中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

复垦土地样品中石油类物质加速溶剂萃取-荧光分光光度法分析方法研究

赵江华, 王鹏, 黎卫亮, 李忠煜. 复垦土地样品中石油类物质加速溶剂萃取-荧光分光光度法分析方法研究[J]. 岩矿测试, 2021, 40(3): 375-383. doi: 10.15898/j.cnki.11-2131/td.202011200150
引用本文: 赵江华, 王鹏, 黎卫亮, 李忠煜. 复垦土地样品中石油类物质加速溶剂萃取-荧光分光光度法分析方法研究[J]. 岩矿测试, 2021, 40(3): 375-383. doi: 10.15898/j.cnki.11-2131/td.202011200150
ZHAO Jiang-hua, WANG Peng, LI Wei-liang, LI Zhong-yu. Determination of the Petroleum Substances in Samples of Reclaimed Land by Fluorescence Spectrophotometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2021, 40(3): 375-383. doi: 10.15898/j.cnki.11-2131/td.202011200150
Citation: ZHAO Jiang-hua, WANG Peng, LI Wei-liang, LI Zhong-yu. Determination of the Petroleum Substances in Samples of Reclaimed Land by Fluorescence Spectrophotometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2021, 40(3): 375-383. doi: 10.15898/j.cnki.11-2131/td.202011200150

复垦土地样品中石油类物质加速溶剂萃取-荧光分光光度法分析方法研究

  • 基金项目:
    国家重点研发计划项目课题“土地生态恢复评价检验检测及质量控制标准研究”(2017YFF0206804)
详细信息
    作者简介: 赵江华, 高级工程师, 主要从事地质有机分析工作。E-mail: 676410267@qq.com
    通讯作者: 李忠煜, 高级工程师, 主要从事地质有机分析工作。E-mail: 147331515@qq.com
  • 中图分类号: O657.31

Determination of the Petroleum Substances in Samples of Reclaimed Land by Fluorescence Spectrophotometry with Accelerated Solvent Extraction

More Information
  • 作为土地环境质量的一项重要指标,石油类物质含量决定了土地的用途。对于复垦土地样品,在一定程度上反映了污染土地的复垦、治理效果。土壤样中的石油类物质测定方法主要有气相色谱法、红外分光光度法、紫外光谱法等。气相色谱法主要应用于测定样品中的饱和烷烃;红外分光光度法通过测定不同波数下的特征吸收值来表征样品中石油类物质,但采用四氯乙烯为溶剂,试剂环境危害大,前处理效率低,检出限高。本文针对复垦土地样品中石油类物质含量不高,组分多为难挥发且结构复杂、基质干扰大的特点,采用正己烷为溶剂、加速溶剂萃取(ASE)前处理,荧光分光光度计测定样品中的石油类物质。以海洋环境监测石油标准物质为标准样品配制工作曲线,线性相关系数r2=0.9997;方法检出限为0.40mg/kg,检测下限为1.60mg/kg;实际样品方法精密度为1.10%~8.76%;基质加标回收率为89.0%~95.7%;检测实际样品的结果与现行有效的HJ 1051—2019红外分光光度法基本一致,高含量样品的测定结果高于红外法。本方法所用溶剂正己烷的毒性小于四氯乙烯,前处理方法ASE的自动化程度高,萃取效率高,精密度提高11.5%~67.3%。对于石油类组分结构相对复杂、难提取的样品,本方法检出限低于红外法(4mg/kg)。

  • 加载中
  • 表 1  检测方法的检出限

    Table 1.  Detection limit of the method

    平行实验编号 荧光强度 萃取液石油类物质测定值(mg/L) 样品中石油类物质含量(mg/kg)
    1 12.595 0.135 1.35
    2 12.198 0.126 1.26
    3 13.086 0.147 1.47
    4 12.256 0.127 1.27
    5 13.930 0.168 1.68
    6 13.320 0.153 1.53
    7 12.489 0.133 1.33
    标准偏差(mg/kg) - - 0.127
    t(6, 0.99) - - 3.143
    检出限(mg/kg) - - 0.40
    下载: 导出CSV

