中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

巯基棉富集分离-原子荧光光谱法测定高碳高硫地质样品中痕量硒

马万平, 温汉捷, 叶琴, 赵越, 杨季华. 巯基棉富集分离-原子荧光光谱法测定高碳高硫地质样品中痕量硒[J]. 岩矿测试, 2021, 40(4): 550-560. doi: 10.15898/j.cnki.11-2131/td.202101220013
引用本文: 马万平, 温汉捷, 叶琴, 赵越, 杨季华. 巯基棉富集分离-原子荧光光谱法测定高碳高硫地质样品中痕量硒[J]. 岩矿测试, 2021, 40(4): 550-560. doi: 10.15898/j.cnki.11-2131/td.202101220013
MA Wan-ping, WEN Han-jie, YE Qin, ZHAO Yue, YANG Ji-hua. Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 550-560. doi: 10.15898/j.cnki.11-2131/td.202101220013
Citation: MA Wan-ping, WEN Han-jie, YE Qin, ZHAO Yue, YANG Ji-hua. Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 550-560. doi: 10.15898/j.cnki.11-2131/td.202101220013

巯基棉富集分离-原子荧光光谱法测定高碳高硫地质样品中痕量硒

  • 基金项目:
    国家重点研发计划项目"稀散矿产资源基地深部探测技术示范"(2017YFC0602500)
详细信息
    作者简介: 马万平, 硕士研究生, 地质学专业。E-mail: 1299704594@qq.com
    通讯作者: 温汉捷, 博士, 研究员, 主要从事"三稀"矿产成矿作用及元素、同位素研究。E-mail: wenhanjie@vip.gyig.ac.cn
  • 中图分类号: O657.31

Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry

More Information
  • 氢化物发生-原子荧光光谱法(HG-AFS)应用于测定地质样品中的痕量硒具有较高的灵敏度,但复杂的基质仍会增加分析难度,尤其是富含有机质样品与硫化物样品中的有机碳、复杂配合物和共存离子等带来的干扰,故样品前处理十分重要。采用常规的巯基棉(thiol cotton fibre,TCF)富集分离方法处理富含有机质样品与硫化物样品时,常会出现回收率不稳定、TCF过早饱和的现象。因此,本文针对富含有机质样品,使用双TCF柱法,通过两次吸附可以有效减少有机质的干扰;针对硫化物样品,可通过增加TCF的用量或者减少称样量来提高硒的回收率。标准物质和实际样品的测定结果表明优化的方法可满足分析要求,对富有机质样品,硒的回收率大于95.1%±0.37%;对硫化物样品,硒的回收率大于95.5%±1.92%。同时,研究也表明,采用微波消解处理样品,能够有效地避免硒在消解过程中的损失。改进后的方法提升了富集分离效果,适用于有机质和硫化物地质样品中的痕量硒(ng/g~μg/g级)分析要求。

  • 加载中
  • 图 1  使用微波消解-TCF分离富集后地质样品中硒的测定值与推荐值对比

    Figure 1. 

    图 2  盐酸浓度和时间对硒还原效果的影响

    Figure 2. 

    图 3  不同体系中巯基棉的显色现象

    Figure 3. 

    表 1  优化后的实验条件和流程

    Table 1.  Optimized experimental conditions and processes in this study

    样品处理和分析步骤 具体操作流程和实验条件
    样品消解 浓硝酸(6mL),氢氟酸(2mL),200℃微波消解90min
    硒的还原 ①样品蒸干后赶酸,加入15mL 5mol/L盐酸定容,静置过夜
    ②沸水浴30min,冷却至室温
    TCF富集分离硒 ①5mol/L的盐酸介质,15mL样品+15mL超纯水,调节至2.5mol/L的盐酸介质
    ②TCF柱准备:0.15~0.2g,放入微柱中压实
    ③洗涤:2.5mL+2.5mL超纯水洗涤TCF柱
    ④平衡:2.5mL+2.5mL 2.5mol/L盐酸平衡TCF柱
    吸附Se(Ⅳ):30mL样品以0.05mL/s通过TCF柱
    硒的解吸 ①取下TCF后转移比色管中,加入2mL 12mol/L浓盐酸、2滴浓硝酸
    ②沸水浴,3min,冷却至室温
    ③离心:将絮状溶液离心后,转移上层清液
    ④多次回收TCF上的硒:3mL+5mL超纯水,清洗比色管,充分振荡
    ⑤多次离心,将上层清液混合,稀释至上机浓度准备测试
    HG-AFS测试 载流:5%盐酸溶液还原剂:2%硼氢化钾溶液
    下载: 导出CSV

