Simultaneous Determination of 28 Elements including Rare Earth Elements by ICP-MS with Five-Acid Dissolution
-
摘要:
电感耦合等离子体质谱法(ICP-MS)测定大批量地质样品中的稀土和钴铪铟锰铌钽铊铬镉镓锗钒锡等金属元素,主要采用三酸或四酸溶解样品。由于地质样品组分复杂,稀土等金属元素含量低,各元素性质差异大,三酸或四酸溶样经常出现易挥发元素如钒铬镉镓锡的测定结果不稳定、镧铈镨钕等稀土元素溶解不完全的问题。本文在盐酸-硝酸-氢氟酸-高氯酸四酸基础上引入硫酸,形成盐酸-硝酸-氢氟酸-高氯酸-硫酸五酸溶样体系,用于水系沉积物、土壤和岩石等不同类型地质样品的一次敞口溶解,采用在线加入185Re和103Rh内标方式,建立了应用ICP-MS同时测定稀土等28种金属元素的方法。钒铬镉镓锡元素的准确度提高了1.4%~14.6%,镧和铈元素的准确度提高了0.2%~8.9%。该方法应用于分析水系沉积物、土壤、岩石标准物质(分别为GBW07301a、GBW07408、GBW07107),其测定值与认定值相一致,相对标准偏差(RSD)为1.14%~9.84%,准确度(△lgC)均≤0.1。该方法分析过程较简单,结果准确可靠,可满足测定大批量地质样品中稀土和钴铪铟锰铌钽等金属元素含量的要求。
-
关键词:
- 地质样品 /
- 稀土元素 /
- 金属元素 /
- 五酸溶样 /
- 电感耦合等离子体质谱法
Abstract:BACKGROUND Three acids and four acids dissolution methods are the two main dissolution methods for determination of rare earth, cobalt, hafnium, indium, manganese, niobium, tantalum, thallium, chromium, cadmium, gallium, germanium, vanadium and tin in geological samples by inductively coupled plasma-mass spectrometry (ICP-MS). However, the composition of geological samples is complex, the content of rare earth and other metal elements is low, and the properties of each element are different, which makes the measurement results of volatile elements such as vanadium, chromium, cadmium, gallium and tin unstable, and rare earth elements such as lanthanum, cerium, praseodymium and neodymium are not completely dissolved by three acids or four acids.
OBJECTIVES To improve the four acids dissolution system for the determination of 28 elements including rare earth elements and rare metal elements.
METHODS The method of HCl-HNO3-HF-HClO4-H2SO4 was developed by addition of H2SO4 in the dissolution system of HCl-HNO3-HF-HClO4. A new analysis method has been developed for the certified reference material of stream sediment, soil and rock, and 28 elements including rare earth elements in samples were determined simultaneously by ICP-MS with 10ng/mL 103Rh and 185Re as the internal standard by on-line injections.
RESULTS The accuracy of volatile elements such as vanadium, chromium, cadmium, gallium and tin was improved by 1.4%-14.6%, and that of rare earth elements such as lanthanum and cerium was improved by 0.2%-8.9%. The certified reference materials of stream sediment (GBW07301a), soil (GBW07408) and rock (GBW07107) were analyzed to test the method. The determined values were in good agreement with the certified values. The standard deviations (RSD) of the method were 1.14%-9.84% and accuracy (△lgC) was not higher than 0.1.
CONCLUSIONS This method is rapid, simple, and accurate and can meet the requirements for determining the content of rare earth, cobalt, hafnium, indium, manganese, niobium, tantalum and other metal elements in large quantities of geological samples.
