Composition and Spatial Distribution Characteristics of Hydrogen and Oxygen Isotopes of Surface Water in Altay, Xinjiang Province
-
摘要:
氢氧同位素可以识别水体来源,示踪水循环,自20世纪50年代以来已被广泛应用于水文地球化学领域。已有学者开展了新疆大气降水及部分河流湖泊的稳定同位素研究,而关于阿勒泰地区大气降水之外的地表水体稳定同位素研究尚需加强。本文采用液体水激光同位素分析法开展了新疆阿勒泰地区地表河水、湖泊、山泉水、雪水、锂矿坑裂隙水五类水体的氢氧同位素组成研究。结果表明:阿勒泰地区各种类型水体氢氧同位素组成差异明显,地表河流的δ18O及δD值变化范围分别为-15.4‰~-11.5‰及-114‰~-100‰,氘过量参数(d值)变化范围为-12.4‰~12.4‰;乌伦古湖湖水的δ18O及δD值均远高于地表河流,平均值分别为-5.95‰及-78.5‰,氘过量参数远低于地表河流,均值为-30.9‰。地表河流与全球及乌鲁木齐大气降水线相比差异很大,河水除了大气降水外还受到冰川融水的补给,且在水循环过程中经历了蒸发分馏作用,地表河流之间的氢氧同位素组成差异主要受水体补给来源及蒸发程度强弱的控制。由于氢氧同位素温度效应、纬度效应等的存在,阿勒泰地区水体δD及δ18O与水温(T)、总溶解性固体(TDS)及主要离子Na+、K+、Ca2+、Cl-、SO42-摩尔浓度呈显著正相关关系,而与采样点纬度及溶解氧含量(DO)呈显著负相关关系(P < 0.05,n=32)。本研究获得的氢氧同位素组成特征为阿勒泰地区各类型水体稳定同位素研究提供了基础数据。
Abstract:BACKGROUND Hydrogen and oxygen isotopes can be used to identify water sources and trace water cycles and have been used in hydrogeochemistry since the 1950s. Studies have been carried out on stable isotopes of atmospheric precipitation, rivers and lakes in Xinjiang.However, the research on hydrogen and oxygen isotopes of waters in Altay is scarce, except for atmospheric precipitation. Researchers found that the rainfall in the Altai Mountains during the warm season (April-October) increased significantly from 1959 to 2014. Due to this background of climate condition changes, it is meaningful to study the hydrogen and oxygen isotope compositions of various types of water bodies in the Altay region, at the southern foot of the Altai Mountains.
OBJECTIVES To obtain the basic data of hydrogen and oxygen isotopic composition of water in Altay and reveal their spatial distribution characteristics.
METHODS Hydrogen and oxygen isotope compositions of river water, lake water, spring water, snow water, and water from a mine pit in the Altay region of Xinjiang were determined by liquid water laser isotope analyzer (LGR DT100, America). The dissolved oxygen (DO), TDS, T, and pH of the water samples were measured using the German WTW3430 multi-parameter water quality analyzer. The concentrations of Na+, K+, Ca2+, and Mg2+ were analyzed by inductively coupled plasma-optical emission spectrometry (PE8300, PerkinElmer, USA). The concentrations of HCO3- and CO32- were determined by alkali titration method. Cl- and SO42- concentrations were analyzed by ion chromatography method.
