中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

柱色谱分离-分子筛络合洗脱过程中正构烷烃单体碳同位素分馏研究

董浩伟, 赵佳玉, 曾凡刚, 谢曼曼, 尚文郁, 王淑贤, 孙青. 柱色谱分离-分子筛络合洗脱过程中正构烷烃单体碳同位素分馏研究[J]. 岩矿测试, 2021, 40(3): 349-357. doi: 10.15898/j.cnki.11-2131/td.202005030063
引用本文: 董浩伟, 赵佳玉, 曾凡刚, 谢曼曼, 尚文郁, 王淑贤, 孙青. 柱色谱分离-分子筛络合洗脱过程中正构烷烃单体碳同位素分馏研究[J]. 岩矿测试, 2021, 40(3): 349-357. doi: 10.15898/j.cnki.11-2131/td.202005030063
DONG Hao-wei, ZHAO Jia-yu, ZENG Fan-gang, XIE Man-man, SHANG Wen-yu, WANG Shu-xian, SUN Qing. Study on Specific Carbon Isotope Fractionation of n-Alkanes during Column Chromatography Separation-Molecular Sieve Complexation Adsorption[J]. Rock and Mineral Analysis, 2021, 40(3): 349-357. doi: 10.15898/j.cnki.11-2131/td.202005030063
Citation: DONG Hao-wei, ZHAO Jia-yu, ZENG Fan-gang, XIE Man-man, SHANG Wen-yu, WANG Shu-xian, SUN Qing. Study on Specific Carbon Isotope Fractionation of n-Alkanes during Column Chromatography Separation-Molecular Sieve Complexation Adsorption[J]. Rock and Mineral Analysis, 2021, 40(3): 349-357. doi: 10.15898/j.cnki.11-2131/td.202005030063

柱色谱分离-分子筛络合洗脱过程中正构烷烃单体碳同位素分馏研究

  • 基金项目:
    国家自然科学基金项目(41877301);中国地质调查局中国地质科学院基本科研业务费项目(CSJ201902)
详细信息
    作者简介: 董浩伟, 博士研究生, 研究方向为地球化学。E-mail: donghaowei10@163.com
    通讯作者: 王淑贤, 高级工程师, 研究方向为分析化学。E-mail: 1009718437@qq.com 孙青, 博士, 研究员, 研究方向为地球化学。E-mail: sunqingemail@yahoo.com
  • 中图分类号: O628;O657.63

Study on Specific Carbon Isotope Fractionation of n-Alkanes during Column Chromatography Separation-Molecular Sieve Complexation Adsorption

More Information
  • 应用气相色谱-气体同位素质谱(GC-C-IRMS)分析正构烷烃单体碳同位素之前,需要对饱和烃样品中正构烷烃和异构烷烃进行预分离、富集,在预分离和富集过程中正构烷烃单体碳同位素是否发生分馏是高精度分析正构烷烃单体碳同位素比值(δ13C)的关键。本文以正构烷烃混合溶液为对象,利用柱色谱、5Å分子筛络合、环己烷-正戊烷混合溶剂两次洗脱,GC-C-IRMS分析正构烷烃单体碳同位素,研究前处理过程中正构烷烃单体碳同位素是否发生分馏。结果表明:使用柱色谱分离前后,多数正构烷烃单体碳同位素比值相差-0.2‰~0.2‰;当5Å分子筛不完全络合时,未络合的正构烷烃单体碳同位素比值偏重约0.7‰,可能发生了微弱的碳同位素分馏,但并未影响洗脱后的正构烷烃单体碳同位素比值;使用环己烷-正戊烷混合溶剂洗脱前后,碳同位素比值相差-0.2‰~0.5‰,以同样方式洗脱第二次,获得的正构烷烃单体碳同位素比值与模拟样品相差-0.3‰~0.2‰。分析不同回收率(>20%)正构烷烃的单体碳同位素比值,处理前后的差值基本在0.3‰以内,可见当正构烷烃回收率低至20%左右时,其单体碳同位素仍未发生明显分馏。柱色谱分离-5Å分子筛络合-混合溶剂洗脱方法适用于回收率大于20%的正构烷烃单体碳同位素分析。

  • 加载中
  • 图 1  过柱后单体碳同位素与模拟样品碳同位素的差值

    Figure 1. 

    图 2  不同未络合率正构烷烃单体碳同位素与模拟样品的差值

    Figure 2. 

    图 3  不同洗脱回收率正构烷烃单体碳同位素与模拟样品的差值

    Figure 3. 

