Determination of 44 Organic Pollutants in Groundwater by Gas Chromatography-Triple Quadrupole Mass Spectrometry
-
摘要:
地下水中有机氯、多环芳烃、邻苯二甲酸酯等半挥发性有机污染物对生态环境和人体健康带来潜在威胁,开发高效、准确、快速的检测方法具有现实意义。通过液液萃取、固相萃取等方式将水中有机污染物分类萃取,利用气相色谱、气相色谱-质谱、液相色谱-质谱等方法测定,不能在满足低检出限的同时测定多种类别有机污染物。本文建立了一种改进的QuECHERS方法,即在水样中加入少量有机溶剂振荡后直接取有机相,无需净化,利用灵敏度更高的气相色谱-三重四极杆质谱仪多反应监测模式(MRM)进行定性、内标法定量,实现了44种有机污染物的同时测定。实验优化了质谱条件,对比了不同溶剂的提取效果以及传统方法和QuECHERS的优缺点。结果表明:44种有机物在1~200μg/L范围内线性关系良好,各有机物的检出限和回收率均满足要求。本方法具有前处理简单、检出限低、邻苯二甲酸酯类本底低、多类有机物同时测定等优点,可应用于地下水中痕量有机物的测定和评估。
-
关键词:
- 地下水 /
- 有机污染物 /
- QuECHERS /
- 气相色谱-三重四极杆质谱法
Abstract:BACKGROUND Organic pollutants such as organochlorine, polycyclic aromatic hydrocarbons and phthalate in groundwater are potential threats to the ecological environment and human health. The development of efficient, accurate and rapid detection methods has practical significance. The organic pollutants in water are extracted by liquid-liquid extraction and solid-phase extraction, for example, and are determined by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. It is not possible to measure multiple types of organic pollutants with low detection limits.
OBJECTIVES To establish a rapid and accurate method for simultaneous determination of multiple semi-volatile organic compounds.
METHODS An improved QuECHERS method was proposed to pretreat the sample. The organic phase was taken directly from the water sample after a small amount of organic solvent was added to the water sample without purification. Multi-reaction monitoring mode (MRM) of triple quadrupole mass spectrometer was used for qualitative analysis and internal standard method for quantitative analysis. The improved method achieved the simultaneous determination of 44 organic pollutants. The conditions of mass spectrometry were optimized, the extraction effects of different solvents were compared, and the advantages and disadvantages of traditional methods and QuECHERS were compared.
RESULTS The results showed that the linear relationship of 44 organic compounds was good in the concentration range of 1-200μg/L, and the detection limit and recovery of each organic compound met the requirements.
CONCLUSIONS The method has the advantages of simple pretreatment, high sensitivity, low background of phthalate and simultaneous determination of multiple types of organics and can be effectively applied to the determination and evaluation of trace organic matter in groundwater.
-
-
表 1 多反应监测模式(MRM)下44种有机物质谱分析条件
Table 1. Mass spectrometric measurement conditions of 44 organic compounds in multi-reaction monitoring mode (MRM)
序号 化合物 保留时间
(min)内标 定量离子对
(m/z)定性离子对
