Zircon LA-ICP-MS U-Pb Age and Geochemical Features of the Songlinkou Pluton, Western Sichuan
-
摘要: 松林口岩体出露于松潘—甘孜造山带东缘,紧邻甲基卡超大型稀有金属伟晶岩型锂矿床,为确定松林口岩体侵位时代与物质来源,探讨该岩体与甲基卡成矿岩体的地球化学和含矿性差异,本文对采集的11件岩体样品,采用X射线荧光光谱法、电感耦合等离子体质谱法(ICP-MS)、激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)和多接收电感耦合等离子体质谱法(MC-ICP-MS),对岩石的主量和微量元素组成、锆石U-Pb年龄和锆石Lu-Hf同位素进行分析。结果表明:松林口岩体中富含闪长质暗色包体,SiO2含量介于56.56%~68.99%之间,全碱含量3.78%~6.82%,K2O/Na2O=1.02~1.93,里特曼指数σ=1.01~1.93,Mg#值总体为46.73~61.27,岩石属于高钾钙碱性Ⅰ型花岗岩系列,具有轻稀土富集的特点,LREE/HREE=2.67~8.31,LaN/YbN值为2.11~9.74,所有岩石样品均具有明显的负Eu异常;总体上松林口岩体及其包体富集LILE元素,Ta、Nb、P、Ti等HFSE元素相对亏损。松林口边部花岗闪长岩、中部二长花岗岩的锆石U-Pb年龄分别为212.6±1.0Ma(MSWD=0.55)、222.4±1.1Ma(MSWD=0.39),岩浆侵位时代为晚三叠世;二长花岗岩锆石Lu-Hf同位素结果εHf(t)介于-9.09~-6.86,二阶段模式年龄(TDMC)在1524.874~1666.002Ma之间,岩体物质来源是中元古代扬子克拉通基底物质部分熔融,并混有部分富集上地幔物质。甲基卡S型花岗岩为上地壳部分熔融形成的,与松林口岩体属不同的物质来源,且岩浆演化程度和成矿构造条件不同,这可能是松林口岩体不具有锂稀有金属成矿的主要原因。
-
关键词:
- 松林口岩体 /
- 锆石U-Pb年代学 /
- 锆石Lu-Hf同位素 /
- 地球化学 /
- 稀有金属成矿
Abstract:BACKGROUNDThe Songlinkou pluton is located in the eastern margin of the Songpan-Ganzi orogenic belt, which is adjacent to the pegmatite-type lithium deposit of Jiajika. OBJECTIVESTo explore the similarities and differences between Songlinkou pluton and Jiajika mineralized intrusive rocks, and to study geological conditions of mineralization and magma sources of the pluton. METHODSMajor and trace elements were determined by X-ray fluorescence spectrometry (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Zircon U-Pb age and Hf isotopes were analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and multiple collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), respectively. RESULTSThe Songlinkou pluton contained diorite enclaves, and has SiO2 contents of 56.56%-68.99%, total alkali of 3.78%-6.82%, K2O/Na2O of 1.02-1.93, and Rittmann indices of 1.01-1.93. The rock has relative high Mg# values (Mg#=46.73-61.27). The rock belongs to the high-potassium calcium-alkaline type I granite series showed light rare earth enrichment with LREE/HREE ratios of 2.67-8.31, LaN/YbN of 2.11-9.74. All samples have strongly negative Eu anomaly. It was rich in LILE, and depleted in Ta, Nb, P and Ti. The zircon U-Pb results of the granodiorite and monzogranite were 212.6±1.0Ma (MSWD=0.55) and 222.4±1.1Ma (MSWD=0.39), respectively. The εHf(t) of zircon in monzogranite ranged from -9.09 to -6.86, and TDMC ranged from 1524.874Ma to 1666.002Ma. CONCLUSIONSThe Songliankou pluton is produced by the partial melting of the middle Proterozoic Yangtze craton basement mixed with the enriched upper mantle. The Jiajika S-type granite is formed by partial melting of the upper crust, and is different from Songliankou pluton in terms of magma sources, evolution and mineralization tectonic conditions; this may be the main reason why the Songlinkou pluton does not have lithium rare metal mineralization. -
-
图 4 松林口岩体岩石类型图解(底图引自文献[28])
Figure 4.