    图 4  不同回收率正构烷烃单体碳同位素与模拟样品碳同位素差值

    Figure 4. 

    表 1  工作标准的δ13C值

    Table 1.  δ13C values of working standards

    目标物 工作标准的δ13C (‰) 目标物 工作标准的δ13C (‰)
    平均值 SD(n=26) 平均值 SD(n=26)
    C15 -27.12 0.16 C24 -32.44 0.11
    C17 -35.41 0.15 C26 -32.68 0.09
    C18 -32.68 0.15 C28 -33.11 0.13
    C21 -28.76 0.13 C32 -30.67 0.16
    C22 -29.16 0.15 C36 -30.61 0.16
    下载: 导出CSV
  • [1]

    杨柳. 巴丹吉林沙漠塔布吉格徳湖2000年来的正构烷烃单体碳同位素组成及气候变化[D]. 北京: 中国地质大学(北京), 2020: 1-7.

    Yang L. Environmental significance of n-alkane monomer carbon isotopes in Tabujigede Lake, Badain Jaran Desert, Inner Mongolia since 2000[D]. Beijing: China University of Geosciences (Beijing), 2020: 1-7.

    [2]

    Castaneda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21-22): 2851-2891.

    [3]

    Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4877-4889. doi: 10.1016/j.gca.2004.06.004

    [4]

    Ficken K J, Swain D, Eglinton G. An n-alkane proxy for the sedimentary input of submerged floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7-8): 745-749. doi: 10.1016/S0146-6380(00)00081-4

    [5]

    凌媛. 青藏高原湖泊记录的典型时段古气候变化[D]. 武汉: 中国地质大学(武汉), 2017: 1-7.

    Lin Y. Paleoclimatic changes of typical periods recorded in lake sediments on the Tibetan Plateau[D]. Wuhan: China University of Geosciences (Wuhan), 2017: 1-7.

    [6]

    Wurster C M, Patterson W P, McFarlane D A, et al. Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2ka events[J]. Geology, 2008, 36(9): 683-686. doi: 10.1130/G24938A.1

    [7]

    Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses-A novel tool for reconstruction of ancient biogeochemical processes[J]. Organic Geochemistry, 1990, 16(4-6): 1115-1128. doi: 10.1016/0146-6380(90)90147-R

    [8]

    Andersson R A, Kuhry P, Meyers P, et al. Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic[J]. Organic Geochemistry, 2011, 42(9): 1065-1075. doi: 10.1016/j.orggeochem.2011.06.020

    [9]

    Bush R T, McInerney F A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta, 2013, 117: 161-179. doi: 10.1016/j.gca.2013.04.016

    [10]

    Bush R T, McInerney F A. Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA[J]. Organic Geochemistry, 2015, 79: 65-73. doi: 10.1016/j.orggeochem.2014.12.003

    [11]

    Dorale J A, Wozniak L A, Bettis E A, et al. Isotopic evidence for Younger Dry as aridity in the North American Midcontinent[J]. Geology, 2010, 38(6): 519-522. doi: 10.1130/G30781.1

    [12]

    Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(12): 1101. http://onlinelibrary.wiley.com/doi/10.1029/2003GC000541

    [13]

    Ficken K J, Street F A, Perrott R A, et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa[J]. Organic Geochemistry, 1998, 29(5-7): 1701-1719. doi: 10.1016/S0146-6380(98)00109-0

    [14]

    Gao L, Hou J, Toney J, et al. Mathematical modeling of the aquatic macrophyte inputs of mid-chainn-alkyl lipids to lake sediments: Implications for interpreting compound specific hydrogen isotopic records[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3781-3791. doi: 10.1016/j.gca.2011.04.008

    [15]

    Garcin Y, Schwab V F, Gleixner G, et al. Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: Insights from a calibration transect across Cameroon[J]. Geochimica et Cosmochimica Acta, 2012, 79: 106-126. doi: 10.1016/j.gca.2011.11.039

    [16]

    Mügler I, Gleixner G, Günther F, et al. A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, central Tibet[J]. Journal of Paleolimnology, 2009, 43(4): 625-648.

