1.42 0.51 La 10.2 9.16 8.88 9.32 2.60 2.62 2.48 2.32 9.52 8.94 9.42 11.7 1.95 2.49 2.50 2.49 Ce 49.3 44.4 44.9 46.4 10.5 10.3 9.52 9.03 47.5 43.9 45.7 56.9 9.22 9.86 9.73 9.68 Pr 9.20 8.75 8.55 8.61 1.67 1.54 1.63 1.44 8.48 8.1 7.85 11.1 1.61 1.49 1.54 1.49 Nd 50.6 48.0 45.8 48.4 7.90 6.77 6.86 6.57 45.7 42.1 41.1 60.1 7.70 7.04 7.39 6.78 Sm 11.2 11.6 10.4 11.2 1.37 1.25 1.24 1.32 9.33 8.42 8.42 12.7 1.61 1.63 1.44 1.07 Eu 2.86 2.73 2.73 2.69 0.37 0.31 0.31 0.27 2.28 2.16 2.01 3.35 0.50 0.29 0.39 0.29 Gd 7.91 7.11 7.05 7.23 0.71 0.83 0.63 0.81 5.64 5.80 5.07 9.23 1.11 0.71 0.85 0.75 Tb 0.87 0.91 0.80 0.80 0.11 0.07 0.10 0.08 0.60 0.64 0.55 1.05 0.13 0.09 0.10 0.06 Dy 4.61 4.34 4.08 4.06 0.55 0.37 0.49 0.37 3.26 3.24 3.12 5.62 0.73 0.50 0.43 0.36 Y 13.4 13.2 12.5 12.6 1.65 1.65 1.56 1.70 10.6 9.71 9.76 14.8 2.97 1.74 1.96 1.73 Ho 0.65 0.68 0.66 0.55 0.08 0.08 0.08 0.06 0.48 0.49 0.48 0.88 0.11 0.08 0.08 0.07 Er 1.68 1.95 1.45 1.60 0.27 0.20 0.20 0.31 1.55 1.30 1.15 2.11 0.31 0.21 0.33 0.39 Tm 0.37 0.35 0.30 0.35 0.08 0.09 0.08 0.08 0.27 0.25 0.24 0.36 0.08 0.08 0.09 0.09 Yb 4.29 4.04 3.65 3.6 0.99 1.24 1.37 1.35 3.22 3.08 3.27 3.61 0.84 1.35 1.14 1.11 Lu 1.23 1.10 0.91 0.97 0.30 0.35 0.36 0.31 0.82 0.69 0.81 0.84 0.20 0.36 0.34 0.32 Hf 12.2 12.2 9.67 9.88 1.02 0.90 1.10 0.49 11.2 12.0 10.9 11.1 8.02 1.08 1.25 0.68 Ta 0 0 0 0 0 0 0.02 0 0.02 0.02 0.03 0.01 0.11 0.01 0.04 0.02 Pb 2.62 2.37 2.21 2.37 3.92 3.11 4.04 3.30 2.23 2.11 1.98 1.95 3.56 3.38 3.94 5.94 Th 0.01 0.01 0.02 0.01 0 0 0 0 0.01 0.01 0.01 0.04 0.03 0 0 0 U 0 0 0.01 0.03 0 0 0 0 0 0 0 0.01 0.03 0.01 0.01 0.01 ΣREE 155 145 140 146 27.5 26.0 25.3 24.3 139 129 129 180 26.1 26.2 26.3 24.9 LREE 133 125 121 127 24.4 22.8 22.0 20.9 123 114 114 156 22.6 22.8 23.0 21.8 HREE 21.6 20.5 18.9 19.2 3.09 3.22 3.31 3.36 15.8 15.5 14.7 23.7 3.51 3.37 3.36 3.14 LREE/HREE 6.17 6.08 6.42 6.60 7.91 7.07 6.65 6.23 7.75 7.34 7.79 6.58 6.44 6.77 6.85 6.93 LaN/YbN 1.70 1.63 1.75 1.86 1.88 1.52 1.30 1.23 2.12 2.08 2.07 2.33 1.67 1.32 1.57 1.61 注:LREE/HREE、LaN/YbN无单位。 -
[1] Elliott H A L, Wall F, Chakhmouradian A R, et al.Fenites associated with carbonatite complexes:A review[J].Ore Geology Reviews, 2018, 93:38-59. http://smartsearch.nstl.gov.cn/paper_detail.html?id=e946dc5699f4a59c04c70b325720d4fe
[2] 王凯怡.与碳酸岩共生的霓长岩[J].地质科学, 2015, 50(1):203-212. http://qikan.cqvip.com/Qikan/Article/Detail?id=663646768
Wang K Y.Fenites associated with carbonatites[J].Chinese Journal of Geology, 2015, 50(1):203-212. http://qikan.cqvip.com/Qikan/Article/Detail?id=663646768
[3] 舒小超, 刘琰, 李德亮.川西冕宁-德昌稀土矿带霓长岩的地球化学特征及地质意义[J].岩石学报, 2019, 35(5):1372-1388. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201905005
Shu X C, Liu Y, Li D L.Geochemical characteristics and geological significance of fenites in the Mianning-Dechang REE belt, western Sichuan Province[J].Acta Petrologica Sinica, 2019, 35(5):1372-1388. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201905005
