Study on the Characteristics of the Infrared Spectrum and the Alteration Zoning of Drill Core in the Makeng Iron Deposit
-
摘要: 红外反射光谱技术可无损、快速、批量地识别出硅酸盐、硫酸盐、碳酸盐等矿物,近年来在矿物学研究、地质勘探与找矿、矿山选冶等方面取得了较显著进展。尤其是热红外波段(6000~14500nm)可识别出辉石、石榴子石、橄榄石等蚀变矿物以及长石、石英等造岩矿物,对于矽卡岩型、铜镍硫化物型以及石英脉型等矿床地质找矿、矿床成因研究等具有重要意义。本文通过对国家实物地质资料馆馆藏的马坑铁矿钻孔岩心进行短波-热红外反射光谱测量与分析,总结马坑铁矿各蚀变矿物光谱特征,并快速厘定了该矿床的蚀变矿物类型及组合特征。马坑铁矿蚀变矿物主要有石榴子石、辉石、碳酸盐、绿泥石、绢(白)云母、角闪石、绿帘石、蒙脱石、石膏等。石榴子石热红外光谱特征是在9199nm、9730nm、10500nm及11100nm处具有明显的反射特征,辉石热红外光谱特征主要是在11500nm和12150nm处具有明显的吸收特征。红外光谱分析表明蚀变矿物在空间上呈现出明显的分带性,蚀变矿物组合及分布严格受围岩岩性和热液交代的双重控制。通过红外反射光谱蚀变矿物组合特征研究,“石榴子石+辉石”可作为矽卡岩型矿床的标型矿物组合,蚀变分带特征也反映了主矿体从高温到低温的变化过程;结合矿床地质特征,推断出马坑铁矿为典型的层控矽卡岩型矿床。本研究可为矽卡岩型矿床的成矿规律认识和找矿勘探等方面提供科学支撑。Abstract:
BACKGROUNDSilicate, sulfate, carbonate and other minerals can be identified by infrared reflectance spectroscopy which is a non-destructive and rapid batch method. In recent years, infrared reflectance spectroscopy has played an important role in mineralogical research, mineral exploration and prospecting, mining and metallurgy. Altered minerals such as pyroxene, garnet, olivine and rock-forming minerals such as feldspar and quartz can be identified rapidly with thermal infrared (6000-14500nm, TIR), which is important for mineralogical research, mineral exploration and prospecting of skarn type, copper-nickel sulfide type and quartz-vein type deposits. OBJECTIVESTo quickly characterize the type and assemblage of alteration minerals. METHODSShortwave-thermal infrared reflectance spectroscopy was used to analyze the drill cores of the Makeng iron deposit in the National Geological Archives. The spectral characteristics of the altered minerals in this deposit were summarized, the type and assemblage of alteration minerals were quickly determined. RESULTSThe results showed that the altered minerals in Makeng include garnet, pyroxene, carbonate, chlorite, sericite, hornblende, epidote, montmorillonite and gypsum. There were significant reflections at 9199nm, 9730nm, 10500nm and 11100nm for garnet. For pyroxene, the significant reflections were mainly located at 11500nm and 12150nm. Infrared spectroscopy analysis showed that altered minerals displayed obvious zoning in space, and the assemblage and distribution of altered minerals were strictly controlled by the lithology of country rocks and hydrothermal metasomatism. Garnet+pyroxene can be used as the typical mineral assemblage of skarn deposits, and the characteristics of alteration zoning indicated a process from high temperature to low temperature. CONCLUSIONSCombined with the geological features, the Makeng iron deposit can be defined as a stratabound skarn deposit. This research can provide scientific support for the understanding of skarn-type deposits and related prospecting and exploration. -
Key words:
- cores /
- infrared reflectance spectrum /
- alteration bands /
- skarn deposit /
- Makeng iron deposit
-
-
图 1 马坑铁矿61线矿体剖面图[4]
Figure 1.
图 3 马坑铁矿典型矿物特征图像[22]
Figure 3.