    [17]

    Rao Z G, Zhu Z Y, Jia G D, et al. Compound specific delta D values of long chain n-alkanes derived from terrestrial higher plants are indicative of the delta D of meteoric waters: Evidence from surface soils in eastern China[J]. Organic Geochemistry, 2009, 40(8): 922-930. doi: 10.1016/j.orggeochem.2009.04.011

    [18]

    Yamada K, Ishiwatari R. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments: Implications for paleoenvironmental changes over the past 85kyr[J]. Organic Geochemistry, 1999, 30(5): 367-377. doi: 10.1016/S0146-6380(99)00012-1

    [19]

    Sachse D, Billault I, Bowen G J, et al. Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 221-249. doi: 10.1146/annurev-earth-042711-105535

    [20]

    Song M H, Duan D Y, Chen H, et al. Leaf δ13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau[J]. Ecography, 2008, 31(4): 499-508. doi: 10.1111/j.0906-7590.2008.05331.x

    [21]

    Street J H, Anderson R S, Rosenbauer R J, et al. n-alkane evidence for the onset of wetter conditions in the Sierra Nevada, California (USA) at the Mid-Late Holocene transition, similar to 3.0ka[J]. Quaternary Research, 2013, 79(1): 14-23. doi: 10.1016/j.yqres.2012.09.004

    [22]

    Stuiver M, Braziunas T F. Tree cellulose 13C/12C isotope ratios and climatic-change[J]. Nature, 1987, 328(6125): 58-60. doi: 10.1038/328058a0

    [23]

    林杰. 叶蜡烷烃单体同位素对青藏高原中-晚新生代古地形和古环境的约束[D]. 北京: 中国地质大学(北京), 2020: 2-5.

    Lin J. The Mid-Late Cenozoic paleotopography and paleoenvironment of Tibetan Plateau: Constraint from leaf wax compound-specific isotope[D]. Beijing: China University of Geosciences (Beijing), 2020: 2-5.

    [24]

    Rao Z G, Guo W K, Cao J T, et al. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews, 2017, 165: 110-119. doi: 10.1016/j.earscirev.2016.12.007

    [25]

    饶志国, 贾国东, 朱照宇, 等. 中国东部表土总有机质碳同位素和长链正构烷烃碳同位素对比研究及其意义[J]. 科学通报, 2008, 53(17): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200817017.htm

    Rao Z G, Jia G D, Zhu Z Y, et al. A comparative study on the carbon isotopes of total organic matter and long-chain n-alkanes in the surface soil of eastern China and its significance[J]. Science Bulletin, 2008, 53(17): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200817017.htm

    [26]

    王宁, 朱庆增, 谢曼曼, 等. 尿素络合法分离-气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素[J]. 岩矿测试, 2015, 34(4): 471-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504017.htm

    Wang N, Zhu Q Z, Xie M M, et al. An improved urea adduction method for analyzing carbon isotope of ppm level n-alkanes in soil and plant samples[J]. Rock and Mineral Analysis, 2015, 34(4): 471-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504017.htm

    [27]

    陈莎莎, 朱新旭, 贾望鲁, 等. 用于单体氢同位素分析的混合溶剂洗脱5Å分子筛吸附正构烷烃的方法[J]. 岩矿测试, 2017, 36(4): 413-419. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201704011.htm

    Chen S S, Zhu X X, Jia W L, et al. Elution of adsorbed n-alkanes by 5Å molecular sieve using solvent mixtures for compound-specific hydrogen isotopic analysis[J]. Rock and Mineral Analysis, 2017, 36(4): 413-419. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201704011.htm

    [28]

    张逐月, 刘美美, 谢曼曼, 等. 5Å分子筛吸附混合溶剂洗脱-气相色谱-同位素质谱分析土壤中正构烷烃单体碳同位素[J]. 岩矿测试, 2012, 31(1): 178-183. doi: 10.3969/j.issn.0254-5357.2012.01.025

    Zhang Z Y, Liu M M, Xie M M, et al. Specific carbon isotopic analysis of n-alkanes in soils by gas chromatography-isotope ratio mass spectrometry with 5Å molecular sieve adsorption and mixed solvent elution[J]. Rock and Mineral Analysis, 2012, 31(1): 178-183. doi: 10.3969/j.issn.0254-5357.2012.01.025

    [29]

    杜丽, 李立武, 孟仟祥, 等. 饱和烃经5Å分子筛络合前后单体烃碳同位素分析对比研究[J]. 沉积学报, 2005, 23(4): 747-752. doi: 10.3969/j.issn.1000-0550.2005.04.027

    Du L, Li L W, Meng Q X, et al. Comparison of carbon isotopic composition of the saturated hydrocarbons before and after complexation 5Å molecular sieve[J]. Acta Sedimentologica Sinica, 2005, 23(4): 747-752. doi: 10.3969/j.issn.1000-0550.2005.04.027