[4] Cooper A F, Palin J M, Collins A K.Fenitization of metabasic rocks by ferrocarbonatites at Haast River, New Zealand[J].Lithos, 2016, 244:109-121. http://smartsearch.nstl.gov.cn/paper_detail.html?id=2c4a372e05699bd6857c20a50270d956
[5] le Bas M J.Fenites associated with carbonatites[J].Canadian Mineralogist, 2008, 46:915-932.
[6] Woolley A R.A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites[J].Mineralogical Magazine, 1982, 46:13-17. http://adsabs.harvard.edu/abs/1982MinM...46...13W
[7] 王凯怡, 张继恩, 方爱民, 等.白云鄂博矿床成因——矿体内霓长岩化成矿作用与赋矿白云岩的联系[J].岩石学报, 2018, 34(3):785-798. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201704001603.htm
Wang K Y, Zhang J E, Fang A M, et al.Genesis of the Bayan Obo deposit, Inner Mongolia:The finitized mineralization in the ore bodies and its relation to the ore bearing dolomite[J].Acta Petrologica Sinica, 2018, 34(3):785-798. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201704001603.htm
[8] Rubie D C, Günter W D.The role of speciation in alkaline igneous fluids during fenite metasomatism[J].Contributions to Mineralogy and Petrology, 1983, 82:165-175. http://link.springer.com/article/10.1007/BF01166611
[9] Liu S, Fan H R, Yang K F, et al.Fenitization in the giant Bayan Obo REE-Nb-Fe deposit:Implication for REE mineralization[J].Ore Geology Reviews, 2018, 94:290-309. http://www.sciencedirect.com/science/article/pii/S0169136817301877
[10] 杨学明, 杨晓勇, 范宏瑞, 等.霓长岩岩石学特征及其地质意义评述[J].地质论评, 2000, 46(5):481-490. http://www.cqvip.com/Main/Detail.aspx?id=4673171
Yang X M, Yang X Y, Fan H R, et al.Petrological characteristics of fenites and their geological significance[J].Geological Review, 2000, 46(5):481-490. http://www.cqvip.com/Main/Detail.aspx?id=4673171
[11] Wang K Y, Zhang J, Yu L J, et al.Fenitized wall rock geochemistry of the first carbonatite dyke at Bayan Obo, Inner Mongolia, China[J].Acta Geologica Sinica (English Edition), 2018, 92(2):600-603. http://onlinelibrary.wiley.com/doi/pdf/10.1111/1755-6724.13545
[12] Hou Z Q, Liu Y, Tian S H, et al.Formation of carbonatite related giant rare-earth-element deposits by the recycling of marine sediments[J].Scientific Reports, 2015, 5:10231. http://www.ncbi.nlm.nih.gov/pubmed/26035414
[13] Xu C, Zhang H, Liu C, et al.Genesis of the carbonatite-syenite complex and REE deposit at Maoniuping, Sichuan Province, China:Evidence from Pb isotope geochemistry[J].Geochemical Journal, 2004, 38:67-76. http://ci.nii.ac.jp/naid/10012847977
[14] Xu C, Campbell I H, Kynicky J, et al.Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposits, China[J].Lithos, 2008, 106(1-2):12-24. http://www.sciencedirect.com/science/article/pii/S0024493708001175
[15] Hou Z Q, Tian S H, Yuan Z X, et al.The Himalayan collision zone carbonatites in western Sichuan, SW China:Petrogenesis, mantle source and tectonic implication[J].Earth and Planetary Science Letters, 2006, 244:234-250. http://www.sciencedirect.com/science/article/pii/S0012821X0600104X