    表 2  不同处理体系测定富有机质地质样品中的硒含量结果

    Table 2.  Analytical results of selenium content in organic-rich geological samples pretreated by different processing systems

    处理体系分组 样品编号 岩性 硒推荐值(μg/g) 硒测定值(n=2)(μg/g) 硒回收率(%) 硒平均回收率(%)
    T-1 SGR-1b 油气页岩 3.5 2.87±0.01 82.0 77.6±4.43
    SGR-1b 油气页岩 3.5 2.56±0.04 73.1
    GBW07303 水系沉积物 1±0.2 0.87±0.05 87.0 85.5±1.50
    GBW07303 水系沉积物 1±0.2 0.84±0.06 84.0
    GBW07407 土壤 1.34±0.17 1.07±0.07 79.9 80.6±0.75
    GBW07407 土壤 1.34±0.17 1.09±0.01 81.3
    MA-4 黑色页岩 7.1 5.56±0.08 78.3 76.5±1.83
    MA-4 黑色页岩 7.1 5.30±0.11 74.6
    MA-5 黑色页岩 33.2 27.14±0.16 81.7 83.1±1.37
    MA-5 黑色页岩 33.2 28.05±0.14 84.5
    T-2 SGR-1b 油气页岩 3.5 3.47±0.14 99.1 101.1±2.00
    SGR-1b 油气页岩 3.5 3.61±0.05 103.1
    GBW07303 水系沉积物 1±0.2 0.90±0.03 90.0 91.5±1.50
    GBW07303 水系沉积物 1±0.2 0.93±0.02 93.0
    GBW07407 土壤 1.34±0.17 1.37±0.09 102.2 100.0±2.24
    GBW07407 土壤 1.34±0.17 1.31±0.04 97.8
    MA-4 黑色页岩 7.1 6.73±0.19 94.8 96.4±1.62
    MA-4 黑色页岩 7.1 6.96±0.07 98.0
    MA-5 黑色页岩 33.2 34.1±0.15 102.7 99.4±3.31
    MA-5 黑色页岩 33.2 31.9±0.11 96.1
    T-3 SGR-1b 油气页岩 3.5 3.44±0.06 98.3 103.6±5.29
    SGR-1b 油气页岩 3.5 3.81±0.01 108.9
    GBW07303 水系沉积物 1±0.2 1.02±0.01 102.0 101.5±0.50
    GBW07303 水系沉积物 1±0.2 1.01±0.05 101.0
    GBW07407 土壤 1.34±0.17 1.28±0.02 95.5 95.1±0.37
    GBW07407 土壤 1.34±0.17 1.27±0.03 94.8
    MA-4 黑色页岩 7.1 6.82±0.12 96.1 99.2±3.10
    MA-4 黑色页岩 7.1 7.26±0.09 102.3
    MA-5 黑色页岩 33.2 35.67±0.24 107.4 106.2±1.23
    MA-5 黑色页岩 33.2 34.85±0.17 105.0
    注:n为测定次数,"硒测定值(n=2)"为两次测定平均值。T-1组为单柱法不加H2O2体系;T-2为单柱法加H2O2体系;T-3为双柱法不加H2O2体系。
    下载: 导出CSV

    表 3  不同处理体系测定硫化物样品中硒含量结果

    Table 3.  Analytical results of selenium content in sulfide samples pretreated by different processing systems