(m/z)定量离子对碰撞电压(eV) 定性离子对碰撞电压(eV) 1 萘 4.435 萘-d8 128.1/ 102.1 128.1/78.1 20 20 2 敌敌畏 4.651 萘-d8 109.0/79.0 144.9/109.0 10 10 3 2,6-二硝基甲苯 5.848 萘-d8 165.0/63.0 165.0/148.1 15 25 4 苊烯 5.886 萘-d8 152.1/126.0 152.1/102.1 30 30 5 苊 6.102 萘-d8 153.1/77.0 153.1/127.1 30 45 6 2,4-二硝基甲苯 6.324 萘-d8 165.0/63.0 165.0/119.0 5 15 7 芴 6.764 萘-d8 166.1/165.1 165.1/164.1 15 20 8 α-666 7.606 萘-d8 216.9/181.0 180.9/145.0 5 15 9 六氯苯 7.741 萘-d8 283.8/213.9 283.8/248.8 15 30 10 克百威 7.793 菲-d10 149.1/77.1 149.1/121.1 10 5 11 β-666 7.987 菲-d10 181.0/145.0 216.9/181.1 5 5 12 γ-666 8.11 菲-d10 181.0/145.0 216.9/181.1 5 5 13 菲 8.304 菲-d10 178.2/152.1 89.0/63.0 25 10 14 蒽 8.379 菲-d10 178.1/152.1 178.0/151.1 30 25 15 δ-666 8.462 菲-d10 181.1/145.1 217.0/181.1 5 5 16 百菌清 8.539 菲-d10 265.9/133.0 265.9/230.9 20 30 17 2, 4, 4'-三氯联苯 8.994 菲-d10 256.0/186.0 186.0/151.0 25 25 18 甲基对硫磷 9.093 菲-d10 262.9/109.0 125.0/79.0 12 5 19 七氯 9.287 菲-d10 271.7/236.9 273.7/236.9 15 15 20 2, 2', 5, 5'-四氯联苯 9.557 菲-d10 289.9/219.9 255.0/220.0 25 25 21 马拉硫磷 9.683 菲-d10 126.9/99.0 157.8/125.0 15 5 22 毒死蜱 9.900 菲-d10 196.9/169.0 198.9/171.0 15 15 23 荧蒽 10.664 菲-d10 201.1/200.1 202.1/152.1 30 30 24 2, 2', 4, 5, 5'-五氯联苯 11.061 菲-d10 253.9/184.0 325.9/253.9 30 30 25 芘 11.129 菲-d10 201.1/200.0 200.1/150.0 15 25 26 p, p'-DDE 11.557 菲-d10 246.1/176.2 315.8/246.0 15 15 27 2, 3', 4, 4', 5-五氯联苯 12.158 菲-d10 325.9/255.9 325.9/253.9 30 30 28 p, p'-DDD 12.299 菲-d10 237.0/165.1 237.0/200.1 15 25 29 o, p'-DDT 12.373 菲-d10 237.0/165.2 235.0/199.1 20 15 30 2, 2', 4, 4', 5, 5'-六氯联苯 12.545 菲-d10 359.9/289.9 287.9/217.9 25 25 31 p, p'-DDE 12.959 菲-d10 235.0/165.2 235.0/199.2 20 15 32 2, 2', 3, 4, 4', 5'-六氯联苯 13.042 菲-d10 359.9/289.9 359.9/324.9 15 30 33 苯并[a]蒽 13.847 苝-d12 228.1/226.1 114.0/101.1 30 35 34 䓛 13.934 苝-d12 228.1/226.1 113.1/112.1 30 40 35 2, 2', 3, 4, 4', 5, 5'-七氯联苯 14.212 苝-d12 393.8/323.8 393.8/358.8 30 15 36 邻苯二甲酸2-(乙基己基)酯 14.321 苝-d12 149.0/65.0 149.0/93.0 5 20 37 2, 2', 3, 3', 4, 4', 5, 5'-八氯联苯 15.809 苝-d12 427.8/357.8 427.8/392.8 15 15 38 苯并[b]荧蒽 16.213 苝-d12 252.1/250.1 252.1/226.1 35 30 39 苯并[k]荧蒽 16.265 苝-d12 252.1/250.1 252.1/226.1 30 30 40 2, 2', 3, 3', 4, 4', 5, 5', 6-九氯联苯 16.452 苝-d12 461.8/391.7 463.8/428.7 15 30 41 苯并[a]芘 16.851 苝-d12 252.1/250.1 112.0/111.1 35 10 42 茚并[1, 2, 3-cd]芘 19.136 苝-d12 276.1/274.1 137.0/136.0 40 10 43 二苯并[a, h]蒽 19.142 苝-d12 278.1/276.1 125.0/124.1 35 10 44 苯并[g, h, i]苝 19.628 苝-d12 276.1/274.1 137.0/136.0 45 15 表 2 采用改进QuECHERS方法的检出限、回收率和相对标准偏差
Table 2. Detection limit, recovery rate and relative standard deviation of the improved QuECHERS method
序号 化合物 检出限
(μg/L)Ⅰ类水毒理学指标
(μg/L)回收率
(%)RSD
(%)1 萘 0.07 1.0 86.6~115.3 3.3~6.8 2 敌敌畏 0.02 0.05 75.4~121.6 2.8~4.8 3 2,6-二硝基甲苯 0.07 0.10 89.5~110.4 2.6~5.9 4 苊烯 0.01 - 84.4~108.6 1.7~4.6 5 苊 0.01 - 79.2~100.8 2.3~6.4 6 2,4-二硝基甲苯 0.10 0.10 84.4~104.0 3.2~6.4 7 芴 0.01 - 78.6~101.5 2.1~5.8 8 α-666 0.01 0.01(666总量) 80.0~112.4 3.9~10.5 9 六氯苯 0.01 0.01 87.6~104.7 2.8~6.0 10 克百威 0.04 0.05 86.3~110.3 3.8~9.4 11 β-666 0.01 0.01(666总量) 88.1~108.8 4.1~9.7 12 γ-666 0.01 0.01 83.5~114.4 4.6~10.2 13 菲 0.01 - 82.6~115.1 2.7~5.8 14 蒽 0.02 1.0 86.9~99.4 3.3~6.1 15 δ-666 0.01 0.01(666总量) 84.2~104.8 3.7~8.7 16 百菌清 0.01 0.05 82.4~104.6 6.1~10.2 17 2, 4, 4'-三氯联苯 0.01 0.05(多氯联苯总量) 81.8~96.7 1.8~4.1 18 甲基对硫磷 0.02 0.05 78.3~110.3 2.4~4.7 19 七氯 0.01 0.01 86.1~103.7 3.2~6.2 20 2, 2', 5, 5'-四氯联苯 0.01 0.05(多氯联苯总量) 82.3~103.4 2.3~5.0 21 马拉硫磷 0.02 0.05 80.6~109.7 4.2~7.2 22 毒死蜱 0.02 0.05 85.6~1016 4.4~8.3 23 荧蒽 0.02 1.0 79.5~112.5 3.7~6.9 24 2, 2', 4, 5, 5'-五氯联苯 0.01 0.05(多氯联苯总量) 84.5~108.0 