-
-
表 1 四酸和五酸溶样对易挥发元素镉铬镓锡和钒的影响
Table 1. Effect of different acid systems on volatile element Cd, Cr, Ga, Sn and V determination
标准物质编号 溶样方法 Cd含量
(μg/g)Cr含量
(μg/g)Ga含量
(μg/g)Sn含量
(μg/g)V含量
(μg/g)四酸溶样 0.133 142 20.6 2.92 103 GBW07301a 五酸溶样 0.117 130 22.2 3.17 112 认定值 0.110 128 23.6 3.30 115 四酸溶样 0.148 44.6 11.9 1.8 63 GBW07365 五酸溶样 0.174 49.7 13.0 2.1 66 认定值 0.165 48.0 13.4 2.0 69 四酸溶样 0.121 63.6 12.4 2.66 73.9 GBW07408 五酸溶样 0.132 69.6 14.5 2.75 83.3 认定值 0.13 68 14.8 2.80 81.0 四酸溶样 0.142 78.5 16.5 3.06 95 GBW07452 五酸溶样 0.147 80.7 17.5 3.27 107 认定值 0.150 82.0 18.5 3.40 104 四酸溶样 0.063 90 22.0 1.71 83 GBW07107 五酸溶样 0.076 103 24.3 2.15 88 认定值 0.070 99 26.0 2.00 87 四酸溶样 0.115 131 15.7 0.70 274 GBW07122 五酸溶样 0.127 139 16.7 0.85 305 认定值 0.140 137 17.2 0.80 296 表 2 四酸和五酸溶样对稀土元素铈和镧的影响
Table 2. Effect of different acid systems on rare earth element Ce and La determination
标准物质编号 Ce含量(μg/g) La含量(μg/g) 四酸溶样 五酸溶样 认定值 四酸溶样 五酸溶样 认定值 GBW07301a 80.7 81.6 81 36.8 39.6 41 GBW07365 44.5 45.5 47 22.1 23.9 24 GBW07408 64.4 64.9 66 33.7 34.3 36 GBW07452 75.8 77.5 78 38.9 41.1 42 GBW07107 107 110 109 56.6 61.5 62 GBW07122 7.0 7.6 7.7 2.49 3.05 2.9 表 3 元素钡对铕和钕的影响
Table 3. Effect of Ba on Eu and Nd determination
标准物质编号 Ba含量(μg/g) Eu含量(μg/g) Nd含量(μg/g) 四酸溶样 五酸溶样 认定值 四酸溶样 五酸溶样 认定值 四酸溶样 五酸溶样 认定值 GBW07301a 938 386 920 1.54 1.68 1.70 33.6 36.1 36.0 GBW07365 596 231 584 0.88 1.05 1.08 20 21.1 23 GBW07408 493 198 480 1.02 1.24 1.20 26.3 28.2 32.0 GBW07452 456 210 441 1.25 1.51 1.40 34.1 35.2 36.0 GBW07107 456 269 450 1.53 1.87 1.70 43.1 49.1 48.0 GBW07122 60 37 62 0.83 0.85 0.91 6.16 6.38 6.50 表 4 国家一级标准物质工作曲线测定结果
Table 4. Analytical results of elements in standard curve
元素 GBW07305a GBW07309 GBW07457 平均值
(μg/g)认定值
(μg/g)平均值
(μg/g)认定值
(μg/g)平均值
(μg/g)认定值
(μg/g)111Cd 0.252 0.26 0.95 0.9 0.539 0.52 140Ce 78.1 78 87.4 90 105 107 59Co 14.50 14.4 15.3 16 19.04 18.2 52Cr 83.7 85 68.7 70 91.3 94 163Dy 5.24 5.1 5.60 5.3 6.53 6.3 166Er 2.95 2.8 3.3 3 4.03 3.7 153Eu 1.36 1.33 1.22 1.3 1.414 1.38 69Ga 13.8 14 15.55 15.2 22.7 25 157Gd 5.48 5.5 6.20 5.9 6.57 6.6 72Ge 1.36 1.3 1.59 1.48 1.86 1.83 178Hf 9.40 9.7 10.15 9.7 6.23 6.4 165Ho 0.99 0.96 1.083 1.05 1.251 1.27 115In 0.06 0.056 0.0637 0.061 0.114 0.122 139La 39.1 40 42.5 44 48.1 50 175Lu 0.46 0.45 0.53 0.5 0.635 0.59 55Mn 628.1 620 1020 1010 1158 1120 93Nb 17.9 18 18.3 20 20.13 19.6 146Nd 34.3 34 34.1 36 41.6 43 141Pr 9.15 9.2 9.10 9.9 10.6 11 147Sm 6.38 6.3 6.19 6.6 7.40 7.4 118Sn 2.70 2.6 4.3 4 8.39 8.7 181Ta 1.26 1.3 1.36 1.38 1.82 1.8 159Tb 0.88 0.87 0.917 0.92 1.064 1.11 205Tl 0.47 0.49 1.21 1.28 1.31 1.2 169Tm 0.45 0.44 0.51 0.5 0.59 0.6 51V 101.9 97 103.3 99 129 124 89Y 26.3 27 28.2 29 31.5 34 172Yb 2.94 2.8 3.39 3.2 4.97 4.8 -
[1] 程祎, 李志伟, 于亚辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中铌、钽、锆、铪和16种稀土元素[J]. 理化检验(化学分册), 2020, 56(7): 782-787. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007009.htm
Cheng Y, Li Z W, Yu Y H, et al. ICP-MS determination of Nb, Ta, Zr, Hf and 16 rare earth elements in geological samples with high pressure closed digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(7): 782-787. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007009.htm
[2] 郝冬梅, 张翼明, 许涛, 等. ICP-MS法测定稀土铌钽矿中铍、铀、铌、钽、锆、铪量[J]. 稀土, 2010, 31(5): 67-69. doi: 10.3969/j.issn.1004-0277.2010.05.014