RESULTS The results showed that the ranges of δ18O and δD of the waters in the Altay area were from -15.4‰ to -5‰ and from -121‰ to -49‰, respectively. The hydrogen and oxygen isotope content of various types of water in the Altay region were significantly different. The δ18O and δD values of river waters varied from -15.4‰ to -11.5‰ and from -114‰ to -100‰, respectively, and the deuterium excess parameter varied from -12.4‰ to 12.4‰. The δ18O and δD of Ulungur Lake were much higher than those of surface rivers, with an average value of -5.95‰ and -78.5‰, respectively. The deuterium excess parameter of Ulungur Lake was much lower than those of surface rivers, with an average value of -30.9‰. The δ18O value (-14.9‰ and -11.8‰) of groundwater was similar to that of surface rivers, but δD (-114‰ and -121‰) was slightly higher than that of surface rivers, indicating that groundwater was supplied by surface rivers but may be affected by water-rock reactions. The δ18O and δD values of snow water and the water from a mine pit were -11.8‰ and -90‰, -11.6‰ and -106‰, respectively. The fitting lines for hydrogen and oxygen isotopes of the Irtysh River and Ulungur River were δD=1.7297δ18O-83.879 and δD=1.986δ18O-76.5, respectively. Surface rivers were remarkably different from the global and Urumqi atmospheric precipitation lines, indicating that apart from atmospheric precipitation, surface rivers were also recharged by glacier meltwater, and underwent evaporation and isotope fractionation during the water cycle.Due to the temperature and latitude effect of hydrogen and oxygen isotopes, the δD and δ18O showed significant positive correlation relationships with T, TDS, and the molar concentration of major ions such as Na+, K+, Ca2+, Cl-, and SO42-, also showing a significant negative correlation with the latitude of the sampling sites and DO (P < 0.05, n=32).
CONCLUSIONS The hydrogen and oxygen isotope composition characteristics obtained in this study provide basic data for the stable isotope research of various types of water bodies in the Altay area.The precipitation in Altay has increased significantly in recent decades. Due to this background, it is indeed necessary to continue to conduct long-term and in-depth systematic research on the composition of hydrogen and oxygen isotopes in Altay's atmospheric precipitation and other types of water bodies.
-
-
表 1 阿勒泰地区水体氢氧同位素及主要阴阳离子含量
Table 1. δD, δ18O and content of major anion and cation ions in waters, Altay Region
样品编号
Sample ID采样位置
Sampling locationδD
(‰)δ18O
(‰)d
(‰)T
(℃)pH 阴阳离子含量(mg/L)
Concentration of anion and cation ions (mg/L)DO TDS K+ Na+ Ca2+ Mg2+ HCO3- Cl- SO42- 1 喀依尔特河(支流1-1)