    表 2  空白加标样品精密度结果

    Table 2.  Accuracy tests of spiked blanks

    测定次数 空白加标样品石油类物质含量(mg/kg)
    2 10 20 50 100
    1 2.05 10.04 19.5 50.5 99.6
    2 1.75 9.76 18.1 49.5 101.4
    3 2.06 9.92 18.7 48.7 101.2
    4 1.86 8.94 19.2 47.7 97.9
    5 1.98 9.06 20.5 50.9 98.2
    6 1.67 8.73 18.9 47.3 99.5
    7 1.69 10.12 20.4 47.8 98.7
    平均值(mg/kg) 1.88 9.57 19.41 49.1 99.6
    标准偏差(mg/kg) 0.17 0.58 0.88 1.42 1.38
    RSD(%) 8.87 6.06 4.54 2.90 1.38
    加标回收率(%) 94.1 95.7 97.1 98.1 99.6
    下载: 导出CSV

    表 3  实际样品精密度结果

    Table 3.  Accuracy tests of spiked real samples

    测定次数 实际土壤样品石油类物质含量(mg/kg)
    煤-1 油-1 金-1 金-2 油-3
    1 5.99 10.6 77.5 285 1334
    2 4.55 11.4 85.3 291 1322
    3 5.54 10.4 83.2 295 1359
    4 5.45 9.9 82.5 282 1340
    5 5.63 9.9 77.9 294 1329
    6 5.22 11.3 80.6 278 1345
    7 5.00 10.0 79.5 287 1361
    平均值(mg/kg) 5.34 10.5 80.9 287 1341
    标准偏差(mg/kg) 0.47 0.63 2.89 6.23 14.8
    RSD(%) 8.76 6.03 3.57 2.17 1.10
    加标回收率(%) 94.1 95.7 97.1 98.1 99.6
    下载: 导出CSV

    表 4  实际样品加标回收率

    Table 4.  Recovery tests of spiked real samples

    测定次数 实际样品与加标样品石油类物质含量测定值(mg/kg)
    油1 加标样1 金-1 加标样2 金-2 加标样3
    1 10.6 19.8 77.5 152 285 562
    2 11.4 21.2 85.3 157 291 559
    3 10.4 19.7 83.2 158 295 565
    4 9.9 19.4 82.5 159 282 541
    5 9.9 18.0 77.9 150 294 560
    6 11.3 20.3 80.6 154 278 549
    7 10.0 18.3 79.5 153 287 547
    平均值(mg/kg) 10.5 19.4 80.9 155 287 555
    加标浓度(mg/kg) 10 80 280
    加标回收率(%) 89.0 92.6 95.7
    下载: 导出CSV

    表 5  荧光分光光度法与红外分光光度法检测实际样品结果对比

    Table 5.  Comparison of fluorescence method and infrared method for determination of real samples

    样品 荧光分光光度法 红外分光光度法
    石油类物质测定值(mg/kg) RSD(%) 石油类物质测定值(mg/kg) RSD(%)
    煤-1 5.34 8.52 8.12 9.63
    油-1 10.5 6.37 21.6 7.47
    金-1 80.9 3.59 62.8 5.12
    金-2 287 2.22 74.6 4.66
    油-3 1341 1.16 238.3 3.55
    下载: 导出CSV
  • [1]

    Bratberg M, Olsvik P A, Edvardsen R B, et al. Effects of oil pollution and persistent organic pollutants (POPs) on glycerophospholipids in liver and brain of male Atlantic cod (Gadus morhua)[J]. Chemosphere, 2013, 90(7): 2157-2171. doi: 10.1016/j.chemosphere.2012.11.026

    [2]

    Polmear R, Stark J S, Roberts D, et al. The effects of oil pollution on Antarctic benthic diatom communities over 5 years[J]. Marine Pollution Bulletin, 2015, 90(1-2): 33-40. doi: 10.1016/j.marpolbul.2014.11.035

    [3]

    王高. 石油类污染物的特性及环境危害[J]. 中国化工贸易, 2016, 8(3): 265-266. doi: 10.3969/j.issn.1674-5167.2016.03.251

    Wang G. Characteristics and environmental hazards of petroleum pollutants[J]. China Chemical Trade, 2016, 8(3): 265-266. doi: 10.3969/j.issn.1674-5167.2016.03.251

    [4]

    Hou J, Yin W J, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J]. Journal of Hazardous Materials, 2020, 386, 21663: 1-10.