表 1 松林口岩体的主量元素(%)和微量元素测试结果(×10-6)
Table 1. Anlytical results of major elements (%) and trace elements (×10-6) in Songlinkou Pluton
元素 暗色包体 二长花岗岩 花岗闪长岩 甲基卡二云母花岗岩 SLK-1H SLK-2H SLK-3H SLK-4H SLK-5H SLK-6H SLK-7H SLK-8H SLK-9H SLK-10H SLK-11H JJK SiO2 54.24 63.89 65.29 65.65 67.01 68.99 61.93 60.88 61.97 56.97 56.56 74.29 TiO2 0.64 0.64 0.58 0.56 0.46 0.36 0.74 0.71 0.66 0.68 0.76 0.07 Al2O3 15 15.83 15.78 15.66 15.58 15.25 15.84 16.09 15.78 14.65 15.34 14.51 Fe2O3 1.15 0.79 0.8 0.55 0.88 0.34 1.41 1.12 1.32 1.77 1.41 0.47 FeO 6.68 4.33 3.96 3.75 3.11 2.66 4.75 5.19 4.81 6.32 6.53 0.4 MnO 0.29 0.12 0.11 0.11 0.095 0.076 0.095 0.096 0.087 0.12 0.12 0.03 MgO 5.79 2.7 2.41 2.52 1.92 1.49 3.51 3.93 3.71 6.79 6.92 0.24 CaO 7.42 4.3 4.06 4.14 3.38 3.46 5.51 5.96 5.34 8.13 8.01 0.48 Na2O 1.4 2.2 2.28 2.15 2.44 2.54 2.21 2.03 1.95 1.84 1.91 3.23 K2O 5.94 3.66 4 4.16 4.38 4.28 3.17 2.86 3.28 1.94 1.95 4.79 P2O5 0.16 0.14 0.14 0.12 0.097 0.086 0.17 0.17 0.16 0.16 0.18 0.22 Mg# 57.22 48.84 47.86 51.41 46.73 47.24 50.97 53.06 52.44 60.47 61.27 34.21 烧失量 0.87 0.97 0.9 0.63 0.73 0.49 0.67 0.89 0.83 0.26 0.13 1.02 总量 99.58 99.57 100.31 100 100.08 100.02 100 99.92 99.9 99.63 99.82 100.56 A/CNK 0.675 1.028 1.021 1.006 1.046 1.01 0.927 0.932 0.958 0.736 0.774 1.27 Li 46.2 51.2 51.0 49.8 63.3 57.8 42.8 33.3 27.3 46.1 26.5 447 Cs 12.0 14.2 14.0 13.8 15.9 16.2 10.7 8.63 6.05 9.75 5.86 42.4 Rb 244 180 182 184 186 190 155 144 134 82.5 83.1 401 Ba 1380 642 584 581 617 604 704 620 698 559 600 107 Th 7.08 15.1 21 21.9 25.8 23.5 14.5 12.3 14.2 6.9 8.02 3.56 U 2.7 2.66 1.72 2.11 2.82 3.12 1.87 1.72 1.92 1.25 1.6 3.94 Ta 1.06 1.36 1.25 1.32 1.55 1.59 1.31 1.12 1.44 0.76 0.89 4.93 Nb 10.6 13.2 12 12.6 12.8 11.4 15.2 12.9 13.2 9.36 9.79 18.9 Sr 261 274 247 242 291 285 612 618 579 658 683 104 Zr 121 155 150 164 156 132 135 130 120 72 70 35 Hf 2.78 5.01 5.25 5.43 4.42 3.83 1.62 1.61 2.17 1.51 1.81 3.34 Y 43.4 28 29.2 28.5 28.2 24.8 37.5 35.3 32.7 29 32.6 9.58 Ga 16.3 19.5 17.8 18.5 18.4 18 18.9 18.7 18.9 20.6 20.1 22.3 La 12 37.2 26.9 35.8 28.4 32 42.6 32 37.3 22.6 30.8 7.02 Ce 23.4 67.5 70.2 68.2 74.6 71.4 72.2 49.6 48.1 30.5 46.6 11.40 Pr 4.47 7.9 5.9 7.8 6.28 7.3 8.91 7.52 7.78 5.16 7.1 1.92 Nd 20.9 28.4 22.4 27.4 21.8 28.1 38.6 35.5 37 24.4 34.3 6.78 Sm 6.74 5.44 4.78 5.54 5.12 5.4 6.6 5.88 6 4.31 5.93 1.80 Eu 1.32 1.1 1.06 1.08 1.04 0.98 1.36 1.36 1.41 1.09 1.39 0.36 Gd 6.48 4.92 4.9 5.28 5.36 5.22 7.15 6.34 6.41 4.68 5.62 2.19 Tb 1.15 0.79 0.78 0.82 0.87 0.77 1.07 0.95 1.05 0.79 0.89 0.43 Dy 7.22 4.68 4.82 4.99 5.2 4.46 6.36 5.23 5.95 4.51 5.76 2.12 Ho 1.38 0.93 0.94 0.94 0.96 0.86 1.23 1.05 1.35 0.92 1.17 0.32 Er 4.14 2.84 2.87 2.92 2.78 2.64 3.57 3.27 3.75 2.59 3.57 