    [30]

    李钜源. 单分子烃碳同位素分析方法及影响因素探讨[J]. 地球学报, 2004, 25(2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200402001.htm

    Li J Y. Carbon isotope analysis methods and influencing factors of single molecule hydrocarbon[J]. Journal of Earth Sciences, 2004, 25(2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200402001.htm

    [31]

    朱雷, 史权. 吸附法分离饱和烃组分在石油地球化学中的应用[J]. 石油大学学报, 1999, 23(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX902.007.htm

    Zhu L, Shi Q. Separation of saturated hydrocarbons using adsorption method and its application in petroleum geochemistry[J]. Journal of the University of Petroleum, 1999, 23(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX902.007.htm

    [32]

    Grice K, Audino M, Boreham C J, et al. Distributions and stable carbon isotopic compositions of biomarkers in torbanites from different palaeogeographical locations[J]. Organic Geochemistry, 2001, 32(10): 1195-1210. doi: 10.1016/S0146-6380(01)00087-0

    [33]

    Grice K, Mesmay R, Glucina A, et al. An improved and rapid 5Å molecular sieve method for gas chromatography isotope ratio mass spectrometry of n-alkanes (C8-C30+)[J]. Organic Geochemistry, 2008, 39(3): 284-288. doi: 10.1016/j.orggeochem.2007.12.009

    [34]

    Tolosa I, Ogrinc N. Utility of 5Å molecular sieves to mea-sure carbon isotope ratios in lipid biomarkers[J]. Journal of Chromatography A, 2007, 1165(1-2): 172-181. doi: 10.1016/j.chroma.2007.07.046

    [35]

    Xu S P, Sun Y G. An improved method for the micro-separation of straight chain and branched/cyclic alkanes: Urea inclusion paper layer chromatography[J]. Organic Geochemistry, 2005, 36(9): 1334-1338.

    [36]

    王汇彤, 魏彩云, 张水昌, 等. MOY分子筛对生物标志化合物的分离及其单体烃同位素测定研究[J]. 石油实验地质, 2010, 32(5): 513-516. doi: 10.3969/j.issn.1001-6112.2010.05.019

    Wang H T, Wei C Y, Zhang S C, et al. The study on biomarkers separation and its CSIA by MOY molecular sieve[J]. Petroleum Geology & Experiment, 2010, 32(5): 513-516. doi: 10.3969/j.issn.1001-6112.2010.05.019

    [37]

    Rach O, Hadeen X, Sachse D. An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis[J]. Organic Geochemistry, 2020, 142: 1-12. http://www.sciencedirect.com/science/article/pii/S0146638020300309

    [38]

    Kubiak A, Biesaga M. Solid phase-extraction procedure for the determination of amitraz degradation products in honey[J]. Food Additives and Contaminants, 2020, 37(11): 1-9.

    [39]

    张东东, 刘玉兰, 马宇翔, 等. SPE净化-同位素稀释-GC-MS法检测食用油脂中16种多环芳烃[J]. 粮食与油脂, 2016, 26(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-LSYY201601015.htm

    Zhang D D, Liu Y L, Ma Y X, et al. Determination of EPA 16 polycyclic aromatic hydrocarbons in edible oil samples by SPE purification-isotope dilution-gas chromatography-mass spectrometry[J]. Cereals & Oils, 2016, 26(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-LSYY201601015.htm

    [40]

    Benbow T J, Frew R D, Hayman A R. Validation of a rapid and simple method for the preparation of aqueous organic compounds prior to compound specific isotope analysis[J]. Organic Geochemistry, 2008, 39(12): 1690-1702. http://www.sciencedirect.com/science/article/pii/S0146638008002659

    [41]

    杨东升, 刘猛, 庞丽萍, 等. H2O对空间站5Å分子筛CO2去除性能影响[J]. 北京航空航天大学学报, 2015, 41(8): 1485-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201508017.htm

    Yang D S, Liu M, Pang L P, et al. H2O impact on CO2 removal performance of 5Å molecular sieve in space station[J]. Joumal of Beijing University of Aeronautics and Astronautics, 2015, 41(8): 1485-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201508017.htm

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1658
  • PDF下载数:  120
  • 施引文献:  0
出版历程
收稿日期:  2020-05-03
修回日期:  2020-12-10
录用日期:  2021-03-20
刊出日期:  2021-05-28

目录