Kaylt River (Tributary 1-1)-106 -14.8 12.4 3.2 8.296 9.95 100.3 0.42 2.03 10.5 1.51 38.4 1.19 4 2 库依尔特河(支流1-2)
Kuilt River (Tributary 1-2)-100 -11.5 -8 7.2 8.144 8.32 90.2 0.71 3.9 13.5 1.66 38.1 4.76 8.01 3 胡二茨河(支流1)
Huzitz River (Tributary 1)-102 -13.6 6.8 9 8.436 8.83 166.1 0.75 4.35 19.7 2.16 65.6 2.21 5.45 4 无名支流(支流2)
Unnamed River (Tributary 3)-114 -12.7 -12.4 7.7 7.975 8.8 2900 9.36 395 209 57.7 316 261 855 5 额尔齐斯河Irtysh River -103 -13.6 5.8 12 8.736 9.45 108.6 0.73 4.25 13.3 1.89 43.4 2.55 9.04 6 额尔齐斯河Irtysh River -103 -12.9 0.2 15 8.421 8.97 122.1 0.7 4.32 15.9 1.88 43.9 3.06 17.5 7 喀拉—额尔齐斯河(支流3)
Kara Irtysh River (Tributary 3)-103 -13.1 1.8 6 8.049 8.83 109.8 1.08 4.45 13.9 2.54 47.5 2.04 8.69 8 喀拉—额尔齐斯河(支流3)
Kara Irtysh River (Tributary 3)-105 -13.2 0.6 7.1 8.659 8.92 140.8 0.64 3.45 13.1 2.87 49.2 1.36 3.55 9 额尔齐斯河Irtysh River -112 -15.4 11.2 13.1 7.93 8.52 113.3 0.67 3.87 15 1.83 38.1 4.25 17.2 10 额尔齐斯河Irtysh River -111 -15.3 11.4 13.5 8.745 8.45 135.3 0.74 4.99 17.9 2.18 41 3.4 20.3 11 额尔齐斯河Irtysh River -110 -14.4 5.2 12.3 8.621 8.59 169.1 0.82 6.86 19.8 2.62 47.8 5.95 20.5 12 额尔齐斯河Irtysh River -107 -12.9 -3.8 10 7.814 9.16 183.1 0.9 8.4 21.8 3.11 54.5 6.29 28.8 13 克兰河(支流4)
Crane River (Tributary 4)-108 -14.6 8.8 9.9 7.792 8.41 105.2 0.66 3.42 14 1.94 49.8 2.21 8.13 14 额尔齐斯河Irtysh River -107 -14.3 7.4 10.3 8.094 9.27 593 2.53 48.3 56.1 11 136 20.9 158 15 布尔津河(支流5)
Burqin River (Tributary 5)-108 -14.2 5.6 8.7 8.229 8.84 86.7 0.72 2.44 11.4 1.89 11.7 2.21 8.35 16 额尔齐斯河Irtysh River -107 -13.3 -0.6 12.6 8.075 8.03 522 2.26 42.7 49.1 10.2 126 36.2 111 17 额尔齐斯河Irtysh River -109 -14 3 10.7 7.677 10.4 208 1.2 11.9 21.4 4.24 72.7 3.4 34.3 18 哈巴河(支流6)
Haba River (Tributary 6)-110 -14.2 3.6 12.5 7.645 9.35 124.8 0.53 3.04 17.7 3.07 68 5.95 8.05 19 额尔齐斯河Irtysh River -109 -12.2 -11.4 13.6 7.792 8.64 628 1.76 26.5 36.8 11.4 99.6 16.2 97.3 20 别列则克河(支流7)
Belzek River (Tributary 7)-107 -12.7 -5.4 12.4 7.785 9.01 227 1.37 6.4 33 5.18 110 3.4 18.9 21 乌伦古湖Ulungur Lake -59 -5 -19 13 8.228 8.71 1979 20.4 309 48.4 40.5 263 231 472 22 乌伦古湖Ulungur Lake -98 -6.9 -42.8 12.5 8.434 8.32 182.1 0.92 8.84 21 3.07 52.7 5.95 25.9 23 乌伦古河Ulungur River -101 -13.1 3.8 10.1 8.195 8.15 655 2.92 52.3 66.9 13.2 161 36.6 123 24 乌伦古河Ulungur River -100 -11.7 -6.4 11.9 8.146 8.6 654 2.9 50.2 68.1 13.1 166 36 140 25 乌伦古河Ulungur River -102 -12.9 1.2 14 8.249 8.35 700 3.05 54.9 71.3 13.8 173 39.6 152 26 乌伦古河Ulungur River -102 -13.2 3.6 14.3 8.205 8.64 605 2.85 48 62 11.8 150 31.8 121 27 乌伦古河Ulungur River -105 -13.3 1.4 10.3 8.123 8.36 448 2.46 27.4 50.4 9.49 135 16.2 88 28 雪水Snow water -90 -11.8 4.4 3.2 7.516 7.86 35.3 0.24 0.46 4.42 0.24 12.9 2.89 6.47 29 矿坑裂隙水