2.4~6.3 25 芘 0.01 - 81.2~114.4 2.0~5.5 26 p, p'-DDE 0.01 0.01(滴滴涕总量) 81.6~104.3 3.6~9.4 27 2, 3', 4, 4', 5-五氯联苯 0.01 0.05(多氯联苯总量) 89.8~98.7 2.5~5.1 28 p, p'-DDD 0.01 0.01(滴滴涕总量) 81.5~107.9 6.6~10.2 29 o, p'-DDT 0.01 0.01(滴滴涕总量) 79.8~114.1 4.1~9.6 30 2, 2', 4, 4', 5, 5'-六氯联苯 0.01 0.05(多氯联苯总量) 83.5~108.1 2.5~5.3 31 p, p'-DDT 0.01 0.01(滴滴涕总量) 81.4~111.5 5.1~7.8 32 2, 2', 3, 4, 4', 5'-六氯联苯 0.01 0.05(多氯联苯总量) 91.4~105.3 1.9~4.2 33 苯并[a]蒽 0.01 - 84.2~107.4 2.6~6.8 34 䓛 0.01 - 86.4~98.7 3.4~7.4 35 2, 2', 3, 4, 4', 5, 5'-七氯联苯 0.01 0.05(多氯联苯总量) 87.9~99.4 2.3~6.5 36 邻苯二甲酸2-(乙基己基)酯 0.07 3.0 88.2~120.7 5.8~12.7 37 2, 2', 3, 3', 4, 4', 5, 5'-八氯联苯 0.01 0.05(多氯联苯总量) 90.1~108.7 2.0~6.3 38 苯并[b]荧蒽 0.02 0.10 86.9~111.4 4.1~6.3 39 苯并[k]荧蒽 0.01 - 81.9~102.5 5.2~7.5 40 2, 2', 3, 3', 4, 4', 5, 5', 6-九氯联苯 0.01 0.05(多氯联苯总量) 92.8~110.7 3.0~5.6 41 苯并[a]芘 0.001 0.002 86.4~104.8 2.5~6.9 42 茚并[1, 2, 3-cd]芘 0.01 - 82.4~107.3 4.1~9.5 43 二苯并[a, h]蒽 0.01 - 83.6~105.1 5.2~10.6 44 苯并[g, h, i]苝 0.01 - 84.1~114.2 3.7~8.4 表 3 本文方法和液液萃取方法优缺点对比
Table 3. Comparison of advantages and disadvantages between the improved QuECHERS method and liquid-liquid extraction method
方法对比项目 液液萃取法 本文方法 前处理耗费时间 长 短 有机试剂消耗 大(60~100mL) 小(约10mL) 操作步骤 复杂(萃取、旋蒸、氮吹、定容) 简单(振荡、抽取) 器皿消耗 多(分液漏斗、具塞三角瓶、
旋蒸瓶、K-D瓶)少(具塞三角瓶) 回收率 高 高 -
[1] Zhu K, Liu Y C, Sun Q, et al. Determination of volatile fuel oxygenates in water by gas chromatography-triple quadrupole mass spectrometry: Effect of automated sample preparation techniques[J]. Water, 2020, 12: 2266-2276. doi: 10.3390/w12082266
[2] 孙英, 周金龙, 曾妍妍, 等. 新疆库尔勒市平原区地下水有机污染评价[J]. 环境化学, 2018, 37(7): 1501-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201807006.htm
Sun Y, Zhou J L, Zeng Y Y, et al. Evaluation of groundwater organic pollution in the plain area of Korla city, Xinjiang[J]. Environmental Chemistry, 2018, 37(7): 1501-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201807006.htm
[3] 朱帅, 沈亚婷, 贾静, 等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试, 2018, 37(5): 586-606. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201603300054
Zhu S, Shen Y T, Jia J, et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201603300054
[4] Kuzukiran O, Yurdakok-Dikmen B, Totan F E, et al. Analytical method development and validation for some persistent organic pollutants in water and sediments by gas chromatography mass spectrometry[J]. International Journal of Environmental Research, 2016, 10(3): 401-410. http://www.researchgate.net/publication/308792225_Analytical_Method_Development_and_Validation_for_Some_Persistent_Organic_Pollutants_in_water_and_Sediments_by_Gas_Chromatography_Mass_Spectrometry
[5] Bogdanovic D S, Anđelkovi D H, Kosti I S, et al. The effects of temperature and ultrasound on the migration of di-(2-ethylhexyl) phthalate from plastic packaging into dairy products[J]. Bulgarian Chemical Communi-cations, 2019, 51(2): 242-248. doi: 10.34049/bcc.51.2.5027
[6] 朱丹尼, 邹胜章, 周长松, 等. 岩溶高原地区农业地膜中邻苯二甲酸二乙基己酯的释放及其对覆膜土壤的影响[J]. 岩矿测试, 2019, 38(3): 297-304. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201808150095