    处理体系分组 样品编号 样品性质 TCF用量(g) 硒推荐值(μg/g) 硒测定值(n=2)(μg/g) 硒回收率(%) 硒平均回收率(%)
    S-1 GBW07237 锌矿石 0.15 2.3±0.6 2.05±0.04 89.1 89.6±0.43
    GBW07237 锌矿石 2.3±0.6 2.07±0.04 90.0
    GBW07270 闪锌矿 0.15 3 2.73±0.03 91.0 89.2±1.83
    GBW07270 闪锌矿 3 2.62±0.03 87.3
    MA-1 全岩硫化物 0.15 39.3 29.23±0.05 74.4 73.9±0. 47
    MA-1 全岩硫化物 39.3 28.86±0.04 73.4
    MA-2 全岩硫化物 0.15 27.6 23.94±0.07 86.7 86.2±0.58
    MA-2 全岩硫化物 27.6 23.62±0.07 85.6
    MA-3 辉钼矿 0.15 0.78 0.65±0.01 83.3 80.8±2.56
    MA-3 辉钼矿 0.78 0.61±0.02 78.2
    S-2 GBW07237 锌矿石 0.20 2.3±0.6 2.37±0.05 103.0 103.3±0.22
    GBW07237 锌矿石 2.3±0.6 2.38±0.01 103.5
    GBW07270 闪锌矿 0.20 3 3.11±0.01 103.7 99.2±4.50
    GBW07270 闪锌矿 3 2.84±0.03 94.7
    MA-1 全岩硫化物 0.20 39.3 38.35±0.02 97.6 97.4±0.18
    MA-1 全岩硫化物 39.3 38.21±0.04 97.2
    MA-2 全岩硫化物 0.20 27.6 28.89±0.09 104.7 103.4±1.23
    MA-2 全岩硫化物 27.6 28.21±0.08 102.2
    MA-3 辉钼矿 0.20 0.78 0.73±0.01 93.6 95.5±1.92
    MA-3 辉钼矿 0.78 0.76±0.03 97.4
    注:n为测定次数,"硒测定值(n=2)"为两次测定平均值。
    下载: 导出CSV

    表 4  不同处理步骤硒标准溶液的回收率

    Table 4.  Recovery of selenium standard solution treated by different processing steps

    分组 编号 硒含量(ng) 消解前添加无硒玄武岩 消解后添加无硒玄武岩 还原处理 TCF纯化后硒含量(ng) 硒回收率(%) 硒平均回收率(%)
    B-1 β-1 0 × 0 - -
    β-2 0 × 0 -
    B-2 β-3 150 × × × 107.01 71.3 72.3±0.92
    β-4 150 × × × 109.77 73.2
    B-3 β-5 150 × × 112.89 75.3 78.3±3.08
    β-6 150 × × 122.12 81.4
    B-4 β-7 150 × 151.97 101.3 100.5±0.80
    β-8 150 × 149.57 99.7
    B-5 β-9 150 × 153.56 102.4 101.9±0.44
    β-10 150 × 152.24 101.5
    下载: 导出CSV

    表 5  改进后的方法与不同研究中硒的测定值比较

    Table 5.  Comparison of the measured values of selenium with improved method (this work) and other studies

    标准物质编号 样品性质 硒推荐值(μg/g) 硒测定值(μg/g) 数据来源
    SGR-1b 页岩 3.5 3.63±0.22
    3.67±0.13
    本研究文献[13]
    GBW07303 水系沉积物 1.0±0.2 1.02±0.04
    1.19±0.11
    本研究文献[13]
    GBW07406 土壤 1.37±0.17 1.28±0.03
    1.62±0.11
    本研究文献[13]
    GBW07237 锌矿石 2.3±0.6 2.38±0.04
    2.32±0.02
    本研究文献[36]
    GBW07270 闪锌矿 3.0 2.98±0.16
    2.73
    本研究文献[37]
    下载: 导出CSV
  • [1]

    U.S. Geological Survey. Mineral commodity summaries 2020[R]. U.S. Geological Survey, 2020, https://doi.org/10.3133/mcs2020.

    [2]

    陈炳翰, 丁建华, 叶会寿, 等. 中国硒矿成矿规律概要[J]. 矿床地质, 2020, 39(6): 1063-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006007.htm

    Chen B H, Ding J H, Ye H S, et al. Metallogenic regularity of selenium ore in China[J]. Mineral Deposits, 2020, 39(6): 1063-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006007.htm

    [3]

    李静贤, 刘家军. 硒矿资源研究现状[J]. 资源与产业, 2014, 16(2): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201402020.htm

    Li J X, Liu J J. Advances in selenium resource study[J]. Resources and Industries, 2014, 16(2): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201402020.htm

    [4]

    Wen H J, Carignan J. Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China[J]. Geochimica Et Cosmochimica Acta, 2011, 75(6): 1411-1427. doi: 10.1016/j.gca.2010.12.021

    [5]

    涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社, 2004: 1-153.