    [5]

    Mu G, Fan L Y, Zhou Y, et al. Personal exposure to PM2.5-bound polycyclic aromatic hydrocarbons and lung function alteration: Results of a panel study in China[J]. Science of the Total Environment, 2019, 684: 458-465. doi: 10.1016/j.scitotenv.2019.05.328

    [6]

    Wang L, Li C M, Jiao B N, et al. Halogenated and parent polcyclic aromatic hydrocarbons in vegetables: Levels dietary intakes, and health risk assessments[J]. Science of the Total Environment, 2018, 616-617: 288-295. doi: 10.1016/j.scitotenv.2017.10.336

    [7]

    Cakmak S, Hebbern C, Cakmak J D, et al. The influence of polycyclic aromatic hydrocarbons on lung function in a representative sample of the Canadian population[J]. Environmental Pollution, 2017, 228: 1-7. doi: 10.1016/j.envpol.2017.05.013

    [8]

    李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201912040167

    Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201912040167

    [9]

    刘丹青. 我国污染场地土壤石油烃环境质量标准体系的现状与趋势[J]. 中国环境监测, 2020, 36(1): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202001025.htm

    Liu D Q. Current situation and trend of petroleum hydrocarbon related standard system in contaminated site soils of China[J]. Environmental Monitoring in China, 2020, 36(1): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202001025.htm

    [10]

    薛广海, 李强, 刘庆, 等. 当前国内外含油污泥处理标准及石油烃检测方法的深度剖析和对比[J]. 石油化工应用, 2019, 38(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201901001.htm

    Xue G H, Li Q, Liu Q, et al. In-depth analysis and comparison on the standards and testing methods for oil contaminated soil of domestic and international[J]. Petrochemical Industry Application, 2019, 38(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201901001.htm

    [11]

    段旭, 李慧慧, 杨柳晨, 等. 土壤中总石油烃测定——3种前处理方法的对比[J]. 福建分析测试, 2019, 28(3): 47-50. doi: 10.3969/j.issn.1009-8143.2019.03.10

    Duan X, Li H H, Yang L C, et al. Three pretreatment methods of determination of total petroleum hydrocarbon in soil[J]. Fujian Analysis & Testing, 2019, 28(3): 47-50. doi: 10.3969/j.issn.1009-8143.2019.03.10

    [12]

    苏丽娜, 马晓利, 陈平. 低含量油污染土壤中总石油烃测定萃取方法研究[J]. 应用化工, 2017, 46(8): 1635-1639. doi: 10.3969/j.issn.1671-3206.2017.08.046

    Su L N, Ma X L, Chen P. Study on extraction and determination of total petroleum hydrocarbons in low oil contaminated soil[J]. Applied Chemical Industry, 2017, 46(8): 1635-1639. doi: 10.3969/j.issn.1671-3206.2017.08.046

    [13]

    曹攽, 胡祖国, 郑存江, 等. 超声萃取-气相色谱法测定土壤中石油烃[J]. 理化检验(化学分册), 2018, 54(3): 275-279. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201803008.htm

    Cao B, Hu Z G, Zheng C J, et al. Determination of petroleum hydrocarbons in soil by GC combined with ultrasonic extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(3): 275-279. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201803008.htm

    [14]

    Wu G Z, Li X G, Coulonc F, et al. Extraction of hydro-carbons from the contaminated soil of PazananⅡ production unit by supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2012, 12(72), 298-304. http://www.sciencedirect.com/science/article/pii/S0896844612003191

    [15]

    张云青, 孟祥龙, 范广宇, 等. 加速溶剂萃取-气相色谱-串联质谱法同时测定贝类中64种农药残留[J]. 色谱, 2020, 38(6): 687-694. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202006009.htm