0.61 Tm 0.71 0.48 0.5 0.5 0.5 0.45 0.55 0.55 0.54 0.41 0.59 0.08 Yb 4.07 2.74 2.92 2.91 2.94 2.68 3.41 3.08 3.57 2.56 3.61 0.45 Lu 0.62 0.44 0.44 0.46 0.42 0.39 0.53 0.52 0.57 0.42 0.6 0.07 ΣREE 94.6 165.36 149.41 164.64 156.27 162.65 194.14 152.85 160.77 104.93 147.93 35.56 LREE 68.83 147.54 131.24 145.82 137.24 145.18 170.27 131.86 137.59 88.06 126.12 - HREE 25.77 17.82 18.17 18.82 19.03 17.47 23.87 20.99 23.18 16.87 21.81 - LREE/
HREE2.67 8.28 7.22 7.75 7.21 8.31 7.13 6.28 5.94 5.22 5.78 4.66 LaN/YbN 2.11 9.74 6.61 8.82 6.93 8.56 8.96 7.45 7.49 6.33 6.12 - δEu 0.6 0.64 0.66 0.6 0.6 0.56 0.6 0.68 0.69 0.74 0.73 0.55 δCe 0.78 0.92 1.31 0.96 1.31 1.1 0.86 0.76 0.66 0.67 0.74 - 注:SiO2至A/CNK第一部分为主量元素(%),Li至Ga第二部分为微量元素(×10-6),La至δCe第三部分为稀土元素(×10-6)。 表 2 松林口岩体锆石U-Pb同位素分析结果
Table 2. LA-ICP-MS zircon U-Pb isotopic compositions of Songlinkou Pluton
分析点号 Pb*含量
(×10-6)Th含量
(×10-6)U含量
(×10-6)Th/U 同位素比值 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ SLK-11-01 56.64 150.87 353.98 0.43 0.05063 0.00125 0.23573 0.00406 0.03376 0.00037 SLK-11-02 29.21 65.61 185.87 0.35 0.05083 0.00223 0.23451 0.00924 0.03346 0.00045 SLK-11-03 46.68 101.61 295.63 0.34 0.05047 0.00128 0.23455 0.00424 0.03370 0.00037 SLK-11-04 83.23 179.68 528.79 0.34 0.05074 0.00118 0.23523 0.00357 0.03362 0.00036 SLK-11-05 33.486 72.69 218.87 0.33 0.05107 0.00194 0.23069 0.00765 0.03276 0.00042 SLK-11-06 106.98 123.53 693.50 0.18 0.05131 0.00127 0.23804 0.00409 0.03364 0.00037 SLK-11-07 38.821 144.58 235.26 0.61 0.05159 0.00142 0.23987 0.00501 0.03372 0.00038 SLK-11-08 35.00 86.43 221.44 0.39 0.05103 0.00222 0.23588 0.00922 0.03352 0.00045 SLK-11-09 61.10 318.89 420.06 0.76 0.05075 0.00211 0.20386 0.00754 0.02913 0.00039 SLK-11-10 40.422 148.99 245.40 0.61 0.04994 0.00145 0.23343 0.00531 0.03389 0.00039 SLK-11-11 37.153 84.32 234.42 0.36 0.05027 0.00137 0.23371 0.00478 0.03371 0.00038 SLK-11-12 21.54 58.71 136.11 0.43 0.0508 0.00242 0.23304 0.01012 0.03326 0.00047 SLK-11-13 24.96 57.98 156.93 0.37 0.05052 0.00198 0.23509 0.00809 0.03375 0.00043 SLK-11-14 25.957 73.91 161.14 0.46 0.05035 0.00202 0.23444 0.0083 0.03377 0.00043 SLK-11-15 18.849 50.24 108.83 0.46 0.05102 0.00227 0.25419 0.01023 0.03613 0.00049 SLK-11-16 57.82 222.12 350.44 0.63 0.05069 0.00128 0.23532 0.00421 0.03366 0.00037 SLK-11-17 30.219 84.20 189.56 0.44 0.05169 0.00184 0.23744 0.00722 0.03331 0.00041 SLK-11-18 27.533 65.75 171.62 0.38 0.05011 0.00145 0.23412 0.00533 0.03388 0.00038 SLK-11-19 104.42 158.77 676.60 0.23 0.05184 0.00275 0.23723 0.01164 0.03318 0.00051 SLK-11-20 55.72 185.00 346.59 0.53 0.05078 0.00121 0.23304 0.00375 0.03328 0.00036 SLK-11-21 41.054 149.45 248.96 0.60 0.05122 0.00196 0.23599 0.00788 