Hao D M, Zhang Y M, Xu T, et al. Determination of beryllium, uranium, niobium, tartalum, zirconium and hafnium in rare earth-niobium-tartalum mineral by ICP-MS[J]. Chinese Rare Earths, 2010, 31(5): 67-69. doi: 10.3969/j.issn.1004-0277.2010.05.014
[3] 兰明国, 陆迁树, 张先昌. 溶样方法对电感耦合等离子体质谱法测定岩石和土壤中稀土元素的影响[J]. 冶金分析, 2018, 38(6): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201806008.htm
Lan M G, Lu Q S, Zhang X C. Influence of sample dissolu-tion method on determination of rare earth elements in rock and soil by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201806008.htm
[4] 李鹰, 俞晓峰, 寿淼钧, 等. 电感耦合等离子体质谱法测定岩石和水系沉积物中痕量稀土元素[J]. 冶金分析, 2016, 36(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201602006.htm
Li Y, Yu X F, Shou M J, et al. Determination of trace rare earth elements in rock and stream sediments by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2015, 36(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201602006.htm
[5] 胡艳巧, 程文翠, 支云川, 等. 四酸溶矿-电感耦合等离子体发射光谱法测定铬铁矿中多种元素[J]. 分析试验室, 2016, 35(11): 1312-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201611017.htm
Hu Y Q, Cheng W C, Zhi Y C, et al. Simultaneous determination of 11 elements in chromites by inductively coupled plasma-atomic emission spectrometry with HCl-HNO3-HF-HClO4 digestion method[J]. Chinese Journal of Analysis Laboratory, 2016, 35(11): 1312-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201611017.htm
[6] 马生凤, 朱云, 孙红宾, 等. 封闭溶样-电感耦合等离子体质谱法测定硫化铅矿石中40种微量元素[J]. 矿物岩石地球化学通报, 2016, 35(3): 527-533. doi: 10.3969/j.issn.1007-2802.2016.03.016
Ma S F, Zhu Y, Sun H B, et al. Determination of 40 elements in lead sulfide ores by inductively coupled plasma mass spectrometry with pressurized acid digestion of samples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 527-533. doi: 10.3969/j.issn.1007-2802.2016.03.016
[7] 周国兴, 刘玺祥, 崔德松. 碱熔ICP-MS法测定岩石样品中稀土等28种金属元素[J]. 质谱学报, 2010, 31(2): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201002014.htm
Zhou G X, Liu X X, Cui D S. Determination of 28 elements including rare earth elements by ICP-MS in alkali melted rock sample[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(2): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201002014.htm
[8] 李晓敬, 边朋沙, 金倩, 等. 高压微波消解-电感耦合等离子体质谱法测定地质样品中分散元素镓铟铊锗碲镉[J]. 冶金分析, 2019, 39(4): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201904007.htm
Li X J, Bian P S, Jin Q, et al. Determination of disperse elements of gallium, indium, thallium, germanium, tellurium and cadmium in geological samples by inductively coupled plasma mass spectrometry with high-pressure microwave digestion[J]. Metallurgical Analysis, 2019, 39(4): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201904007.htm
[9] Shirai N, Toktaganov M, Takahashi H, et al. Multielemental analysis of Korean geological reference samples by INAA, ICP-AES and ICP-MS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303: 1367-1374. doi: 10.1007/s10967-014-3653-5
[10] 章新泉, 易永, 姜玉梅, 等. 电感耦合等离子体质谱测定地质样品中多种元素[J]. 分析试验室, 2005, 24(8): 58-61. doi: 10.3969/j.issn.1000-0720.2005.08.017
Zhang X Q, Yi Y, Jiang Y M, et al. Determination of multielements in geological samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2005, 24(8): 58-61. doi: 10.3969/j.issn.1000-0720.2005.08.017