    Zhang Y Q, Meng X L, Fan G Y, et al. Simultaneous determination of 64 pesticide residues in shellfish by accelerated solvent extraction coupled with gas chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2020, 38(6): 687-694. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202006009.htm

    [16]

    马晓利, 苏丽娜, 庞林, 等. 快速溶剂萃取-红外分光光度法测定低含量油污染土壤中总石油烃的含量[J]. 理化检验(化学分册), 2018, 54(4): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804004.htm

    Ma X L, Su L N, Pang L, et al. Determination of total petroleum hydrocarbons in low oil contaminated soil by infrared spectrophotometry with accelerated solvent extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804004.htm

    [17]

    赵昌平, 冯小康, 朱强. 快速溶剂萃取-气相色谱法测定土壤中石油烃(C10~C40)[J]. 理化检验(化学分册), 2020, 56(7): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007020.htm

    Zhao C P, Feng X K, Zhu Q. GC determination of petroleum hydrocarb (C10-C40) in soil with rapid solvent extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(7): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007020.htm

    [18]

    Chen H P, Gao G W, Liu P X. et al. Determination of 16 polycyclic aromatic hydrocarbons in tea by simultaneous dispersive solid-phase extraction and liquid-liquid extraction coupled with gas chromatography-tandem mass spectrometry[J]. Food Analytical Methods, 2016, 9(8): 2374-2384. doi: 10.1007/s12161-016-0427-4

    [19]

    Wu G Z, Li X G, Cou L F, et al. Recycling of solvent used in a solvent extraction of petroleum hydrocarbons contaminated soil[J]. Journal of Hazardous Materials, 2011, 186(1): 533-539. doi: 10.1016/j.jhazmat.2010.11.041

    [20]

    Adeniji A O, Okoh O O, Okoh A I. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review[J]. Journal of Chemistry, 2017, 2017: 1-13. http://www.researchgate.net/publication/316551670_Analytical_Methods_for_the_Determination_of_the_Distribution_of_Total_Petroleum_Hydrocarbons_in_the_Water_and_Sediment_of_Aquatic_Systems_A_Review

    [21]

    阳艳, 杨伟鹏, 尹善军. 关于土壤中总石油烃检测分析方法研究[J]. 环境与发展, 2018, 30(8): 110-111. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201808067.htm

    Yang Y, Yang W P, Yin S J. Study on methods for analysis and analysis of total petroleum hydrocarbons in soil[J]. Environmental and Development, 2018, 30(8): 110-111. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201808067.htm

    [22]

    曹小聪, 吴晓晨, 徐文帅, 等. 水和沉积物中石油烃的分析方法及污染特征研究进展[J]. 环境工程技术学报, 2020, 10(5): 871-882. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202005028.htm

    Cao X C, Wu X C, Xu W S, et al. Research progress of analytical methods and pollution characteristics of petroleum hydrocarbons in water and sediment[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 871-882. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202005028.htm

    [23]

    张晓赟, 尹燕敏, 孙欣阳. 顶空/超声提取法-气相色谱法测定土壤中总石油烃[J]. 安徽农学通报, 2018, 24(17): 62-64. doi: 10.3969/j.issn.1007-7731.2018.17.031

    Zhang X Y, Yin Y M, Sun X Y, et al. Determination of TPH in soil using headspace GC-FID and ultrasonic extraction GC-FID[J]. Anhui Agricultural Science Bulletin, 2018, 24(17): 62-64. doi: 10.3969/j.issn.1007-7731.2018.17.031

    [24]

    顾亚中, 梁良. 红外分光光度法测定水中石油类物质实验分析[J]. 污染防治技术, 2019, 32(6): 62-64.

    Gu Y Z, Liang L. Determination of petroleum substances in water by infrared spectrophotometry[J]. Pollution Control Technology, 2019, 32(6): 62-64.