表 1 马坑铁矿蚀变矿物分布特征
Table 1. Distribution characteristics of altered minerals in Makeng iron deposit
地层 起始深度
(m)终止深度
(m)钻孔编录蚀变矿物组合 短波红外光谱识别矿物组合 热红外光谱识别矿物组合 C2j-P2q灰岩 170.39 183.6 方解石 碳酸盐 碳酸盐+石榴子石 矽卡岩 183.6 245.76 石榴子石+透辉石+透闪石+方解石+绿帘石 绿泥石+角闪石+碳酸盐+少量蒙脱石+少量绿帘石 碳酸盐+石英+石榴子石+辉石 C2j-P2q硅质岩、灰岩、大理岩化灰岩 245.76 665.15 方解石+绿泥石+阳起石+石榴子石+透辉石 碳酸盐+角闪石+绿泥石+少量绿帘石 碳酸盐+石英+蒙脱石+石榴子石。特别在490m矽卡岩处光谱识别为辉石+石榴子石+斜长石 石榴透辉磁铁矿 665.15 679.73 透辉石+透闪石+方解石+绿泥石 角闪石+碳酸盐+绿泥石 石榴子石+石英+碳酸盐 辉绿岩 679.73 692.28 绿泥石+透辉石+钾长石+石英 绿泥石+碳酸盐 石英+绿泥石+碳酸盐+钾长石+斜长石 C1l石英岩化砂岩、蚀变粉砂岩 692.28 792 绿泥石+钾长石+石英 绢(白)云母+绿泥石+碳酸盐 石英+碳酸盐+角闪石+斜长石+钾长石 注:本次热红外波段只测试了部分岩心段。 -
[1] 赵一鸣, 林文蔚, 毕承思, 等.中国矽卡岩矿床[M].北京:地质出版社, 2012.
Zhao Y M, Lin W W, Bi C S, et al.Skarn deposit of China[M].Beijing:Geological Publishing House, 2012.
[2] 张志, 张承帅.福建马坑铁(钼)矿床矽卡岩矿物学特征及分带研究[J].岩石学报, 2014, 30(5):1339-1354. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201405011.htm
Zhang Z, Zhang C S.Skarn mineral characteristics and zonation of the Makeng Fe-Mo deposit in Fujian Province[J].Acta Petrologica Sinica, 2014, 30(5):1339-1354. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201405011.htm
[3] 李林, 倪培, 杨玉龙, 等.马坑铁钼铅锌多金属矿成矿流体演化及矿床成因类型[J].高校地质学报, 2016, 22(3):401-412. http://d.wanfangdata.com.cn/Periodical/gxdzxb201603001
Li L, Ni P, Yang Y L, et al.A discussion on ore-forming fluid evolution and genesis of Makeng Fe-Mo-Pb-Zn polymetallic deposit[J].Geological Journal of China Universities, 2016, 22(3):401-412. http://d.wanfangdata.com.cn/Periodical/gxdzxb201603001
[4] 狄永军, 张达, 吴淦国, 等.武夷山覆盖区马坑式铁矿层位及找矿方向[J].地球科学——中国地质大学学报, 2012, 37(6):1232-1242. http://d.wanfangdata.com.cn/Periodical/dqkx201206014
Di Y J, Zhang D, Wu G G, et al.Strata hosted Makeng type iron deposits and prospecting orientation in the Wuyishan covered region[J].Earth Science-Journal of China University of Geosciences, 2012, 37(6):1232-1242. http://d.wanfangdata.com.cn/Periodical/dqkx201206014
[5] 王森, 张达, Absai V, 等.福建龙岩大洋-莒舟花岗岩地球化学、年代学、铪同位素特征及其地质意义[J].地球化学, 2015, 44(5):450-468. doi: 10.3969/j.issn.0379-1726.2015.05.005
Wang S, Zhang D, Absai V, et al.Zircon U-Pb geochronology, geochemistry and Hf isotope compositions of the Dayang and Juzhou granites in Longyan, Fujian and their geological implications[J].Geochimica, 2015, 44(5):450-468. doi: 10.3969/j.issn.0379-1726.2015.05.005
[6] 郭娜, 史维鑫, 黄一入, 等.基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图——勘查模型构建[J].地质通报, 2018, 37(2-3):446-457.
Guo N, Shi W X, Huang Y R, et al.Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J].Geological Bulletin of China, 2018, 37(2-3):446-457.