[11] 吴石头, 王亚平, 孙德忠, 等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素四种前处理方法的比较[J]. 岩矿测试, 2014, 33(1): 12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003 http://www.ykcs.ac.cn/article/id/2c32f0ea-719c-486f-aa0d-027493aec6da
Wu S T, Wang Y P, Sun D Z, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry: A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1): 12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003 http://www.ykcs.ac.cn/article/id/2c32f0ea-719c-486f-aa0d-027493aec6da
[12] 刘环, 康佳红, 王玉学. 碱熔-电感耦合等离子体质谱法测定地质样品中铍铯镓铊铌钽锆铪铀钍[J]. 冶金分析, 2019, 39(3): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201903005.htm
Liu H, Kang J H, Wang Y X. Determination of beryllium, cesium, gallium, thallium, niobium, tantalum, zirconium, hafnium, uranium and thorium in geological sample by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(3): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201903005.htm
[13] 程秀花, 黎卫亮, 王海蓉, 等. 封闭酸溶样ICP-MS法直接测定地质样品中镓、铟、铊、锗[J]. 分析试验室, 2015, 34(10): 1204-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201510026.htm
Cheng X H, Li W L, Wang H R, et al. Determination of gallium, indium, thallium and germanium in geological samples after pressurized acid digestion by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(10): 1204-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201510026.htm
[14] 杨小丽, 李小丹, 邹棣华. 溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金分析, 2016, 36(7): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607009.htm
Yang X L, Li X D, Zou D H. Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607009.htm
[15] 何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004
He H l, Li B, Han L R, et al. Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICPMS[J]. Chinese Journal of Analysis Laboratory, 2002, 21(5): 8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004
[16] 于亚辉, 刘军, 李小辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定地球化学样品中的50种元素[J]. 理化检验(化学分册), 2019, 55(7): 833-839. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201907020.htm
Yu Y Y, Liu J, Li X H, et al. High pressure sealed digestion-determination of 50 elements in geochemical samples by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(7): 833-839. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201907020.htm
[17] 马亮帮, 张大勇, 腾格尔, 等. 高压密闭消解-电感耦合等离子体质谱(ICP-MS)法测定煤中稀土元素[J]. 中国无机分析化学, 2019, 9(4): 27-30. doi: 10.3969/j.issn.2095-1035.2019.04.007
Ma L B, Zhang D Y, Borjigin T, et al. Determination of rare earth elements in coal by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 27-30. doi: 10.3969/j.issn.2095-1035.2019.04.007
[18] 吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607006.htm
Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607006.htm
[19] 李志伟, 高志军, 张明, 等. 碱熔-电感耦合等离子体质谱法测定硫铁矿单矿物中的金、银及铂族元素[J]. 理化检验(化学分册), 2015, 51(1): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201501033.htm
Li Z W, Gao Z J, Zhang M, et al. Determination of gold, silver and platinum group elements in pyrite by alkali fusion inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(1): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201501033.htm
[20] 戴雪峰, 董利明, 蒋宗明. 电感耦合等离子体质谱(ICP-MS)法测定地质样品中重稀土元素和钍、铀[J]. 中国无机分析化学, 2016, 6(4): 20-25. doi: 10.3969/j.issn.2095-1035.2016.04.006
Dai X F, Dong L M, Jiang Z M. Determination of heavy rare earth element, Th and U in geological samples by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(4): 20-25. doi: 10.3969/j.issn.2095-1035.2016.04.006