0.03341 0.00043 SLK-11-22 74.34 344.04 451.63 0.76 0.05069 0.00139 0.23041 0.0048 0.03296 0.00037 SLK-11-23 82.25 322.94 501.36 0.64 0.05123 0.00131 0.23574 0.00433 0.03337 0.00037 SLK-11-24 29.707 93.44 184.54 0.51 0.05100 0.00146 0.23402 0.00521 0.03328 0.00037 SLK-11-25 33.925 110.45 209.54 0.53 0.05084 0.00153 0.23457 0.00567 0.03346 0.00038 SLK-11-26 48.34 177.72 292.96 0.61 0.05036 0.00356 0.23471 0.01576 0.03380 0.00063 SLK-11-27 65.99 216.38 402.21 0.54 0.05029 0.00135 0.2346 0.00471 0.03383 0.00037 SLK-11-28 39.081 81.65 245.39 0.33 0.05224 0.00137 0.24249 0.00466 0.03366 0.00037 SLK-11-29 169.72 169.25 515.19 0.33 0.05676 0.00136 0.54385 0.00879 0.06948 0.00075 SLK-11-30 81.29 345.48 500.64 0.69 0.05236 0.00131 0.23671 0.00418 0.03279 0.00036 SLK-06-01 151.87 266.79 885.26 0.30 0.05113 0.00149 0.24902 0.00584 0.03531 0.00043 SLK-06-02 173.20 329.11 1005.81 0.33 0.05122 0.00130 0.24950 0.00468 0.03532 0.00041 SLK-06-03 95.64 200.62 615.96 0.33 0.04999 0.00165 0.21905 0.00613 0.03177 0.00040 SLK-06-04 63.17 157.03 363.30 0.43 0.05218 0.00171 0.25251 0.00695 0.03509 0.00044 SLK-06-05 56.47 122.37 324.75 0.38 0.05049 0.00176 0.24703 0.00740 0.03548 0.00046 SLK-06-06 101.41 225.69 586.61 0.38 0.05113 0.00147 0.2488 0.00570 0.03528 0.00042 SLK-06-07 46.086 108.19 264.22 0.41 0.05066 0.00220 0.24793 0.00973 0.03549 0.00050 SLK-06-08 72.29 170.67 420.51 0.41 0.05335 0.00193 0.25708 0.00807 0.03494 0.00046 SLK-06-09 105.57 209.11 618.89 0.34 0.05109 0.00150 0.24735 0.00583 0.03510 0.00042 SLK-06-10 82.54 162.46 492.95 0.33 0.05198 0.00166 0.24668 0.00659 0.03441 0.00043 SLK-06-11 39.019 80.67 203.85 0.40 0.05106 0.00221 0.27473 0.01074 0.03901 0.00055 SLK-06-12 56.83 152.75 325.63 0.47 0.05155 0.00212 0.25021 0.00920 0.03519 0.00049 SLK-06-13 101.06 200.54 596.58 0.34 0.05054 0.00140 0.24339 0.00526 0.03492 0.00041 SLK-06-14 55.41 136.95 322.98 0.42 0.05096 0.00181 0.24575 0.00757 0.03497 0.00045 SLK-06-15 72.44 162.12 424.80 0.38 0.05093 0.00163 0.24520 0.00654 0.03491 0.00043 SLK-06-16 58.02 119.70 339.89 0.35 0.05139 0.00188 0.24867 0.00791 0.03509 0.00046 SLK-06-17 95.81 212.55 559.18 0.38 0.05070 0.00151 0.24555 0.00591 0.03512 0.00043 SLK-06-18 57.07 127.08 331.51 0.38 0.05055 0.00197 0.24566 0.00845 0.03524 0.00047 SLK-06-19 163.87 370.36 956.33 0.39 0.05102 0.00135 0.24779 0.00499 0.03522 0.00041 SLK-06-20 85.69 190.97 502.85 0.38 0.05176 0.00151 0.25010 0.00583 0.03504 0.00042 SLK-06-21 59.90 194.13 344.10 0.56 0.05185 0.00193 0.24960 0.00810 0.03491 0.00046 SLK-06-22 128.26 272.28 752.88 0.36 0.05141 0.00160 0.24927 0.00640 0.03516 0.00043 SLK-06-23 68.42 117.02 412.09 0.28 0.05140 0.00195 0.24537 0.00820 0.03461 0.00046 SLK-06-24 