中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

X射线衍射旋转撒样法分析氟金云母多型组成与含量

陈爱清, 何宏平, 谭伟, 杨宜坪, 陶奇. X射线衍射旋转撒样法分析氟金云母多型组成与含量[J]. 岩矿测试, 2021, 40(4): 504-511. doi: 10.15898/j.cnki.11-2131/td.202101250014
引用本文: 陈爱清, 何宏平, 谭伟, 杨宜坪, 陶奇. X射线衍射旋转撒样法分析氟金云母多型组成与含量[J]. 岩矿测试, 2021, 40(4): 504-511. doi: 10.15898/j.cnki.11-2131/td.202101250014
CHEN Ai-qing, HE Hong-ping, TAN Wei, YANG Yi-ping, TAO Qi. Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method[J]. Rock and Mineral Analysis, 2021, 40(4): 504-511. doi: 10.15898/j.cnki.11-2131/td.202101250014
Citation: CHEN Ai-qing, HE Hong-ping, TAN Wei, YANG Yi-ping, TAO Qi. Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method[J]. Rock and Mineral Analysis, 2021, 40(4): 504-511. doi: 10.15898/j.cnki.11-2131/td.202101250014

X射线衍射旋转撒样法分析氟金云母多型组成与含量

  • 基金项目:
    国家自然科学基金项目(41530313,41772039);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC023);广东省科技计划项目(2020B1212060055)
详细信息
    作者简介: 陈爱清, 博士, 工程师, 从事矿物学和X射线衍射晶体学研究。E-mail: caq99100@163.com
    通讯作者: 何宏平, 博士, 研究员, 从事黏土矿物学、矿物结构与矿物化学等研究。E-mail: hehp@gig.ac.cn
  • 中图分类号: P575.5

Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method

More Information
  • 合成氟金云母多型种类与含量对云母的物理化学性质具有重要的影响。然而在X射线粉晶衍射(XRD)制样过程中云母00l基面极易产生择优取向,严重制约了云母多型组成和含量的分析。传统撒样法可促使晶体取向随机分布,但制备的试样表面不够平坦。本文对传统撒样法进行改进,在撒样过程中使样品架均匀旋转,从而获得表面平坦的试样。XRD测试结果表明,旋转撒样法取向指数(OI=I001/I060)为3.9,与无择优取向的理论值4.5接近,明显优于正压法和侧装法(OI值分别为38.7和18.1),表明旋转撒样法能够显著减弱云母择优取向。这主要是由于旋转撒样法使晶体颗粒之间形成犬牙交错分布,提高了云母各晶面随机分布概率。Rietveld全图拟合分析显示,旋转撒样法获得的XRD数据精修效果较好,计算出本文合成的氟金云母样品中1M和2M1多型含量分别为86%和14%,8个工业合成的氟金云母样品中1M和2M1多型含量分别为57%~72%和28%~43%,并且存在较多的堆垛层错。总之,旋转撒样法减弱择优取向效果显著,为研究云母晶体生长、多型成因以及结构与性能之间的关系提供了技术支撑。

  • 加载中
  • 图 1  合成氟金云母XRD图($ \nabla $: 2M1氟金云母特征衍射峰)

    Figure 1. 

    图 2  XRD试样表面微形貌图(采用ZEISS体式显微镜拍摄)

    Figure 2. 

    图 3  氟金云母Rietveld精修结果

    Figure 3. 

    图 4  8个工业合成氟金云母样品XRD图谱($ \nabla $: 2M1氟金云母特征衍射)

    Figure 4. 

    表 1  工业合成氟金云母样品1M和2M1多型含量

    Table 1.  Content of 1M and 2M1 fluorophlogopite of commercial samples

    样品编号 多型含量(%)
    1M 2M1
    S1 68 32
    S2 64 36
    S3 60 39
    S4 72 28
    S5 61 39
    S6 65 35
    S7 57 43
    S8 61 39
    下载: 导出CSV
  • [1]

    徐扬群. 合成云母的制造、加工与应用[M]. 北京: 化学工业出版社, 2012: 1-5.

    Xu Y Q. Manufacuring, processing and application of synthetic mica[M]. Beijing: Chemical Industry Press, 2012: 1-5.