[7] 刘鹤, 马宇, 任宏, 等.福建铁帽山钼矿床围岩蚀变的短波红外光谱学研究[J].矿物学报, 2015, 35(2):221-228. http://www.cnki.com.cn/Article/CJFDTotal-KWXB201502017.htm
Liu H, Ma Y, Ren H, et al.Short-wave infrared spectroscopy study on wallrock alteration of the Tiemaoshan porphyry molybdenum deposit, Fujian Province, China[J].Acta Mieralogica Sinica, 2015, 35(2):221-228. http://www.cnki.com.cn/Article/CJFDTotal-KWXB201502017.htm
[8] Tappert M C, Rivard B, Giles D, et al.The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J].Ore Geology Reviews, 2013, 53:26-38. doi: 10.1016/j.oregeorev.2012.12.006
[9] Carrino T A, Crósta A P, Toledo C L B, et al.Unveiling the hydrothermal mineralogy of the Chapi Chiara gold prospect, Peru, through reflectance spectroscopy, geochemical and petrographic data[J].Ore Geology Reviews, 2015, 64:299-315. doi: 10.1016/j.oregeorev.2014.07.012
[10] Neal L C, Wilkinson J J, Mason P J, et al.Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits[J].Journal of Geochemical Exploration, 2018, 184:179-198. doi: 10.1016/j.gexplo.2017.10.019
[11] Duuring P, Hassan L, Zelic M, et al.Geochemical and spectral footprint of metamorphosed and deformed VMS-style mineralization in the Quinns District, Yilgarn Craton, western Australia[J].Economic Geology, 2016, 111:1411-1438. doi: 10.2113/econgeo.111.6.1411
[12] Wang R, Cudahy T, Laukamp C, et al.White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, western Australia[J].Economic Geology, 2017, 112(5):1153-1176. doi: 10.5382/econgeo.2017.4505
[13] 杨志明, 侯增谦, 杨竹森, 等.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J].矿床地质, 2012, 31(4):699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004
Yang Z M, Hou Z Q, Yang Z S, et al.Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district:A case study of Niancun ore district, Tibet[J].Mineral Deposits, 2012, 31(4):699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004
[14] 汪重午, 郭娜, 郭科, 等.基于短波红外技术的斑岩-矽卡岩型矿床中绿泥石蚀变分布特征研究:以西藏甲玛铜多金属矿为例[J].地质与勘探, 2014, 50(6):1137-1146. http://www.cnki.com.cn/Article/CJFDTotal-DZKT201406014.htm
Wang C W, Guo N, Guo K, et al.characteristics of the chlorite alteration in the porphyry-skarn deposit based on short-wave infrared technology:A case study of the Jiama copper-polymetallic deposit in Tibet[J].Geology and Exploration, 2014, 50(6):1137-1146. http://www.cnki.com.cn/Article/CJFDTotal-DZKT201406014.htm
[15] 郭娜, 刘栋, 唐菊兴, 等.基于短波红外技术的蚀变矿物特征及勘查模型——以斯弄多银铅锌矿床为例[J].矿床地质, 2018, 37(3):556-570. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201803007.htm
Guo N, Liu D, Tang J X, et al.Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique:Take Sinongduo Ag-Pb-Zn deposit as an example[J].Mineral Deposits, 2018, 37(3):556-570. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201803007.htm
[16] 许超, 陈华勇, White N, 等.福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究[J].矿床地质, 2017, 36(5):1013-1038. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201705001.htm
Xu C, Chen H Y, White N, et al.Alteration and mineralization of Xinan Cu-Mo ore deposit in Zijinshan orefield, Fujian Province, and application of short wavelength infra-red technology (SWIR) to exploration[J].Mineral Deposits, 2017, 36(5):1013-1038. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201705001.htm
[17] 郭娜, 黄一入, 郑龙, 等.高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型——以西藏铁格隆南(荣那矿段)、斯弄多矿床为例[J].地球学报, 2017, 38(5):767-778. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705016.htm
Guo N, Huang Y R, Zheng L, et al.Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique:A case study of Tiegelongnan and Sinongduo deposits[J].Acta Geoscientica Sinica, 2017, 38(5):767-778. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705016.htm
[18] 代晶晶, 赵龙贤, 姜琪, 等.热红外高光谱技术在地质找矿中的应用综述[J].地质学报, 2020, 94(8):2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026
Dai J J, Zhao L X, Jiang Q, et al.Review of thermal-infrared spectroscopy applied in geological ore exploration[J].Acta Geoscientica Sinica, 2020, 94(8):2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026
[19] Burley L L, Barnes S J, Laukamp C, et al.Rapid mineralogical and geochemical characterisation of the Fisher East nickel sulphide prospects, western Australia, using hyperspectral and pXRF data[J].Ore Geology Reviews, http://dx.doi.org/10.1016/j.oregeorev.2017.04.032.