    Tu G C, Gao Z M, Hu R Z, et al. The geochemistry and ore-forming mechanism of the dispersed elements[M]. Beijing: Geological Publishing Housee, 2004: 1-153.

    [6]

    König S, Luguet A, Lorand J P, et al. Selenium and tellurium systematics of the Earth's mantle from high precision analyses of ultra-depleted orogenic peridotites[J]. Geochimica Et Cosmochimica Acta, 2012, 86: 354-366. doi: 10.1016/j.gca.2012.03.014

    [7]

    Yierpan A, Knig S, Labidi J, et al. Recycled selenium in hot spot-influenced lavas records ocean-atmosphere oxygenation[J]. Science Advances, 2020, 6(39): EABB6179. doi: 10.1126/sciadv.abb6179

    [8]

    Tian H, Ma Z Z, Chen X L, et al. Geochemical chara-cteristics of selenium and its correlation to other elements and minerals in selenium-enriched rocks in Ziyang County, Shaanxi Province, China[J]. Journal of Earth Science, 2016, 27(5): 763-776. doi: 10.1007/s12583-016-0700-x

    [9]

    Quang T D, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112(3): 294-309. http://europepmc.org/abstract/MED/29438838

    [10]

    李刚, 胡斯宪, 陈琳玲. 原子荧光光谱分析技术的创新与发展[J]. 岩矿测试, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003 http://www.ykcs.ac.cn/article/id/0c8cca2d-b0a6-46c7-be65-25f1c32a1e6b

    Li G, Hu S X, Chen L L. Innovation and development for atomic fluorescence spectrometry analysis[J]. Rock and Mineral Analysis, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003 http://www.ykcs.ac.cn/article/id/0c8cca2d-b0a6-46c7-be65-25f1c32a1e6b

    [11]

    陈海杰, 马娜, 白金峰, 等. 基于外供氢气-氢化物-原子荧光光谱法测定地球化学样品中硒的研究[J]. 光谱学与光谱分析, 2020, 40(9): 2896-2900. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009046.htm

    Chen H J, Ma N, Bai J F, et al. Study on determination of Se in geochemical samples by external supply H2-hydride generation atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2896-2900. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009046.htm

    [12]

    张欣, 许俊玉, 范凡, 等. 断续流动氢化物发生-原子吸收光谱法测定地质样品中的硒[J]. 桂林理工大学学报, 2016, 36(1): 191-194. doi: 10.3969/j.issn.1674-9057.2016.01.026

    Zhang X, Xu J Y, Fan F, et al. Determination of selenium in geological samples by intermittent-flow hydride generation atomic absorption spectrometry[J]. Journal of Guilin University of Technology, 2016, 36(1): 191-194. doi: 10.3969/j.issn.1674-9057.2016.01.026

    [13]

    Marin L, Lhomme J, Carignan J. GFAAS determination of selenium after separation with thiol cotton in lichens and plants: The importance of adding a mineral matrix before decomposition[J]. Talanta, 2003, 61(2): 119-125. doi: 10.1016/S0039-9140(03)00272-8

    [14]

    Marin L, Lhomme J, Carignan J. Determination of selen-ium concentration in sixty five reference materials for geochemical analysis by GFAAS after separation with thiol cotton[J]. Geostandards Newsletter, 2001, 25: 317-324. doi: 10.1111/j.1751-908X.2001.tb00608.x

    [15]

    Rouxel O, Ludden J, Carignan J, et al. Natural variations of Se isotopic composition determined by hydride generation multiple collector coupled mass spectrometer[J]. Geochimica Et Cosmochimica Acta, 2002, 66(18): 3191-3199. doi: 10.1016/S0016-7037(02)00918-3

    [16]

    Fan H F, Wen H J, Hu R Z, et al. Determination of total selenium in geological samples by HG-AFS after concentration with thiol cotton fiber[J]. Chinese Journal of Geochemistry, 2008(1): 90-96. http://www.ingentaconnect.com/content/ssam/10009426/2008/00000027/00000001/art00012

    [17]

    Yu M Q, Liu G Q, Jin Q. Determination of trace arsenic, antimony, selenium and tellurium in various oxidation states in water by hydride generation and atomic-absorption spectrophotometry after enrichment and separation with thiol cotton[J]. Talanta, 1983, 30(4): 265-270. doi: 10.1016/0039-9140(83)80060-5