Zhu D N, Zou S Z, Zhou C S, et, al. Release of di-(2-ethylhexyl) phthalate from agricultural plastic film in the Karst plateau area and its effect of film-covered soil[J]. Rock and Mineral Analysis, 2019, 38(3): 297-304. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201808150095
[7] 王兴磊, 李芳, 刘云庆, 等. 快速溶剂萃取/气相色谱-质谱联用法测定土壤中15种邻苯二甲酸酯类增塑剂[J]. 环境化学, 2018, 37(5): 1157-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201805027.htm
Wang X L, Li F, Liu Y Q, et al. Determination of 15 phthalate esters residues in soil by accelerated solvent extraction/gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2018, 37(5): 1157-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201805027.htm
[8] Virginia P F, Lucia M R, Pierpaolo T, et al. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry[J]. Analytica Chimica Acta, 2017, 983: 9-41. doi: 10.1016/j.aca.2017.06.029
[9] 郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留[J]. 岩矿测试, 2014, 33(3): 411-417. http://www.ykcs.ac.cn/article/id/77935fc3-6812-484c-8002-d3aaaf02d772
Guo X C, Rao Z, Gao R. Determination of 24 pesticides including pyrethroids, organochlorines and chlorothalonil in underground water by gas chromatography[J]. Rock and Mineral Analysis, 2014, 33(3): 411-417. http://www.ykcs.ac.cn/article/id/77935fc3-6812-484c-8002-d3aaaf02d772
[10] 王正全, 崔云云, 陈力, 等. 气相色谱质谱大体积进样法检测环境水和饮用水中37种农药和环境激素的残留[J]. 环境化学, 2018, 37(6): 1362-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806021.htm
Wang Z Q, Cun Y Y, Chen L, et al. Determination of 37 pesticides and environmental hormones residues in environmental water and drinking water by large volume injection-gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2018, 37(6): 1362-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806021.htm
[11] 范磊, 黄素华, 何日安, 等. 气相色谱-三重四极杆质谱法测定水中持久性有机氯污染物[J]. 中国环境监测, 2013, 29(6): 139-143. doi: 10.3969/j.issn.1002-6002.2013.06.027
Fan L, Huang S H, He R A, et al. Determination of persistent organochlorine pollutants in water by gas chromatography coupled to tandem quadrupole mass spectrometry[J]. Environmental Monitoring in China, 2013, 29(6): 139-143. doi: 10.3969/j.issn.1002-6002.2013.06.027
[12] Kwon Y S, Choi S G, Lee S M, et al. Gas chromatography-triple quadrupole mass spectrometry analysis of dioxins in soil[J]. Acta Chromatographica, 2019, 31(3): 235-240. doi: 10.1556/1326.2019.00422
[13] Li J X, He Q P, Wu L J, et al. Ultrasensitive speciation analysis of mercury in waters by headspace solid-phase microextraction coupled with gas chromatography-triple quadrupole mass spectrometry[J]. Microchemical Journal, 2019, doi:10.1016/j.microc.2019.104459.
[14] Mohammad A A S, Ali M A, Khaled M M. A gas chromatography-triple quadrupole mass spectrometry assay for the quantification of opiates in human blood samples[J]. Journal of Analytical Toxicology, 2019, 43: 188-195. doi: 10.1093/jat/bky077
[15] 郭蓉, 孙谦, 赵宇鑫, 等. 三重四极杆气质联用法测定熟肉及其制品中多组分β-受体激动剂残留量[J]. 环境化学, 2019, 38(1): 231-234. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201901026.htm