Water from the mine pit-106 -11.6 -13.2 7 8.345 9.96 567 3.04 58.5 43.6 5.66 121 51.5 63.2 30 山泉水1 Spring water 1 -114 -11.8 -19.6 11.7 7.218 8.9 685 2.97 84.1 47 11 218 13.9 138 31 山泉水2 Spring water 2 -121 -14.9 -1.8 10.3 7.929 8.84 1040 7.21 132 77.8 19.5 387 21.8 253 32 艾丁湖Aiding Lake -49 -5.4 -5.8 23.3 8.207 7.35 2049 4.18 288 104 32.4 165 133 608 表 2 前人研究中阿勒泰水体氢氧同位素组成与本研究对比
Table 2. Hydrogen and oxygen isotopes of water in Altay Region in previous studies and this study
样品类型
Sample type采样位置
Sampling location采样时间
Sampling date样品数量
Sample quantityδD
(‰)δ18O
(‰)数据来源
Data source大气降水
Atmospheric precipitation阿勒泰
Altay1998年—2001年
Year 1998 to 2001226 -100.4 -13.8 [26], [27] 雪坑中的雪
Snow in a snow pit俄罗斯Belukha山(阿尔泰山脉)
Belukha Mountains, Russia (Altai Mountains)2000年—2001年,每年1月—4月,10月—12月
January to April, October to December in each year, Year 2000 to 2001/ -98.7 -17.7 [28] 雪芯、冰芯
Snow core, ice core俄罗斯Belukha山(阿尔泰山脉)
Belukha Mountains, Russia (Altai Mountains)1984年—2000年,每年1月—4月,10月—次年2月
January to April, October to December in each year, Year 1984 to 2000/ -100.9 -13.8 [28] 河水
River water阿勒泰
Altay2016年10月
October 201625 -106.04 -13.484 本文
This study湖水
Lake water阿勒泰
Altay2016年10月
October 20163 -68.67 -5.77 本文
This study山泉水
Spring water阿勒泰
Altay2016年10月
October 20162 -117.5 -13.35 本文
This study雪水
Snow water阿勒泰
Altay2016年10月
October 20161 -90 -11.8 本文
This study表 3 氢氧同位素及其他参数相关分析结果
Table 3. Correlation relationships among δD, δ18O and other physicochemical parameters
参数
ParametersδD δ18O 经度
Longitude纬度
LatitudeT pH TDS DO Na+ K+ Ca2+ Mg2+ Cl- HCO3- δ18O 0.840** 经度
Longitude0.019 -0.001 纬度
Latitude-0.634** -0.503** -0.460** T 0.415* 0.382* -0.153 -0.632** pH 0.142 0.029 0.331 -0.240 0.107 TDS 0.431* 0.508** 0.178 -0.532** 0.309 0.201 DO -0.425* -0.366* -0.023 0.418* -0.374* -0.028 -0.234 Na+ 0.488** 0.548** 0.214 -0.524** 0.281 -0.068 0.986** -0.219 K+ 0.470** 0.542** 0.047 -0.224 0.157 -0.028 0.777** -0.079 0.812** Ca2+ 0.114 0.226 0.207 -0.460** 0.226 -0.097 0.896** -0.210 0.833** 0.516** Mg2+ 0.387* 0.469** 0.135 -0.453* 0.264 -0.086 0.990** -0.221 0.976** 0.808** 0.894** Cl- 0.494** 0.550** 0.139 -0.396* 0.196 0.003 0.943** -0.173 0.959** 0.845** 0.777** 0.953** HCO3- 0.081 0.245 0.170 -0.324 0.205 -0.218 0.791** -0.099 0.753** 0.731** 0.784** 0.799** 0.648** SO42- 0.426* 0.479** 0.199 -0.552** 0.307 -0.076 0.990** -0.260 0.982** 0.717** 0.903** 0.979** 0.929** 0.743** 注:“**”表示通过了P=0.01显著性检验;“*”表示通过了P=0.05显著性检验。
Note: “**” indicates passing the significance test of P=0.01; “*” indicates passing the significance test of P=0.05. -
[1] 丁悌平. 氢氧同位素地球化学[M]. 北京: 地质出版社, 1980: 116.
Ding T P. Hydrogen and oxygen isotope geochemistry[M]. Beijing: Geological Publishing House, 1980: 116.