    [25]

    Paula P, Blurdes M, Atose T, et al. Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography[J]. Chemical Papers, 2012, 66(8): 711-721. doi: 10.2478/s11696-012-0193-8

    [26]

    吴嘉鹏, 楼振纲, 胡笑妍, 等. 紫外法与红外法测定石油类的比对研究[J]. 中国无机分析化学, 2019, 9(6): 78-82. doi: 10.3969/j.issn.2095-1035.2019.06.017

    Wu J P, Lou Z G, Hu X Y, et al. Comparison of ultraviolet and infrared spectrophotometry in the determination of petroleum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(6): 78-82. doi: 10.3969/j.issn.2095-1035.2019.06.017

    [27]

    王忠东, 王玉田. 激发-发射荧光矩阵结合二阶校正方法检测湖水中多环芳烃[J]. 光学精密工程, 2019, 27(10): 2089-2096. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201910003.htm

    Wang Z D, Wang Y T. Determination of polycyclic aromatic hydrocabons in lake water using excitation-emission fluorescence matrix coupled with second-order calibration algorithm[J]. Optics and Precision Engineering, 2019, 27(10): 2089-2096. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201910003.htm

    [28]

    王新伟, 钟宁宁, 吕文海, 等. 荧光光谱法快速检测土壤中荧光烃类污染物[J]. 生态环境, 2007, 16(4): 1184-1188. doi: 10.3969/j.issn.1674-5906.2007.04.023

    Wang X W, Zhong N N, Lv W H, et al. Determination of hydrocarbon pollutant in soil samples by fluorescence spectrum[J]. Ecology and Environment, 2007, 16(4): 1184-1188. doi: 10.3969/j.issn.1674-5906.2007.04.023

    [29]

    韩彬, 林法祥, 丁宇, 等. 海州湾近岸海域水质状况调查与风险评价[J]. 岩矿测试, 2019, 38(4): 429-437. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201806190073

    Han B, Lin F X, Ding Y, et al. Quality survey and risk assessment of the coastal waters of Haizhou Bay[J]. Rock and Mineral Analysis, 2019, 38(4): 429-437. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201806190073

    [30]

    温馨, 张淑荣, 白乙娟, 等. 荧光光谱技术在废水溶解有机物研究中的应用进展[J]. 南水北调与水利科技, 2018, 16(2): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201802005.htm

    Wen X, Zhang S R, Bai Y J, et al. Research progress on the application of fluorescence spectroscopy in studying dissolved organic matters in waste waters[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(2): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201802005.htm

    [31]

    王翔, 赵南京, 俞志敏, 等. 土壤有机污染物激光诱导荧光光谱检测方法研究进展[J]. 光谱学与光谱分析, 2018, 38(3): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201803040.htm

    Wang X, Zhao N J, Yu Z M, et al. Detection method progress and development trend of organic pollutants in soil using laser-induced fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(3): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201803040.htm

    [32]

    刘玉龙, 黄燕高, 刘菲. 气相色谱法测试土壤中分段石油烃的标准化定量方法初探[J]. 岩矿测试, 2019, 38(1): 102-111. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709040139

    Liu Y L, Huang Y G, Liu F. Analysis of total petroleum hydrocarbon fractions in soils by gas chromatography: Standardized calibration and quantitation method[J]. Rock and Mineral Analysis, 2019, 38(1): 102-111. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709040139

    [33]

    Ann A, Michael R, Veronica M, et al. Long-term health effects of early life exposure to tetrachloroethylene (PCE)-contaminated drinking water: Aretrospective cohort study[J]. Environmental Health, 2015, 14(1): 36. doi: 10.1186/s12940-015-0021-z

    [34]

    Jelle V, Kurt S, Avima R, et al. Tetrachloroethylene exposure and bladder cancer risk: A meta-analysis of dry-cleaning-worker studies[J]. Environmental Health Perspectives, 2014, 122(7): 661-666. doi: 10.1289/ehp.1307055

    [35]

    杨哲, 王玉田, 陈至坤, 等. 基于温度变量的四维荧光光谱的石油类污染物测定[J]. 光谱学与光谱分析, 2019, 39(8): 2546-2553. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201908042.htm

    Yang Z, Wang Y T, Chen Z K, et al. Determination of petroleum pollutants by four dimensional fluorescence spectra based on temperature variable[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2546-2553. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201908042.htm

    [36]

    Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-A review[J]. River Research & Applications, 2010, 23(6): 631-649. http://onlinelibrary.wiley.com/doi/abs/10.1002/rra.1005