54.49 122.56 317.91 0.39 0.05072 0.00176 0.24693 0.00737 0.03530 0.00045 SLK-06-25 80.62 188.64 477.69 0.39 0.05117 0.00278 0.24506 0.01242 0.03473 0.00056 SLK-06-26 61.29 145.86 394.04 0.37 0.05063 0.00272 0.22409 0.01118 0.03209 0.00051 SLK-06-27 71.59 154.31 418.06 0.37 0.05091 0.00159 0.24831 0.00639 0.03537 0.00043 SLK-06-28 48.96 98.41 260.17 0.38 0.05205 0.00179 0.27804 0.00820 0.03874 0.00049 SLK-06-29 57.52 133.24 341.54 0.39 0.05119 0.00170 0.24531 0.00690 0.03475 0.00044 SLK-06-30 81.30 155.89 474.66 0.33 0.05212 0.00163 0.25625 0.00665 0.03565 0.00044 表 3 松林口岩体锆石Hf同位素分析结果
Table 3. Hf isotopic compositions of zirconium in Songlinkou Pluton
分析点号 U-Pb年龄 同位素比值 模式年龄(Ma) (Ma) 1σ 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(t) TDM1 TDMC SLK-06-01 222.3 2.7 0.0331 0.000491 0.000872 0.000012 0.282525 0.000021 -8.74 1025.0300 1643.900 SLK-06-02 224.7 2.8 0.0285 0.000176 0.000742 0.000004 0.282552 0.000018 -7.79 983.9629 1583.523 SLK-06-03 223.5 2.6 0.0238 0.000197 0.000643 0.000004 0.282515 0.000016 -9.09 1032.515 1666.002 SLK-06-04 224.8 3.1 0.0281 0.000340 0.000730 0.000008 0.282531 0.000016 -8.52 1012.696 1630.259 SLK-06-05 221.3 2.6 0.0143 0.000017 0.000384 0.000001 0.282551 0.000015 -7.83 976.3242 1586.131 SLK-06-06 221.6 2.8 0.0182 0.000057 0.000491 0.000001 0.282558 0.000022 -7.56 968.4969 1569.008 SLK-06-07 222.3 2.9 0.0207 0.000095 0.000561 0.000002 0.282517 0.000014 -9.01 1027.225 1661.096 SLK-06-08 223.1 2.6 0.0243 0.000326 0.000671 0.000008 0.282578 0.000018 -6.86 945.7365 1524.874 SLK-06-09 222.0 2.6 0.0221 0.000041 0.000595 0.000001 0.282548 0.000016 -7.94 986.1739 1593.243 SLK-06-10 221.2 2.9 0.0276 0.000476 0.000762 0.000014 0.282565 0.000022 -7.33 966.5966 1554.746 -
[1] Bruguier O, Lancelot J R, Malavieille J.U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China):Provenance and tectonic correlations[J].Earth and Planetary Science Letters, 1997, 152(1):217-231. https://www.sciencedirect.com/science/article/pii/S0012821X97001386
[2] Harrowfield M J, Wilson C J L.Indosinian deformation of the Songpan Garzê Fold Belt, northeast Tibetan Plateau[J]. Journal of Structural Geology, 2005, 27(1):101-117. doi: 10.1016/j.jsg.2004.06.010
[3] 秦宇龙, 李名则, 熊昌利, 等.川西甲基卡地区侏倭组沉积物源分析——来自碎屑锆石U-Pb年龄证据[J].地质学报, 2020, 94(8):2400-2409. doi: 10.3969/j.issn.0001-5717.2020.08.016
Qin Y L, Li M Z, Xiong C L, et al.Depositional provinces and tectonic background of the Zhuwo Formation in the Jiajika Region, western Sichuan Province:Evidence from detrital zircon U-Pb ages[J].Acta Geologica Sinica, 2020, 94(8):2400-2409. doi: 10.3969/j.issn.0001-5717.2020.08.016
[4] 许志琴.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社, 1992:1-190.