[21] 刘晶晶, 杨威. 碱熔-电感耦合等离子体质谱法测定镓矿石中镓、钼、钨[J]. 当代化工, 2016, 45(6): 1261-1263. doi: 10.3969/j.issn.1671-0460.2016.06.050
Liu J J, Yang W. Determination of gallium, molybdenum and wolfram in gallium ores by inductively coupled plasma-mass spectrometry with alkali fusion[J]. Contemporary Chemical Industry, 2016, 45(6): 1261-1263. doi: 10.3969/j.issn.1671-0460.2016.06.050
[22] 刘代喜, 车平平, 吴祎, 等. 电感耦合等离子体质谱法测定地质样品中16个元素[J]. 天然产物研究与开发, 2013, 25(7): 928-931. doi: 10.3969/j.issn.1001-6880.2013.07.013
Liu D X, Che P P, Wu W, et al. Determination of 16 elements in geological samples by inductively coupled plasma-mass spectrometry[J]. Natural Product Research and Development, 2013, 25(7): 928-931. doi: 10.3969/j.issn.1001-6880.2013.07.013
[23] 王君玉, 吴葆存, 李志伟, 等. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J]. 岩矿测试, 2011, 30(4): 440-445. doi: 10.3969/j.issn.0254-5357.2011.04.010 http://www.ykcs.ac.cn/article/id/ykcs_20110409
Wang J Y, Wu B C, Li Z W, et al. Determination of elemental content in geological samples by one-time acid dissolution and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 440-445. doi: 10.3969/j.issn.0254-5357.2011.04.010 http://www.ykcs.ac.cn/article/id/ykcs_20110409
[24] 贾双琳, 赵平, 杨刚, 等. 混合酸敞开或高压密闭溶样-ICPMS测定地质样品中稀土元素[J]. 岩矿测试, 2014, 33(2): 186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005
Jia S L, Zhao P, Yang G, et al. Quick determination of rare earth elements in geological samples with open acid digestion or high-pressure closed digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005
[25] 王佩佩, 李霄, 宋伟娇. 微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 分析测试学报, 2016, 35(2): 235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017
Wang P P, Li X, Song W J. Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J]. Journal of Instrumental Analysis, 2016, 35(2): 235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017
[26] 门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-67. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905100060
Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905100060
[27] Smirnova E V, Mysovskaya I N, Lozhkin V I, et al. Spectral interference from polyatomic barium ions in inductively coupled plasma mass spectrometry[J]. Journal of Applied Spectroscopy, 2006, 73(6): 911-917. doi: 10.1007/s10812-006-0175-0
[28] 王冠, 李华玲, 任静, 等. 高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究[J]. 岩矿测试, 2013, 32(4): 561-567. doi: 10.3969/j.issn.0254-5357.2013.04.007 http://www.ykcs.ac.cn/article/id/38069f63-06ff-42f3-987f-79bf9cdbb629
Wang G, Li H L, Ren J, et al. Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICP-MS[J]. Rock and Mineral Analysis, 2013, 32(4): 561-567. doi: 10.3969/j.issn.0254-5357.2013.04.007 http://www.ykcs.ac.cn/article/id/38069f63-06ff-42f3-987f-79bf9cdbb629
[29] Siewers U. Inductively coupled plasma/mass spectrometry in geochemistry[J]. Mikrochim Acta, 1989, 3: 365-372. doi: 10.1007/BF01244692
[30] 张勤, 白金峰, 王烨, 等. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203004.htm
Zhang Q, Bai J F, Wang Y, et al. Analytical scheme and quality monitoring system for China Geochemical Baselines[J]. Earth Science Frontiers, 2012, 19(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203004.htm
-