    [2]

    Casasola R, Pérez J, Romero M. Crystal growth of F-phlogopite from glasses of the SiO2-Al2O3-MgO-K2O-F system[J]. Journal of the American Ceramic Society, 2016, 99(2): 484-491. doi: 10.1111/jace.13995

    [3]

    Ma L J, Sun Z C, Zhang L, et al. Study on mechanism and theoretical model of tool wear in fluorophlogopite glass-ceramics turning[J]. Journal of Materials Processing Technology, 2020, 275: 1-10. http://www.sciencedirect.com/science/article/pii/S0924013619302560

    [4]

    Fregola R A, Capitani G C, Scandale E, et al. Chemical control of 3T stacking order in a Li-poor biotite mica[J]. American Mineralogist, 2009, 94: 334-344. doi: 10.2138/am.2009.3004

    [5]

    Capitani G C, Schingaro E, Lacalamita M, et al. Structural anomalies in tobelite-2M2 explained by high resolution and analytical electron microscopy[J]. Mineralogical Magazine, 2016, 80(1): 143-156. doi: 10.1180/minmag.2015.079.7.14

    [6]

    Kuo C L, Huang Y H, Fan S J. X-ray topography study on imperfections in synthetic mica (fluorophlogopite) crystal[J]. Journal of Material Science, 1981, 16(4): 877-882. doi: 10.1007/BF00542730

    [7]

    Bloss F D, Gibbs G V, Cummings D. Polymorphism and twinning in synthetic fluorophlogopite[J]. Journal of Geology, 1963, 71(5): 537-548. doi: 10.1086/626931

    [8]

    Shell H R, Ivey K H. Fluorine micas[M]. Washington: U.S. Department of the Interior, Bureau of Mines, 1969: 152-154.

    [9]

    Sunagawa I, Endo Y, Daimon N, et al. Nucleation, growth and polytypism of flour-phlogopite from the vapour phase[J]. Journal of Crystal Growth, 1968, 3(4): 751. http://www.sciencedirect.com/science/article/pii/0022024868902595

    [10]

    Hammouda T, Pichavant M, Barbey P, et al. Synthesis of fluorphlogopite single crystals. Applications to experi-mental studies[J]. European Journal of Mineralogy, 1995, 7: 1381-1387. doi: 10.1127/ejm/7/6/1381

    [11]

    李中和, 秦关华, 翁臻培. 人造氟金云母的多型[J]. 人工晶体学报, 1982(增刊): 144. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT1982Z1196.htm

    Li Z H, Qin G H, Weng Z P. Polytype of synthetic fluorophlogopite[J]. Journal of Synthetic Crystals, 1982(Supplement): 144. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT1982Z1196.htm

    [12]

    Hillier S. Use of an air brush to spray dry samples for X-ray powder diffraction[J]. Clay Minerals, 1999, 34: 127-135. doi: 10.1180/000985599545984

    [13]

    Moore D M, Reynolds R C J. X-ray diffraction and the identification and analysis of clay minerals[M]. New York: Oxford University Press, 1997: 204-225.

    [14]

    Grathoff G H, Moore D M. Illite polytype quantification using WILDFIRE® calculated X-ray diffraction patterns[J]. Clays and Clay Minerals, 1996, 44(6): 835-842. doi: 10.1346/CCMN.1996.0440615

    [15]

    Kleeberg R, Monecke T, Hillier S. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples?[J]. Clays and Clay Minerals, 2008, 56(4): 404-415. doi: 10.1346/CCMN.2008.0560402

    [16]

    马礼敦. X射线粉末衍射仪用试样的制作[J]. 上海计量测试, 2008(5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001

    Ma L D. Preparation of the samples for X-ray powder diffractometers[J]. Shanghai Measurement and Testing, 2008(5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001

    [17]

    Zhou X, Liu D, Bu H, et al. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review[J]. Solid Earth Sciences, 2018, 3: 16-29. doi: 10.1016/j.sesci.2017.12.002

    [18]

    冉敬, 郭创锋, 杜谷, 等. X射线衍射全谱拟合法分析蓝晶石的矿物含量[J]. 岩矿测试, 2019, 38(6): 660-667. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201902220025

    Ran J, Guo C F, Du G, et al. Quantitative analysis of mineral composition of kyanite by X-ray diffraction with Rietveld refinement method[J]. Rock and Mineral Analysis, 2019, 38(6): 660-667. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201902220025