[2] Yi P, Wan C, Jin H, et al. Hydrological insights from hydrogen and oxygen isotopes in source area of the Yellow River, east-northern part of Qinghai-Tibet Plateau[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(1): 131-144. doi: 10.1007/s10967-018-5864-7
[3] Jeelani G, Deshpande R D, Galkowski M, et al. Isotopic composition of daily precipitation along the southern foothills of the Himalayas: Impact of marine and continental sources of atmospheric moisture[J]. Atmospheric Chemistry & Physics, 2018, 18(12): 8789-8805. http://smartsearch.nstl.gov.cn/paper_detail.html?id=eb412d31c674140116d6f480b70f88f0
[4] 刘广山, 黄奕普, 金德秋, 等. 南极雪的氢氧同位素组成[J]. 厦门大学学报(自然科学版), 2001, 40(3): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK200103003.htm
Liu G S, Huang Y P, Jin D Q, et al. Deuterium and 18O contents and distributions in Antarctic snow[J]. Journal of Xiamen University (Natural Science), 2002, 40(3): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK200103003.htm
[5] Dansgaard W. The abundance of O18 in atmospheric water and water vapor[J]. Tellus, 1953, 5(4): 461-469. doi: 10.3402/tellusa.v5i4.8697
[6] 章申, 于维新, 张青莲, 等. 我国西藏南部珠穆朗玛峰地区冰雪水中氘和重氧的分布[J]. 中国科学: 数学, 1973(4): 430-433. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197304006.htm
Zhang S, Yu W X, Zhang Q L, et al. Distribution of deuterium and heavy oxygen in ice and snow waters in the Everest Region of southern Tibet in China[J]. Science China: Mathematics, 1973(4): 430-433. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197304006.htm
[7] 柳鉴容, 宋献方, 袁国富, 等. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22): 3521-3531. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200922015.htm
Liu J R, Song X F, Yuan G F, et al. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2009, 54(22): 3521-3531. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200922015.htm
[8] 高建飞, 丁悌平, 罗续荣, 等. 黄河水氢、氧同位素组成的空间变化特征及其环境意义[J]. 地质学报, 2011, 85(4): 596-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104016.htm
Gao J F, Ding T P, Luo X R, et al. δD and δ18O variations of water in the Yellow River and its environmental significance[J]. Acta Geologica Sinica, 2011, 85(4): 596-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104016.htm
[9] 丁悌平, 高建飞, 石国钰, 等. 长江水氢、氧同位素组成的时空变化及其环境意义[J]. 地质学报, 2013, 87(5): 661-676. doi: 10.3969/j.issn.0001-5717.2013.05.005
Ding T P, Gao J F, Shi G Y, et al. Spatial and temporal variations of H and O isotope compositions of the Yangtze River water and their environmental implications[J]. Acta Geologica Sinica, 2013, 87(5): 661-676. doi: 10.3969/j.issn.0001-5717.2013.05.005
[10] 孙芳强, 尹立河, 马洪云, 等. 新疆三工河流域土壤水δD和δ18O特征及其补给来源[J]. 干旱区地理, 2016, 39(6): 1298-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201606022.htm
Sun F Q, Yin L H, Ma H Y, et al. Features of δD and δ18O and origin of soil water in Sangong River Basin, Xinjiang[J]. Arid Land Geography, 2016, 39(6): 1298-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201606022.htm
[11] 吴秀杰. 氢氧同位素指示沙漠地下水来源研究——以巴丹吉林沙漠为例[D]. 北京: 中国地质大学(北京), 2018.
Wu X J. An investigation on groundwater origination in deserts indicated by hydrogen and oxygen isotopes, taking the Badain Jaran Desert as an example[D]. Beijing: China University of Geosciences (Beijing), 2018.