    [18]

    Yu M, Sun D, Tian W, et al. Systematic studies on adsorption of trace elements Pt, Pd, Au, Se, Te, As, Hg, Sb on thiol cotton fiber[J]. Analytica Chimica Acta, 2002, 456(1): 147-155. doi: 10.1016/S0003-2670(02)00004-1

    [19]

    Yu M, Tian W, Sun D, et al. Systematic studies on adsorption of 11 trace heavy metals on thiol cotton fiber[J]. Analytica Chimica Acta, 2001, 428(2): 209-218. doi: 10.1016/S0003-2670(00)01238-1

    [20]

    Shan X Q, Hu K J. Matrix modification for determination of selenium in geological samples by graphite-furnace atomic-absorption spectrometry after preseparation with thiol cotton fibre[J]. Talanta, 1985, 32(1): 23-26. doi: 10.1016/0039-9140(85)80008-4

    [21]

    樊海峰, 温汉捷, 凌宏文, 等. 氢化物-原子荧光光谱法测定地质样中的痕量硒——不同溶样方式的比较[J]. 矿物岩石地球化学通报, 2005, 24(3): 200-203. doi: 10.3969/j.issn.1007-2802.2005.03.004

    Fan H F, Wen H J, Ling H W, et al. Determination of total selenium in geological samples by hydride generation atomic fluorescence spectrometry-A comparative experiment of two different dissolution methods[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3): 200-203. doi: 10.3969/j.issn.1007-2802.2005.03.004

    [22]

    刘芸, 曹国松, 程佩, 等. 微波消解-ICP-MS法测定土壤中的硒含量[J]. 化学与生物工程, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    Liu Y, Cao G S, Chen P, et al. Determination of selenium content in soil by microwave digestion-ICP-MS[J]. Chemistry and Bioengineering, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    [23]

    杨萍, 李惠. 微波消解-氢化物发生-原子荧光法测定土壤中的砷[J]. 环境研究与监测, 2019, 32(3): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201806002.htm

    Yang P, Li H. Determination of arsenic in soil by microwave digestion-hydride generation-atomic fluorescence spectrometry[J]. Environmental Research and Monitoring, 2019, 32(3): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201806002.htm

    [24]

    李媛媛, 纪轶. 微波消解技术在环境化学分析中的应用研究[J]. 中国资源综合利用, 2020, 38(10): 74-76. doi: 10.3969/j.issn.1008-9500.2020.10.020

    Li Y Y, Ji Y. Research on application of microwave digestion technology in environmental chemistry analysis[J]. China Resources Comprehensive Utilization, 2020, 38(10): 74-76. doi: 10.3969/j.issn.1008-9500.2020.10.020

    [25]

    赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J]. 岩石矿物学杂志, 2019, 38(2): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201902009.htm

    Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J]. Acta Petrologica Et Mineralogica, 2019, 38(2): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201902009.htm

    [26]

    Kurzawa T, König S, Labidi J, et al. A method for Se isotope analysis of low ng-level geological samples via double spike and hydride generation MC-ICP-MS[J]. Chemical Geology, 2017, 466: 219-228. doi: 10.1016/j.chemgeo.2017.06.012

    [27]

    Elwaer N, Hintelmann H. Selective separation of selen-ium(Ⅳ) by thiol cellulose powder and subsequent selenium isotope ratio determination using multicollector inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(5): 733-743. doi: 10.1039/b801673a

    [28]

    贺欣宇, 王军, 张丽娟. 巯基棉分离富集-多接收电感耦合等离子体质谱测量矿石中硒的同位素丰度[J]. 环境化学, 2010, 29(5): 982-983. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201005040.htm

    He X Y, Wang J, Zhang L J. Determination of selenium isotope abundance in ores by inductively coupled plasma mass spectrometry after sulfhydryl cotton separation and enrichment[J]. Environmental Chemistry, 2010, 29(5): 982-983. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201005040.htm

    [29]

    Stueeken E E, Foriel J, Nelson B K, et al. Selenium isotope analysis of organic-rich shales: Advances in sample preparation and isobaric interference correction[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(11): 1734-1749. doi: 10.1039/c3ja50186h

    [30]