Guo R, Sun Q, Zhou Y X, et al. Determination of muti-component beta-agonist residues in meat and its products by triple quadrupole gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2019, 38(1): 231-234. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201901026.htm
[16] 梁大鹏, 方媛萍, 刘文杰, 等. 电喷雾萃取电离质谱法直接检测环境水样中的邻苯二甲酸二(2-乙基己基)酯[J]. 分析化学, 2018, 46(6): 883-888. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201806012.htm
Liang D P, Fang Y P, Liu W J, et al. Direct detection of di-2-ethylhexy phthalate in environmental water sample based on extractive electrospray ionization mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 883-888. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201806012.htm
[17] 潘玉虎, 毕兴, 简永远. 气相色谱法分析水质中有机磷农药的研究[J]. 环境与发展, 2020(3): 108-109. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB202003065.htm
Pan Y H, Bi X, Jian Y Y, et al. Study on analysis of organophosphorus pesticides in water by gas chromato-graphy[J]. Environmental and Development, 2020(3): 108-109. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB202003065.htm
[18] 王园园, 宋晓明, 温玉娟, 等. 固相萃取-衍生化-气相色谱-质谱联用测定不同水体中类固醇雌激素方法研究[J]. 岩矿测试, 2017, 36(5): 519-528. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705310092
Wang Y Y, Song X M, Wen Y J, et al. Determination of steroid estrogens in different water samples using SPE-derivatization coupled with GC-MS[J]. Rock and Mineral Analysis, 2017, 36(5): 519-528. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705310092
[19] 张少倩. 固相萃取-气相色谱法测定水中邻苯二甲酸酯类化合物[J]. 化学工程师, 2019(12): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC201912009.htm
Zhang S Q. Determination of phthalates esters in water by SPE coupled with gas chromatography[J]. Chemical Engineer, 2019(12): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC201912009.htm
[20] 黄合田, 谢双, 涂祥婷, 等. Sin-QuEChERS结合超高效液相色谱-高分辨质谱法快速筛查绿茶中农药及代谢物残留[J]. 分析化学, 2020, 48(3): 423-430. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202003017.htm
Huang H T, Xie S, Tu X T, et al. Rapid screening of pesticide and metabolites residues in green tea by Sin-QuEChERS with ultra performance liquid chromatography-high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(3): 423-430. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202003017.htm
[21] 杨沈力. QuEChERS-气相色谱法测定水中7种指示性多氯联苯[J]. 化学工程师, 2019(5): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC201905012.htm
Yang S L. Determination of 7 PCBs in water using QuEChERS extraction and gas chromatography[J]. Chemical Engineer, 2019(5): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC201905012.htm
[22] 张凯, 秦宇, 卞华, 等. QuEChERS-超高效液相色谱-串联质谱法检测羊肉中8种抗真菌药[J]. 色谱, 2018, 36(10): 999-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201810008.htm
Zhang K, Qin Y, Bian H, et al. Determination of eight antifungal drugs in mutton by QuEChERS coupled with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2018, 36(10): 999-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201810008.htm
[23] 杜小强, 王玉, 周劝娥, 等. QuEChERS-气相色谱法同时测定水果蔬菜中8种有机磷农药残留[J]. 中国食品药品监管, 2020(6): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YPJD202006009.htm