Xu Z Q.The orogenic process of Songpan-Ganzi orogenic belt, China[M].Beijing:Geological Publishing House, 1992:1-190.
[5] 蔡宏明.松潘-甘孜褶皱带印支期花岗岩类和火山岩类成因及深部作用[D].北京: 中国地质大学(北京), 2010.
Cai H M.Petrogenesis of Indosinian granitoids and volcanic rocks in Songpan-Garze fold belt: Constrains for deep geologic processes[D].Beijing: China University of Geosciences (Beijing), 2010.
[6] 费光春, 杨峥, 杨继忆, 等.四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定:来自LA-MC-ICP-MS锡石U-Pb定年的证据[J].地质学报, 2020, 94(3):836-849. doi: 10.3969/j.issn.0001-5717.2020.03.012
Fei G C, Yang Z, Yang J Y, et al.New precise timing constrain for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province, evidence from cassiterite LA-MC-ICP-MS U-Pb dating[J].Acta Geologica Sinica, 2020, 94(3):836-849. doi: 10.3969/j.issn.0001-5717.2020.03.012
[7] 岳相元, 张贻, 周雄, 等.川西可尔因矿集区稀有金属矿床成矿规律与找矿方向[J].矿床地质, 2019, 38(4):867-876. http://www.kcdz.ac.cn/kcdzen/ch/reader/view_abstract.aspx?file_no=20190412&flag=1
Yue X Y, Zhang Y, Zhou X, et al.Metallogenic regularity and prospecting direction of rare metal deposits in Keeryin ore concentration area, western Sichuan[J].Mineral Deposits, 2019, 38(4):867-876. http://www.kcdz.ac.cn/kcdzen/ch/reader/view_abstract.aspx?file_no=20190412&flag=1
[8] 王登红, 刘丽君, 侯江龙, 等.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型[J].地学前缘, 2017, 24(5):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201705002.htm
Wang D H, Liu L J, Hou J L, et al.A preliminary review of the application of "Five levels+Basement" model for Jiajika-style rare metal deposits[J].Earth Science Frontiers, 2017, 24(5):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201705002.htm
[9] 刘丽君, 王登红, 杨岳清, 等.四川甲基卡新三号稀有金属矿脉成矿特征的初步研究[J].桂林理工大学学报, 2016, 36(1):50-59. doi: 10.3969/j.issn.1674-9057.2016.01.008
Liu L J, Wang D H, Yang Y Q, et al.Metallogenic characteristics of X03 rare metal vein in Jiajika of Sichuan[J].Journal of Guilin University of Technology, 2016, 36(1):50-59. doi: 10.3969/j.issn.1674-9057.2016.01.008
[10] 王登红, 李建康, 付小方.四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J].地球化学, 2005, 34(6):541-547. doi: 10.3321/j.issn:0379-1726.2005.06.001
Wang D H, Li J K, Fu X F.The metallogenic times and significance of the rare metal deposits of Jiajika pegmatite in Sichuan[J].Geochimica, 2005, 34(6):541-547. doi: 10.3321/j.issn:0379-1726.2005.06.001
[11] 杨岳清, 王登红, 刘善宝, 等.四川甲基卡两类锂辉石矿体共存机制及其找矿意义[J].地质学报, 2020, 94(1):287-302. http://www.geojournals.cn/dzxbe/ch/reader/view_abstract.aspx?file_no=2019447&flag=1
Yang Y Q, Wang D H, Liu S B, et al.The co-occurrence mechanism of two types spodumene ore bodies and their prospecting significance in Jiajikan, Sichuan Province[J].Acta Geologica Sinica, 2020, 94(1):287-302. http://www.geojournals.cn/dzxbe/ch/reader/view_abstract.aspx?file_no=2019447&flag=1
[12] 唐国凡, 吴盛先.四川省康定县甲基卡花岗伟晶岩矿床地质研究报告[R].1984: 1-104.