    [19]

    Toby B H. EXPGUI, a graphical user interface for GSAS[J]. Journal of Applied Crystallography, 2001, 34: 210-213. doi: 10.1107/S0021889801002242

    [20]

    陈爱清, 薛雍, 徐洪柳, 等. Rietveld定量方法在蒸发岩矿物组分分析中的精确度评价和误差来源[J]. 岩矿测试, 2017, 36(4): 374-381. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201608020111

    Chen A Q, Xue Y, Xu H L, et al. Assessment of accuracy and error sources of the Rietveld quantitative phase analysis method in mineral contents of evaporites[J]. Rock and Mineral Analysis, 2017, 36(4): 374-381. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201608020111

    [21]

    Zhang G, Germaine J T, Martin R T, et al. A simple sample-mounting method for radndom powder X-ray diffraction[J]. Clays and Clay Minerals, 2003, 51(2): 218-225. doi: 10.1346/CCMN.2003.0510212

    [22]

    彭观良, 杨建坤, 兰勇, 等. 择优取向对X射线衍射积分强度的影响[J]. 大学物理实验, 2007, 20(3): 56-58. doi: 10.3969/j.issn.1007-2934.2007.03.016

    Peng G L, Yang J K, Lan Y, et al. The effect of preferred orientation on X-ray diffraction integral intensity[J]. Physical Experimental of College, 2007, 20(3): 56-58. doi: 10.3969/j.issn.1007-2934.2007.03.016

    [23]

    Jenkins R, Fawcett T G, Smith D K, et al. JCPDS-International centre for diffraction data sample preparation methods in X-ray powder diffraction[J]. Powder Diffraction, 1986, 1(2): 51-63. doi: 10.1017/S0885715600011581

    [24]

    Schingaro E, Lacalamita M, Scordari F, et al. 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study[J]. American Mineralogist, 2013, 98: 709-717. doi: 10.2138/am.2013.4283

    [25]

    Scordari F, Schingaro E, Ventruti G, et al. Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): Crystal chemistry and implications for the crystallization conditions[J]. American Mineralogist, 2013, 98: 1017-1025. doi: 10.2138/am.2013.4225

    [26]

    Brindley G W, Brown G. Crystal structures of clay minerals and their X-ray identification[M]. London: Mineralogical Society, 1980: 46-56.

    [27]

    郑振环, 李强. X射线多晶衍射数据Rietveld精修及GSAS软件入门[M]. 北京: 中国建材工业出版社, 2016: 20-23.

    Zheng Z H, Li Q. Introduction to Rietveld refinement with X-ray powder diffraction data and GSAS software[M]. Beijing: China Building Material Industry Publishing House, 2016: 20-23.

    [28]

    陈昊鸿, 雷芳. 粉末衍射理论与实践[M]. 北京: 高等教育出版社, 2016: 158-160.

    Chen H H, Lei F. Powder diffraction theory and practice[M]. Beijing: Higher Education Press, 2016: 158-160.

    [29]

    Toby B H. R factors in Rietveld analysis: How good is good enough?[J]. Powder Diffraction, 2006, 21(1): 67-70. doi: 10.1154/1.2179804

    [30]

    Mottana E A, Sassi F P, Thompson J B, et al. Micas: crystal chemistry and metamorphic petrology, reviews in mineralogy and geochemistry[M]. Washington: Mineralogical Society of America and the Geochemical Society, 2002: 1-90.

    [31]

    Pignatelli I, Faure F, Mosser-Ruck R. Self-mixing magma in the Ruiz Peak rhyodacite (New Mexico, USA): A mechanism explaining the formation of long period polytypes of mica[J]. Lithos, 2016, 266: 332-347.

    [32]

    陈爱清. 熔体中氟金云母生长机制与多型成因[D]. 北京: 中国科学院大学, 2019.

    Chen A Q. Growth mechanism and polytype genesis of synthetic fluorophlogopite from melt[D]. Beijing: University of Chinese Academy of Sciences, 2019.

  • 加载中

(4)

(1)

计量
  • 文章访问数:  3668
  • PDF下载数:  110
  • 施引文献:  0
出版历程
收稿日期:  2021-01-25
修回日期:  2021-04-07
录用日期:  2021-07-02
刊出日期:  2021-07-28

目录