[12] 李晖, 周宏飞. 乌鲁木齐地区大气降水中δD和δ18O的变化特征[J]. 干旱区资源与环境, 2007, 21(9): 46-50. doi: 10.3969/j.issn.1003-7578.2007.09.010
Li H, Zhou H F. Variation characteristics of δD and δ18O stable isotopes in the precipitation of Urumqi[J]. Journal of Arid Land Resources and Environment, 2007, 21(9): 46-50. doi: 10.3969/j.issn.1003-7578.2007.09.010
[13] 李晖, 蒋忠诚, 王月, 等. 新疆地区大气降水中稳定同位素的变化特征[J]. 水土保持研究, 2009, 16(5): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200905033.htm
Li H, Jiang Z C, Wang Y, et al. Variation characteristics of stable isotopes in the precipitation of Xinjiang[J]. Research of Soil and Water Conservation, 2009, 16(5): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200905033.htm
[14] 王文祥, 王瑞久, 李文鹏, 等. 塔里木盆地河水氢氧同位素与水化学特征分析[J]. 水文地质工程地质, 2013, 40(4): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201304008.htm
Wang W X, Wang R J, Li W P, et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201304008.htm
[15] 努尔阿米乃姆·阿木克, 麦麦提吐尔逊·艾则孜, 海米提·依米提. 博斯腾湖流域氢氧同位素特征研究[J]. 安徽农业科学, 2016, 44(8): 11-13, 77. doi: 10.3969/j.issn.0517-6611.2016.08.005
Hamuk N, Eziz M, Yimit H. Study on characteristics of hydrogen and oxygen isotope in Bosten Lake Basin[J]. Journal of Anhui Agricultural Sciences, 2016, 44(8): 11-13, 77. doi: 10.3969/j.issn.0517-6611.2016.08.005
[16] 姚俊强, 刘志辉, 郭小云, 等. 呼图壁河流域水体氢氧稳定同位素特征及转化关系[J]. 中国沙漠, 2016, 36(5): 1443-1450. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201605032.htm
Yao J Q, Liu Z H, Guo X Y, et al. Characteristics of water stable isotopes (18O and 2H) in the Hutubi River Basin, northwestern China[J]. Journal of Desert Research, 2016, 36(5): 1443-1450. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201605032.htm
[17] 郭小云. 呼图壁河流域不同水体的水化学和稳定同位素特征分析[D]. 乌鲁木齐: 新疆大学, 2016.
Guo X Y. Water chemistry and stable isotope characteristics analysis of different water bodies in the Hutubi River Basin[D]. Urumqi: Xinjiang University, 2016.
[18] 曾海鳌, 吴敬禄, 刘文, 等. 哈萨克斯坦东部水体氢, 氧同位素和水化学特征[J]. 干旱区地理, 2013, 36(4): 662-668. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201304019.htm
Zeng H A, Wu J L, Liu W, et al. Characteristics on hydrochemistry and hydrogen, oxygen isotopes of waters in Kazakhstan[J]. Arid Land Geography, 2013, 36(4): 662-668. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201304019.htm
[19] Natalia M, Tatiana P, Nina K, et al. Influence of atmospheric circulation on precipitation in Altai mountains[J]. Journal of Mountain Science, 2017, 14(1): 46-59. doi: 10.1007/s11629-016-4162-5
[20] 李帅, 李祥余, 何清, 等. 阿勒泰地区近40年的气候变化研究[J]. 干旱区研究, 2006, 23(4): 637-643. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200604021.htm
Li S, Li X Y, He Q, et al. Study on climate change in Altay Prefecture since recent 40 years[J]. Arid Zone Research, 2006, 23(4): 637-643. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200604021.htm
[21] 贺斌. 新疆阿勒泰区域水资源总量评价及其预测分析[J]. 能源与节能, 2017(10): 103-104. doi: 10.3969/j.issn.2095-0802.2017.10.051
He B. Total evaluation and predictive analysis of water resources in Altay Region of Xinjiang[J]. Energy and Energy Conservation, 2017(10): 103-104. doi: 10.3969/j.issn.2095-0802.2017.10.051
[22] 雷雨, 龙爱华, 邓铭江, 等. 1926-2009年额尔齐斯河流域中游地区气候变化及其对水资源的影响分析[J]. 冰川冻土, 2012, 34(4): 912-919. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201204020.htm
Lei Y, Long A H, Deng M J, et al. Analyses of the climate change and its impact on water resources in the middle reaches of Irtysh River during 1926-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 912-919. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201204020.htm
[23] 王振升, 蒋惠敏. 乌伦古河流域水资源及其特征[J]. 干旱区地理, 2000, 23(2): 123-128. doi: 10.3321/j.issn:1000-6060.2000.02.006
Wang Z S, Jiang H M. Water resources and its features in Ulungur River watershed, Xinjiang[J]. Arid Land Geography, 2000, 23(2): 123-128. doi: 10.3321/j.issn:1000-6060.2000.02.006
[24] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
Wang S M, Dou H S. Chinese lakes[M]. Beijing: Science Press, 1998.