[16] Xie Y L, Hou Z Q, Yin S P, et al.Continuous carbonatitic melt-fluid evolution of a REE mineralization system:Evidence from inclusions in the Maoniuping REE deposit, western Sichuan, China[J].Ore Geology Reviews, 2009, 36:90-105. http://www.sciencedirect.com/science/article/pii/S0169136808000978
[17] Xie Y L, Li Y X, Hou Z Q, et al.A model for carbonatite hosted REE mineralisation-The Mianning-Dechang REE belt, western Sichuan Province, China[J].Ore Geology Reviews, 2015, 70:595-612. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=103157890&site=ehost-live
[18] Liu Y, Chakhmouradian A R, Hou Z Q, et al.Deve-lopment of REE mineralization in the giant Maoniuping deposit (Sichuan, China):Insights from mineralogy, fluid inclusions, and trace-element geochemistry[J].Mineralium Deposita, 2019, 54(5):701-718. http://link.springer.com/article/10.1007/s00126-018-0836-y
[19] Zheng X, Liu Y.Mechanisms of element precipitation in carbonatite-related rare-earth element deposits:Evidence from fluid inclusions in the Maoniuping deposit, Sichuan Province, southwestern China[J].Ore Geology Reviews, 2019, 107:218-238. http://www.sciencedirect.com/science/article/pii/S0169136818307042
[20] Shu X C, Liu Y.Fluid inclusion constraints on the hydro-thermal evolution of the Dalucao carbonatite-related REE deposit, Sichuan Province, China[J].Ore Geology Reviews, 2019, 107:41-57. http://www.sciencedirect.com/science/article/pii/S0169136818301999
[21] Shu X C, Liu Y, Li D L.Fluid inclusions as an indicator for REE mineralization in the Lizhuang deposit, Sichuan Province, southwest China[J].Journal of Geochemical Exploration, 2020, 213:1-15. http://www.sciencedirect.com/science/article/pii/S0375674219302468
[22] Yang Y H, Wu F Y, Li Y, et al.In situ U-Pb dating of bastnaesite by LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):1017-1023. http://www.researchgate.net/publication/267633897_In_situ_U-Pb_dating_of_bastnaesite_by_LA-ICP-MS
[23] Liu Y, Hou Z Q, Tian S H, et al.Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China:Constraints on the giant REE mineralization belt and its regional geological setting[J].Ore Geology Reviews, 2015, 64:554-568. http://www.sciencedirect.com/science/article/pii/S0169136814000821
[24] Ling X X, Li Q L, Liu Y, et al.In situ SIMS Th-Pb dating of Bastnäsite:Constraint on the mineralization time of the Himalayan Mianning-Dechang rare earth element deposits[J].Journal of Analytical Atomic Spectrometry, 2016, 31:1680-1687. http://smartsearch.nstl.gov.cn/paper_detail.html?id=a236458297585fd3c93a75b95dd11a4b
[25] 袁忠信, 施泽民, 白鸽, 等.川西冕宁牦牛坪轻稀土矿床[M].北京:地震出版社, 1995:1-150.
Yuan Z X, Shi Z M, Bai G, et al.The Maoniuping rare earth ore deposit, Mianning County, Sichuan Province[M].Beijing:Seismological Publishing House, 1995:1-150.