    [37]

    Kavanagh R J, Burnison B K, Frank R A, et al. Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy[J]. Chemosphere, 2009, 76: 120-126. doi: 10.1016/j.chemosphere.2009.02.007

    [38]

    Yu V F, Kravtsov D A, Belov S L, et al. Experimental studies of efficient sensing fluorescence radiation bands to detect oil and petroleum product spills[J]. Journal of Physics: Conference Series, 2019, 1399(5): 055037. http://www.researchgate.net/publication/337764166_Experimental_studies_of_efficient_sensing_fluorescence_radiation_bands_to_detect_oil_and_petroleum_product_spills/download

    [39]

    Fedotov Y V, Belov M L, Kravtsov D A, et al. Laser fluorescence method for detecting oil pipeline leaks at a wavelength of 355nm[J]. Journal of Optical Technology, 2019, 86(2): 81-85. doi: 10.1364/JOT.86.000081

    [40]

    谷艳红, 左兆陆, 张振振, 等. 土壤石油烃总量三维荧光光谱定量分析方法研究[J]. 中国光学, 2020, 13(4): 852-865. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202004026.htm

    Gu Y H, Zuo Z L, Zhang Z Z, et al. Algorithmic study of total petroleum hydrocarbons in contaminated soil by three-dimensional excitation-emission matrix fluorescence spectroscopy[J]. Chinese Optics, 2020, 13(4): 852-865. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202004026.htm

    [41]

    李静. 荧光法测定海洋生物体中石油烃[J]. 生物化工, 2019, 5(5): 107-109. doi: 10.3969/j.issn.2096-0387.2019.05.030

    Li J. Determination of petroleum hydrocarbons in marine organisms by fluorescence method[J]. Biological Chemical Engineering, 2019, 5(5): 107-109. doi: 10.3969/j.issn.2096-0387.2019.05.030

    [42]

    赵江华, 李忠煜, 何峻, 等. 加速溶剂萃取技术在油气化探样品稠环芳烃测定前处理中的应用[J]. 岩矿测试, 2013, 32(5): 791-795. doi: 10.3969/j.issn.0254-5357.2013.05.019 http://www.ykcs.ac.cn/article/id/ef1e9d2c-49ed-4bcd-9b16-e0cd8a55e0e3

    Zhao J H, Li Z Y, He J, et al. Applications of accelerated solvent extraction in preparation of polycyclic aromatic hydrocarbons in oil and gas geochemical exploration samples[J]. Rock and Mineral Analysis, 2013, 32(5): 791-795. doi: 10.3969/j.issn.0254-5357.2013.05.019 http://www.ykcs.ac.cn/article/id/ef1e9d2c-49ed-4bcd-9b16-e0cd8a55e0e3

    [43]

    佟玲, 田芹, 杨志鹏, 等. 沉积物中14种典型人工合成麝香加速溶剂萃取-气相色谱-串联质谱快速分析方法研究[J]. 岩矿测试, 2020, 39(4): 587-596. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906240089

    Tong L, Tian Q, Yang Z P, et al. Research on the determination of 14 synthetic musks in sediment samples by gas chromatography-tandem mass spectrometry with accelerated solvent extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 587-596. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906240089

    [44]

    李忠煜, 李艳广, 黎卫亮, 等. 衍生化气相色谱质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239-249. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202007080101

    Li Z Y, Li Y G, Li W L, et al. Determination of 19 phenolic pollutants in reclaimed land samples by derivation gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 239-249. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202007080101

    [45]

    卢飞龙. 油污土壤中石油烃含量测定方法探究[J]. 云南化工, 2019, 46(6): 122-123. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201906049.htm

    Lu F L. Study on the determination method of petroleum hydrocarbon content in oil-polluted soil[J]. Yunnan Chemical Technology, 2019, 46(6): 122-123. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201906049.htm

  • 加载中

(5)

计量
  • 文章访问数:  1858
  • PDF下载数:  83
  • 施引文献:  0
出版历程
收稿日期:  2020-11-20
修回日期:  2021-03-25
录用日期:  2021-05-04
刊出日期:  2021-05-28

目录