    García J B, Krachler M, Chen B, et al. Improved deter-mination of selenium in plant and peat samples using hydride generation-atomic fluorescence spectrometry (HG-AFS)[J]. Analytica Chimica Acta, 2005, 534(2): 255-261. doi: 10.1016/j.aca.2004.11.043

    [31]

    von Strandmann P, Coath C D, Catling D C, et al. Analysis of mass dependent and mass independent selenium isotope variability in black shales[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1648-1659. doi: 10.1039/C4JA00124A

    [32]

    张文河, 穆桂金. 烧失法测定有机质和碳酸盐的精度控制[J]. 干旱区地理, 2007(3): 455-459. doi: 10.3321/j.issn:1000-6060.2007.03.021

    Zhang W H, Mu G J. Precision control on measuring organic and carbonate content with loss on ignition method[J]. Arid Land Geography, 2007(3): 455-459. doi: 10.3321/j.issn:1000-6060.2007.03.021

    [33]

    成勇. 电感耦合等离子体质谱法(ICP-MS)测定油品中铁, 铜, 铅, 锡, 砷, 银, 铬, 镍, 钒[J]. 中国无机分析化学, 2011, 1(4): 64-67. doi: 10.3969/j.issn.2095-1035.2011.04.0016

    Cheng Y. Determination of iron, copper, lead, tin, arsenic, silver, chromium, nickel and vanadium in oil by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(4): 64-67. doi: 10.3969/j.issn.2095-1035.2011.04.0016

    [34]

    张羽旭, 温汉捷, 樊海峰. 地质样品中Mo同位素测定的前处理方法研究[J]. 分析化学, 2009, 37(2): 216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010

    Zhang Y X, Wen H J, Fan H F. Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples[J]. Chinese Journal of Analytical Chemistry, 2009, 37(2): 216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010

    [35]

    刘向磊, 孙文军, 文田耀, 等. 三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素[J]. 岩矿测试, 2020, 39(5): 164-171. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201902270026

    Liu X L, Sun W J, Wen T Y, et al. Determination of 23 metal elements in detailed soil survey samples by inductively coupled plasma-mass spectrometry with three acid stepwise digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 164-171. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201902270026

    [36]

    邬景荣, 许廷波, 符峙宗, 等. 微波消解-电感耦合等离子体原子发射光谱法测定膨润土中6种元素[J]. 理化检验(化学分册), 2020, 56(2): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202002013.htm

    Wu J R, Xu T B, Fu S Z, et al. ICP-AES determination of 6 elements in bentonite with microwave digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(2): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202002013.htm

    [37]

    Savard D, Bédard L P, Barnes S J. TCF selenium precon-centration in geological materials for determination at sub-μg·g-1 with INAA (Se/TCF-INAA)[J]. Talanta, 2006, 70(3): 566-571. doi: 10.1016/j.talanta.2006.01.010

    [38]

    董亚妮, 田萍, 熊英, 等. 焙烧分离-氢化物发生-原子荧光光谱法测定铜铅锌矿石中的硒[J]. 岩矿测试, 2011, 30(2): 164-168. doi: 10.3969/j.issn.0254-5357.2011.02.008

    Dong Y N, Tian P, Xiong Y, et al. Determination of trace selenium in copper ore, lead ore and zinc ore by hydride generation-atomic fluorescence spectrometry with baking separation[J]. Rock and Mineral Analysis, 2011, 30(2): 164-168. doi: 10.3969/j.issn.0254-5357.2011.02.008

    [39]

    管希云, 李玉珍. 表面活性剂的应用研究——动力学光度法测定痕量硒碲[J]. 岩矿测试, 2000, 29(1): 14-19. doi: 10.3969/j.issn.0254-5357.2000.01.004

    Guan X Y, Li Y Z. Application research on surfactant-kinetic spectrophotometric determination of trace selenium and tellurium[J]. Rock and Mineral Analysis, 2000, 29(1): 14-19. doi: 10.3969/j.issn.0254-5357.2000.01.004

  • 加载中

(3)

(5)

计量
  • 文章访问数:  2430
  • PDF下载数:  102
  • 施引文献:  0
出版历程
收稿日期:  2021-01-22
修回日期:  2021-04-21
录用日期:  2021-05-17
刊出日期:  2021-07-28

目录