Du X Q, Wang Y, Zhou Q E, et al. Determination of 8 organophosphorus pesticide residues in fruits and vegetables by QuEChERS-gas chromatography[J]. China Food & Administration Magazine, 2020(6): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YPJD202006009.htm
[24] 林涛, 魏茂琼, 余积东, 等. QuEChERS-超高效液相色谱-三重四极杆质谱测定野生食用菌中尼古丁[J]. 色谱, 2019, 37(5): 512-517. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201905008.htm
Lin T, Wei M Q, Yu J D, et al. Determination of nicotine in wild edible fungi by QuEChERS-ultra performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2019, 37(5): 512-517. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201905008.htm
[25] 司露露, 梁杨琳, 吕春秋, 等. QuEChERS-气相色谱-串联质谱法和高效液相色谱-串联质谱法快速检测蔬菜中267种香港规例中的农药残留量[J]. 食品安全质量检测学报, 2021, 12(1): 122-136.
Si L L, Liang Y L, Lv C Q, et al. Rapid determination of 267 kinds of Hong Kong regulatory pesticide residues in vegetables by QuEChERS combined with gas chromatography-tandem mass spectrometry and high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality, 2021, 12(1): 122-136.
[26] 刘小波, 王乐力. QuEChERS-气相色谱法测定地表水中氯丹和硫丹[J]. 化学分析计量, 2019, 28(6): 78-81. doi: 10.3969/j.issn.1008-6145.2019.06.018
Liu X B, Wang L L. Determination of endosulfan and chlordane in surface water by gas chromatography coupled with QuEChERS[J]. Chemical Analysis and Meterage, 2019, 28(6): 78-81. doi: 10.3969/j.issn.1008-6145.2019.06.018
[27] 徐芷怡, 陈梦婷, 侯锡爱, 等. QuEChERS-高效液相色谱-串联质谱法同时测定芝麻油中7种农药残留[J]. 分析化学, 2020, 48(7): 928-936. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202007016.htm
Xu Z Y, Chen M T, Hou X A, et al. Simultaneous determination of seven pesticide residues in sesame oil using QuEChERS-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(7): 928-936. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202007016.htm
[28] 金婷, 孙欣, 李卓瓦, 等. QuEChERS-气相色谱-三重四极杆质谱法检测石榴中的19种含磷农药残留[J]. 食品与发酵工业, 2019, 45(3): 275-280. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201903041.htm
Jin T, Sun X, Li Z W, et al. Determination of 19 organophosphorus pesticide residues in pomegranates using QiEChERS coupled with gas chromatography-triple quadrupole mass spectrometry[J]. Food and Fermentation Industries, 2019, 45(3): 275-280. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201903041.htm
[29] Turan N B, Maltepe E, Chormey D S, et al. Determination of fenazaquin in water and tomato matrices by GC-MS after a combined QuEChERS and switchable solvent liquid phase microextraction[J]. Environmental Monitoring and Assessment, 2020, 192(2): 72-80. doi: 10.1007/s10661-019-8061-4
[30] 邵林, 李福敏, 孙钢, 等. 气相色谱-三重四极杆串联质谱结合QuEChERS测定三七中有机磷农药残留[J]. 分析试验室, 2020, 39(4): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202004017.htm
Shao L, Li F M, Sun G, et al. Simultaneous determination of organophosphorus pesticide residues in panaxnoto-ginseng by gas chromatography-triple quadrupole tandem mass spectrometry with QuEChERS[J]. Chinese Journal of Analysis Laboratory, 2020, 39(4): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202004017.htm
[31] Fanning T. Quantitative analysis of benzodiazepines in whole blood by QuEChERS and LC-MS/MS[J]. LC-GC North America, 2018, 36(9): 713-714.