[25] 吴敬禄, 曾海鳌, 马龙, 等. 新疆主要湖泊水资源及近期变化分析[J]. 第四纪研究, 2012, 32(1): 142-150. doi: 10.3969/j.issn.1001-7410.2012.01.15
Wu J L, Zeng H A, Ma L, et al. Recent changes of selected lake water resources in arid Xinjiang, northwestern China[J]. Quaternary Sciences, 2012, 32(1): 142-150. doi: 10.3969/j.issn.1001-7410.2012.01.15
[26] Tian L D, Yao T, Macclune T, et al. Stable isotopic variations in West China: A consideration of moisture sources[J]. Journal of Geophysical Research, 2007, 112(D10): 1-12. http://adsabs.harvard.edu/abs/2007JGRD..11210112T
[27] Kong Y L, Wang K, Li J, et al. Stable isotopes of precipitation in China: A consideration of moisture sources[J]. Water, 2019, 11(6): 1239. doi: 10.3390/w11061239
[28] Aizen V B, Aizen E, Fujita K, et al. Stable-isotope time series and precipitation origin from firn-core and snow samples, Altai glaciers, Siberia[J]. Journal of Glaciology, 2005, 51(175): 637-654. doi: 10.3189/172756505781829034
[29] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
[30] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993
[31] 尹观, 倪师军. 地下水氘过量参数的演化[J]. 矿物岩石地球化学通报, 2001, 20(4): 409-411. doi: 10.3969/j.issn.1007-2802.2001.04.057
Yin G, Ni S J. Deuterium excess parameter evolution in ground water[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 409-411. doi: 10.3969/j.issn.1007-2802.2001.04.057
[32] 尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3): 251-254. doi: 10.3969/j.issn.1671-9727.2001.03.006
Yin G, Ni S J, Zhang Q C. Deuterium excess parameter and geohydrology significance-Taking the geohydrology researches in Jiuzaigou and Yele, Sichuan for example[J]. Journal of Chengdu University of Technology, 2001, 28(3): 251-254. doi: 10.3969/j.issn.1671-9727.2001.03.006
[33] 尹观, 倪师军, 范晓, 等. 冰雪溶融的同位素效应及氘过量参数演化——以四川稻城水体同位素为例[J]. 地球学报, 2004, 25(2): 157-160. doi: 10.3321/j.issn:1006-3021.2004.02.011
Yin G, Ni S J, Fan X, et al. Isotopic effect and the deuterium excess parameter evolution in ice and snow melting process: A case study of isotopes in the water body of Daocheng, Sichuan Province[J]. Acta Geoscientica Sinica, 2004, 25(2): 157-160. doi: 10.3321/j.issn:1006-3021.2004.02.011
[34] 成玉婷, 李鹏, 徐国策, 等. 丹江流域氢氧同位素变化特征[J]. 水土保持学报, 2014, 28(5): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201405023.htm
Cheng Y T, Li P, Xu G C, et al. Characteristics of hydrogen and oxygen isotopes in Danjiang Watershed[J]. Journal of Soil and Water Conservation, 2014, 28(5): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201405023.htm
-