[20] Lampinen H M, Laukamp C, Occhipinti S A, et al.Mineral footprints of the paleoproterozoic sediment-hosted Abra Pb-Zn-Cu deposit capricorn orogen, western Australia[J].Ore Geology Reviews, 2019, 104:436-461. doi: 10.1016/j.oregeorev.2018.11.004
[21] Schodlok M C, Whitbourn L, Huntington J, et al.Hylogger-3, a visible to shortwave and thermal infrared reflectance spectrometer system for drill core logging:Functional description[J].Australian Journal of Earth Sciences, 2016, 63(8):929-940. https://www.tandfonline.com/doi/abs/10.1080/08120099.2016.1231133
[22] 易锦俊.闽西南马坑铁矿成因机制与找矿模式研究[D].北京: 中国地质大学(北京), 2018.
Yi J J.Study on the genetic mechanism and prospecting model of Makeng iron deposit in southwest Fujian[D].Beijing: China University of Geosciences (Beijing), 2018.
[23] 张承帅, 毛景文, 张长青, 等.福建马坑矽卡岩型铁(钼)矿床流体包裹体特征及成矿机制研究[J].矿床地质, 2013, 32(2):289-307. doi: 10.3969/j.issn.0258-7106.2013.02.006
Zhang C S, Mao J W, Zhang C Q, et al.Fluid inclusion characteristics and metallogenic mechanism of Makeng skarn Fe-Mo deposit in Fujian Province[J].Mineral Deposits, 2013, 32(2):289-307. doi: 10.3969/j.issn.0258-7106.2013.02.006
[24] 童鹏, 刘鹏飞, 赵英俊, 等.基于改进后HyLogger岩芯测量系统的一种低反射率页岩气岩芯高光谱数据获取方法[J].中国矿业, 2018, 27(5):147-152. http://www.cnki.com.cn/Article/CJFDTotal-ZGKA201805028.htm
Tong P, Liu P F, Zhao Y J, et al.A method of high spectral data acquisition for low reflectivity shale gas core based on the improved HyLogger core scanning system[J].China Mining Magazine, 2018, 27(5):147-152. http://www.cnki.com.cn/Article/CJFDTotal-ZGKA201805028.htm
[25] Laukamp C, Caccetta M, Chia J, et al.The uses, abuses and opportunities for hyperspectral technologies and derived geoscience information[C]//Proceedings of Geo-computing Conference Brisbane: AIG Bulletin, 2010: 73-76.
[26] 姚远, 陈骏, 陆建军, 等.华南三类含钨锡矽卡岩中石榴子石的成分、微量元素及红外光谱[J].矿物学报, 2013, 33(3):315-328. http://d.wanfangdata.com.cn/periodical/kwxb201303008
Yao Y, Chen J, Lu J J, et al.Composition, trace element and infrared spectrum of garnet from three types of W-Sn bearing skarns in the south of China[J].Acta Mieralogica Sinica, 2013, 33(3):315-328. http://d.wanfangdata.com.cn/periodical/kwxb201303008
[27] 李胜荣, 许虹, 申峻峰, 等.结晶学与矿物学[M].北京:地质出版社, 2008.
Li S R, Xu H, Shen J F, et al.Crystallography and mineralogy[M].Beijing:Geological Publishing House, 2008.
[28] 甘甫平, 王润生.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社, 2004.
Gan F P, Wang R S.Research on the basis and technical method of remote sensing rock and mineral information extraction[M].Beijing:Geological Publishing House, 2004.
[29] 陈跃升.马坑铁矿开发过程中对矿床成因的新认识[J].金属矿山, 2002(11):50-52. doi: 10.3321/j.issn:1001-1250.2002.11.016
Chen Y S.New knowledge of the information cause of ore deposit during the exploitation process of Makeng iron mine[J].Metal Mine, 2002(11):50-52. doi: 10.3321/j.issn:1001-1250.2002.11.016
[30] 单久库.黑龙江省翠宏山矽卡岩型铁多金属矿床的温度分带及意义[J].测绘与空间地理信息, 2010, 33(4):162-167. doi: 10.3969/j.issn.1672-5867.2010.04.051
Shan J K.Temperature zoning and its significance of skarn-type polymetal deposits of Cuihong Mountain in Heilongjiang Province[J].Geomatics & Spatial Information Technology, 2010, 33(4):162-167. doi: 10.3969/j.issn.1672-5867.2010.04.051
-