[32] Reichert B, Nunes M G P, Pizzutti I R, et al. Pesticide residues determination in common bean using an optimized QuEChERS approach followed by solvent exchange and GC-MS/MS analysis[J]. Journal of the Science of Food & Agriculture, 2020, 100(6): 2425-2434.
[33] 刘志荣, 张明童, 谢楠, 等. 改进QuEChERS-超高效液相色谱-串联质谱法同时测定甘草种86种农药残留[J]. 质谱学报, 2020, 41(6): 624-636. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202006011.htm
Liu Z R, Zhang M T, Xie N, et al. Simultaneous determination of 86 pesticide residues in Glycyrrhiza uralensis by improved QuEChERS-UPLC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(6): 624-636. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202006011.htm
[34] 孔祥一, 庄丽丽, 方恩华, 等. QuEChERS-同位素稀释-气相色谱-串联质谱法测定动物源性食品种9种N-亚硝胺类化合物[J]. 色谱, 2021, 39(1): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201610016.htm
Kong X Y, Zhuang L L, Fang E H, et al. Determination of nine N-nitrosamines in animal derived foods by QuEChERS-isotope dilution combined with gas chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2021, 39(1): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201610016.htm
[35] 王敏, 韩芳, 张蕾, 等. 高效液相色谱-串联质谱同位素内标法测定茶叶中25种有机磷农药残留[J]. 分析试验室, 2013, 32(4): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201304019.htm
Wang M, Han F, Zhang L, et al. Determination of 25 organophosphorus pesticide residues in tea by isotope-labelled internal standard quantitation and high performance liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2013, 32(4): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201304019.htm
[36] 江丰, 余婷婷, 李珉, 等. 加速溶剂萃取同步净化-同位素内标-气相色谱-高分辨质谱测定水产品中32种多氯联苯[J]. 色谱, 2020, 38(7): 853-860. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202007017.htm
Jiang F, Yu T T, Li M, et al. Determination of 32 polychlorinated biphenyls in aquatic products by gas chromatography-high-resolution mass spectrometry with accelerated solvent extraction-purification simultaneously coupled to isotope internal standard method[J]. Chinese Journal of Chromatography, 2020, 38(7): 853-860. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202007017.htm
[37] 王建国, 万丽葵, 魏玉霞, 等. 气相色谱-串联质谱同位素内标法测定中草药中124种农药及其代谢物残留[J]. 分析试验室, 2017, 36(2): 220-225. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201702022.htm
Wang J G, Wan L K, Wei Y X, et al. Determination of 124 pesticide residues in Chinese medicinal herbs by GC-MS-MS with isotope internal standard[J]. Chinese Journal of Analysis Laboratory, 2017, 36(2): 220-225. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201702022.htm
[38] 林麒, 刘丽菁, 陈华峰, 等. 稳定同位素内标-全自动固相膜萃取-气相色谱质谱联用测定水中多氯联苯[J]. 卫生研究, 2020, 49(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ202001018.htm
Lin Q, Liu L J, Chen H F, et al. Determination of polychlorinated biphenyls in water by stable isotope dilution through automatic solid-phase extraction membrane coupled to gas chromatography-mass spectrometry[J]. Journal of Hygiene Research, 2020, 49(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ202001018.htm
-