[26] 郭东旭, 刘琰, 陈超, 等.川西冕宁-德昌稀土矿带正长岩-碳酸岩杂岩体中锆石矿物学特征与矿化过程[J].岩石矿物学杂志, 2017, 36(3):343-359. http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254447838.html
Guo D X, Liu Y, Chen C, et al.Mineral characteristics of zircons in the syenite-carbonatite complex in the Mianning-Dechang REE ore belt, Sichuan Province, SW China:Indicative of REE mineralization[J].Acta Petrologica et Mineralogica, 2017, 36(3):343-359. http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254447838.html
[27] Liu Y, Chen Z Y, Yang Z S, et al.Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit, Sichuan Province, southwestern China[J].Ore Geology Reviews, 2015, 70:613-636. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=103157916&site=ehost-live
[28] Liu Y, Zhu Z M, Chen C, et al.Geochemical and minera-logical characteristics of weathered ore in the Dalucao REE deposit, Mianning-Dechang REE Belt, western Sichuan Province, southwestern China[J].Ore Geology Reviews, 2015, 71:437-456. http://smartsearch.nstl.gov.cn/paper_detail.html?id=cbd8c4e257bfd55209c97b49dd295b7c
[29] Liu Y, Hou Z Q, Zhang R Q, et al.Zircon alteration as a proxy for REE mineralization processes in carbonatite-nordmarkite complexes of the Mianning-Dechang REE belt, China[J].Economic Geology, 2019, doi:10.5382/econgeo.0000.
[30] Liu Y, Hou Z Q.A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China[J].Journal of Asian Earth Sciences, 2017, 137(15):35-79. http://www.sciencedirect.com/science/article/pii/S1367912017300081
[31] 刘琰, 陈超, 舒小超, 等.青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式——以大陆槽REE矿床为例[J].岩石学报, 2017, 33(7):1978-2000. http://d.wanfangdata.com.cn/Periodical/ysxb98201707002
Liu Y, Chen C, Shu X C, et al.The formation model of the carbonatite-syenite complex REE deposits in the east of Tibetan Plateau:A case study of Dalucao REE deposit[J].Acta Petrologica Sinica, 2017, 33(7):1978-2000. http://d.wanfangdata.com.cn/Periodical/ysxb98201707002
[32] 侯增谦, 田世洪, 谢玉玲, 等.川西冕宁-德昌喜马拉雅期稀土元素成矿带:矿床地质特征与区域成矿模型[J].矿床地质, 2008, 27(2):145-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200802002
Hou Z Q, Tian S H, Xie Y L, et al.Mianning-Dechang Himalayan REE belt associated with carbonatite-alkalic complex in eastern Indo-Asian collision zone, southwest China:Geological characteristics of REE deposits and a possible metallogenic model[J].Mineral Deposits, 2008, 27(2):145-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200802002
[33] Hou Z Q, Tian S H, Xie Y L, et al.The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China[J].Ore Geology Reviews, 2009, 36:65-89. http://www.sciencedirect.com/science/article/pii/S0169136809000237
[34] Guo D X, Liu Y.Occurrence and geochemistry of bastnä-site in carbonatite-related REE deposits, Mianning-Dechang REE belt, Sichuan Province, SW China[J].Ore Geology Reviews, 2019, 107:266-282. http://www.sciencedirect.com/science/article/pii/S0169136818303123
[35] 李小渝.四川德昌大陆槽稀土矿床地质特征[J].矿床地质, 2005, 24(2):151-160. http://d.wanfangdata.com.cn/Periodical/kcdz200502007
Li X Y.Geological characteristics of Dalucao REE deposit in Dechang County, Sichuan Province[J].Mineral Deposits, 2005, 24(2):151-160. http://d.wanfangdata.com.cn/Periodical/kcdz200502007
[36] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. http://www.sciencedirect.com/science/article/pii/S0009254108003501
[37] Hu M Y, Fan X T, Stoll B, et al.Preliminary chara-cterisation of new reference materials for microanalysis:Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5[J].Geostandards and Geoanalytical Research, 2011, 35(1-2):235-251.
[38] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[M]//Saunders A D, Norry M J.Magmatism in the ocean basins.Geological Society of London Special Publication, 1989:313-345.]
-