Tang G F, Wu S X.Geologicalstudy on Jiajika granite pegmatite deposit in Kangding County of Sichuan Province[R].1984: 1-104.
[13] 于扬, 王登红, 于沨, 等.川西甲基卡大型锂资源基地绿色调查及环境评价指标体系的建立[J].岩矿测试, 2019, 38(5):534-544. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812180135
Yu Y, Wang D H, Yu F, et al.Study on the index system of green investigation and environmental evaluation for the Jiajika large lithium mineral resource base, western Sichuan, China[J].Rock and Mineral Analysis, 2019, 38(5):534-544. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812180135
[14] 高娟琴, 于扬, 王登红, 等.川西甲基卡锂资源富集区根系土壤重金属含量水平及时空分布特征[J].岩矿测试, 2019, 38(6):681-692. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812190137
Gao J Q, Yu Y, Wang D H, et al.The content and distribution characteristics of heavy metals in root soils in the Jiajika lithium resource area, western Sichuan Province[J].Rock and Mineral Analysis, 2019, 38(6):681-692. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812190137
[15] 李贤芳, 田世洪, 王登红, 等.川西甲基卡锂矿床花岗岩与伟晶岩成因关系:U-Pb定年、Hf-O同位素和地球化学证据[J].矿床地质, 2020, 39(2):273-304. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ202002005.htm
Li X F, Tian S H, Wang D H, et al.Genetic relationship between pegmatite and granite in Jiajika lithium depositin western Sichuan:Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry[J].Mineral Deposits, 2020, 39(2):273-304. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ202002005.htm
[16] 胡健民, 孟庆任, 石玉若, 等.松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义[J].岩石学报, 2005, 21(3):867-880. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200503027.htm
Hu J M, Meng Q R, Shi Y R, et al.SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications[J].Acta Petrologica Sinica, 2005, 21(3):867-880. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200503027.htm
[17] 王全伟.川西地区花岗岩及其成矿系列[M].北京:地质出版社, 2008.
Wang Q W.Granite and its metallogenic series in western Sichuan[M].Beijing:Geological Publishing House, 2008.
[18] Xiao L, Zhang H F, Clemens J D, et al.Late Triassic granitoids of the eastern margin of the Tibetan Plateau:Geochronology, petrogenesis and implications for tectonic evolution[J].Lithos, 2007, 96(3-4):436-452. doi: 10.1016/j.lithos.2006.11.011
[19] Chen Q, Sun M, Zhao G C, et al.Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong Pluton in Songpan-Ganze terrane:An igneous response to the closure of the Paleo-Tethys ocean[J].Lithos, 2017, 290-291:1-17. doi: 10.1016/j.lithos.2017.07.019
[20] 邓红, 唐渊, 骆志红, 等.松潘-甘孜造山带东缘塔公岩体岩石学、同位素年代学特征及其构造意义[J/OL].地球科学, 1-26[2020-09-25].
Deng H, Tang Y, Luo Z H, et al.Petrology and isotope geochronology of the Tagong granite in the eastern part of Songpan-Ganzi fold belt and its tectonic significance, China[J/OL].Earth Science, 1-26[2020-09-25].
[21] Andersen T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology, 2002, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X
[22] 袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
Yuan H L, Wu F Y, Gao S, et al.Age determination and composition analysis of rare earth elements U-Pb zircon laser probe for new generation invader in northeast China[J].Chinese Science Bulletin, 2003, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
[23] Ludwig K R.ISOPLOT 3.0:A geochronological toolkit for Microsoft excel[M].Berkeley Geochronology Center Special Publication, 2003.
[24] Yuan H L, Gao S, Dai M N, et al.Simultaneous deter-minations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology, 2008, 247:100-118. doi: 10.1016/j.chemgeo.2007.10.003
[25] Bao Z A, Chen L, Zong C L, et al.Development of pressed sulfide powder tablets for in situ, sulfur and lead isotope measurement using LA-MC-ICP-MS[J].International Journal of Mass Spectrometry, 2017, 421:255-262. doi: 10.1016/j.ijms.2017.07.015
[26] 李名则, 秦宇龙, 李峥, 等.川西甲基卡二云母花岗岩与伟晶岩脉地球化学特征及其地质意义[J].岩石矿物学杂志, 2018, 37(3):366-378. doi: 10.3969/j.issn.1000-6524.2018.03.002
Li M Z, Qin Y L, Li Z, et al.Geochemical characteristics of two-mica granite and granite pegmatite in Jiajika area, western Sichuan, and their geological implications[J].Acta Petrologica et Mineralogica, 2018, 37(3):366-378. doi: 10.3969/j.issn.1000-6524.2018.03.002
[27] Sun S S, Mcdonough W F.Chemical and isotopic syste-matics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[28] Collins W J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy & Petrology, 1982, 80(2):189-200. https://link.springer.com/article/10.1007/BF00374895
[29] 王德滋, 刘昌实.桐庐Ⅰ型和相山S型两类碎斑熔岩对比[J].岩石学报, 1993, 9(1):44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005
Wang D Z, Liu C S.Comparison between Tonglu Ⅰ-type and Xiangshan S-type lava[J].Acta Petrologica Sinica, 1993, 9(1):44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005
[30] 吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200702002.htm
Wu F Y, Li X H, Zheng Y F, et al.Lu-Hf isotopic systematics and their applications in petrology[J].Acta Petrologica Sinica, 2007, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200702002.htm
[31] Amelin Y, Lee D, Halliday A N.Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J].Geochimica et Cosmochimica Acta, 2000, 64(24):4205-4225. doi: 10.1016/S0016-7037(00)00493-2
[32] Kröner A, Kovach V, Belousova E, et al.Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J].Gondwana Research, 2014, 25(1):103-125. doi: 10.1016/j.gr.2012.12.023
[33] Wedepohl K H.The composition of the continental crust[J].Geochimica et Cosmochimica Acta, 1995, 59(7):1217-1232. doi: 10.1016/0016-7037(95)00038-2
[34] 赖绍聪, 赵少伟.川西北塔公石英闪长岩地球化学特征和岩石成因[J].地球科学与环境学报, 2015, 37(3):1-13. doi: 10.3969/j.issn.1672-6561.2015.03.003
Lai S C, Zhao S W.Geochemistry and petrogenesis of Quartz diorite in Tagongarea of northwest Sichuan[J].Journal of Geoscience and Environment, 2015, 37(3):1-13. doi: 10.3969/j.issn.1672-6561.2015.03.003
[35] Atherton M P, Petford N.Generation of sodium-rich magmas from newly underplated basaltic crust[J].Nature, 1993, 362:144-146. doi: 10.1038/362144a0
[36] Rudnick R L, Gao S.Composition of the continental crust[M]//Holland H D, Turekian K K.Treatise on geochemistry (2nd edition), 2014: 1-52.
[37] 王中亮, 赵荣新, 张庆, 等.胶西北高Ba-Sr郭家岭型花岗岩岩浆混合成因:岩石地球化学与Sr-Nd同位素约束[J].岩石学报, 2014, 30(9):2595-2608. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201409011.htm
Wang Z L, Zhao R X, Zhang Q, et al.Magma mixing for the high Ba-Sr Guojialing-type granitoids in northwest Jiaodong Peninsula:Constraints from petrogeochemistry and Sr-Nd isotopes[J].Acta Petrologica Sinica, 2014, 30(9):2595-2608. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201409011.htm
[38] Karsli O, Chen B, Aydin F, et al.Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dolek and Sariqiqek Plutons, eastern Turkey:Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a postcollision extensional setting[J].Lithos, 2007, 98:67-96. doi: 10.1016/j.lithos.2007.03.005
[39] 郝雪峰, 付小方, 梁斌, 等.川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J].矿床地质, 2015, 34(6):1199-1208. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201506009.htm
Hao X F, Fu X F, Liao B, et al.Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance[J].Mineral Deposits, 2015, 34(6):1199-1208. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201506009.htm
-